
Martin Schmidt 28 November 2022

Ross Ogilvie
Analysis III

12. Exercise: Integration

Preparation Exercises

70. The pullback of differential forms.

(a) Let X, Y be manifolds of dimension n and f : X → Y a smooth map. Further take

the standard local set-up of charts ϕ = (ϕ1, . . . , ϕn) : U → Rn and ψ = (ψ1, . . . , ψn) :

V → Rn on open sets U ⊂ X and V ⊂ Y with f(U) ⊂ V .

Show the following local formula for the pullback holds for every smooth function

g ∈ C∞(V,R):

f ∗(g dψ1 ∧ · · · ∧ dψn) = (g ◦ f) · det
(
∂(ψj ◦ f ◦ ϕ−1)

∂xi

)
· dϕ1 ∧ · · · ∧ dϕn .

Hint. Make use of the determinant formula for the evaluation of forms ⟨A1 ∧ · · · ∧
Ap , v1 ⊗ . . .⊗ vp⟩ = det

(
Ai(vj)

)
i,j
, from page 71 of the script.

(b) Consider the canonical volume form on R3, namely ω := dx ∧ dy ∧ dz and spherical

coordinates

f : R+×[0, 2π)×[0, π] → R3, (r, ϑ, φ) 7→
(
r cos(ϑ) cos(φ) , r cos(ϑ) sin(φ) , r sin(ϑ)

)
.

Compute “ω in spherical coordinates”, by which we mean the pullback f ∗ω.

Solution.

(a) A special case of this is used in the proof of Theorem 3.17 to change between n-forms

coming from two sets of coordinates on the same manifold. The operation itself is

defined in Theorem 3.12(iii) and Theorem 3.5.

In particular, because we know from Theorem 3.12(iv) that pulling back is an exterior

algebra homomorphism, we can compute the effect on each part and then recombine

them. The pullback of a smooth function is just pre-composition: f ∗g = g ◦ f .
Moreover, by Theorem 3.15(ii) pullbacks commute with exterior derivatives, so

f ∗dψj = d(f ∗ψi) = d(ψj ◦ f) =
∑
i

∂(ψj ◦ f ◦ ϕ−1)

∂xi
dϕi

using the formula for exterior derivative in terms of coordinate charts on page 75.

We have one such 1-form for each dψj, and clearly it would be a pain to try to
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expand out the exterior product directly. This is where we follow the hint. Let Ek

be coordinate vector fields on U , that is dϕi(Ek) = δi,k. Then

⟨f ∗dψ1 ∧ · · · ∧ f ∗dψn, E1 ⊗ · · · ⊗ En⟩ = det
(∑

i

∂(ψj ◦ f ◦ ϕ−1)

∂xi
dϕi(Ek)

)
j,k

= det
(∑

i

∂(ψj ◦ f ◦ ϕ−1)

∂xi
δi,k

)
j,k

= det
(∂(ψj ◦ f ◦ ϕ−1)

∂xi

)
j,i〈

det
(∂(ψj ◦ f ◦ ϕ−1)

∂xi

)
i,j
dϕ1∧ · · · ∧ dϕn, E1 ⊗ · · · ⊗ En

〉

= det
(∂(ψj ◦ f ◦ ϕ−1)

∂xi

)
i,j

det
(
dϕi(Ek)

)
i,k

= det
(∂(ψj ◦ f ◦ ϕ−1)

∂xi

)
i,j

Any other pure n-form in increasing order must repeat vectors, so for the first form

leads to a repeated column (and so the determinant is zero) and for the second form

leads to a column of zeroes. This shows that the two differential forms act identically,

and so are equal.

(b) Here we interpret the interior of the domain of f as a manifold X and let Y = R3. In

particular X = (0,∞)×(0, 2π)×(0, π) is an open subset of R3 so we use the identity

function as the chart ϕ, but label the components r, ϑ, φ, whereas on Y = R3 we also

use the identity function as a chart but label the coordinates with the usual x, y, z.

Therefore we have

(x, y, z) = ψ ◦ f ◦ ϕ−1(r, ϑ, φ) = f(r, ϑ, φ).

The determinant that we need to compute is nothing other than the determinant of

the Jacobian matrix:∣∣∣∣∣∣∣
cos(ϑ) cos(φ) −r sin(ϑ) cos(φ) −r cos(ϑ) sin(φ)
cos(ϑ) sin(φ) −r sin(ϑ) sin(φ) r cos(ϑ) cos(φ)

sin(ϑ) r cos(ϑ) 0

∣∣∣∣∣∣∣
= sin(ϑ)

∣∣∣∣∣−r sin(ϑ) cos(φ) −r cos(ϑ) sin(φ)
−r sin(ϑ) sin(φ) r cos(ϑ) cos(φ)

∣∣∣∣∣− r cos(ϑ)

∣∣∣∣∣cos(ϑ) cos(φ) −r cos(ϑ) sin(φ)
cos(ϑ) sin(φ) r cos(ϑ) cos(φ)

∣∣∣∣∣
= r2 sin2(ϑ) cos(ϑ)

∣∣∣∣∣cos(φ) sin(φ)

sin(φ) − cos(φ)

∣∣∣∣∣− r2 cos3(ϑ)

∣∣∣∣∣cos(φ) − sin(φ)

sin(φ) cos(φ)

∣∣∣∣∣
= −r2 cos(ϑ)
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71. Integration on the unit circle.

Let ω be a 1-form on the unit circle S1 ⊂ R2 and

f : R → S1, t 7→ (cos t, sin t)

a paramterisation.

(a) Use the exercise “Null sets of manifolds” and Corollary 3.22 to calculate∫
S1
y dx

(b) Prove Stokes’ theorem for S1. Actually, show the stronger result that ω is exact if

and only if ∫
S1
ω = 0.

(S1 is a manifold whose boundary is empty, so the right side of Stokes’ theorem is

zero.)

Solution.

(a) We know that an integral is not changed by the exclusion of a null set. Thus∫
S1
ω =

∫
S1\{(1,0)}

ω =

∫
(0,2π)

f ∗ω =

∫
[0,2π]

f ∗ω

using Corollary 3.22 in the middle step, because f is a diffeomorphisms between

S1 \ {(1, 0)} and (0, 2π).

Hence ∫
S1
y dx+ x dy =

∫ 2π

0

sin t(− sin t dt)

=

∫ 2π

0

− sin2 t dt = −π.

(b) Suppose that ω = dg for a smooth function g : S1 → R. Then we have that∫
S1
dg =

∫
[0,2π]

d(g ◦ f) = g(f(2π))− g(f(0)) = g(1, 0)− g(1, 0) = 0.

This shows Stokes’ theorem in this case.

For the stronger statement, which also has the converse, suppose that the integral

of ω is 0 over the circle. Define the real function G : R → R by

G(t) =

∫ t

0

f ∗ω.
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This function is in fact periodic with period 2π because f is and

G(t+ 2π) =

∫ 2π

0

f ∗ω +

∫ t+2π

2π

f ∗ω = 0 +

∫ t

0

f ∗ω = G(t).

Thus G defines a function g on the circle. Every point of the circle has a neighbour-

hood where f restricts to give a coordinate chart. In this coordinate chart, we see

that G = g ◦ f = f ∗g. Since dG = G′ dt = f ∗ω, it follows that dg = ω. This shows

that ω is exact as required.

In Class Exercises

72. Null sets of manifolds.

Let M be an oriented manifold and Z a closed subset. Hence M \ Z is also a manifold.

We call Z a null set if for every coordinate chart ϕα : Uα → Rn the set ϕα[Z ∩ Uα] is a

null set of Rn. Prove that ∫
A

ω =

∫
A\Z

ω

Solution. First, a technical point: The set A \ Z might not be compact so Definition

3.21 might not apply. But we see that the reason that A should be compact is so the sum

is finite and guaranteed to exist. In this situation we know that A \Z can be covered by

finitely many charts, so this concern about well-definition is moot.

Because the charts are bijections, ϕα[(A \ Z) ∩ Uα] = ϕα[A ∩ Uα] \ ϕα[Z ∩ Uα]. Then∫
A\Z

ω =
∑
m

∫
ϕm[(A\Z)∩Um]

ϕ∗
m(fmω)

=
∑
m

∫
ϕm[A∩Um]

ϕ∗
m(fmω)−

∑
m

∫
ϕm[Z∩Um]

ϕ∗
m(fmω)

=
∑
m

∫
ϕm[A∩Um]

ϕ∗
m(fmω)− 0

=

∫
A

ω.
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73. The divergence theorem (aka Gauss’ theorem).

Let X ⊂ Rn be a compact subset of Rn with X0 = X that is an n-dimensional manifold

with boundary. It is know that X must be orientable and that ω := dx1 ∧ · · · ∧ dxn is a

volume form on X. Further, let a smooth (n− 1)-form η on X be given.

(a) Show that there is a unique vector field F ∈ Vec∞(X) with η = iFω.

(b) Write F = (F1, . . . , Fn) for functions F1, . . . , Fn ∈ C∞(X,R). Define the divergence

operator div(F ) ∈ C∞(X,R) as

div(F ) :=
n∑

k=1

∂Fk

∂xk
.

Prove the following connection between the divergence operator and the exterior

derivative:

d(iFω) = div(F ) · ω.

(c) Prove the divergence theorem:∫
∂X

η =

∫
X

div(F ) · ω.

Solution.

(a) We know that we can write η =
∑
ηidx1∧ . . . d̂xi · · ·∧dxn. Consider then the vector

field F := (η1, . . . , (−1)n−1ηn) and in particular how ιFω acts on E1 ⊗ Êi ⊗ En:

⟨ιFω,E1 ⊗ Êi ⊗ En⟩ = ⟨ω, F ⊗ E1 ⊗ Êi ⊗ En⟩

=
∑
j

⟨ω, (−1)j−1ηjEj ⊗ E1 ⊗ Êi ⊗ En⟩

=
∑
j

(−1)j−1ηj det(dxk(vl))k,l

= (−1)i−1ηi det(dxk(vl))k,l

= (−1)i−1ηi · (−1)i−1,

because the only determinant that does not have a repeated column is the one where

j = i. For that matrix, you then have to do j−1 column swaps to make it the identity

matrix. This shows that ιFω acts identically to η.

(b) We can apply part (a) in reverse, so that ιFω =
∑

i(−1)i−1Fidx1 ∧ . . . d̂xi · · · ∧ dxn.
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Now we apply the exterior derivative

d(ιFω) =
∑
i

d
(
(−1)i−1Fi

)
∧ dx1 ∧ . . . d̂xi · · · ∧ dxn

=
∑
i

[∑
j

∂

∂xj
(−1)i−1Fidxj

]
∧ dx1 ∧ . . . d̂xi · · · ∧ dxn

=
∑
i

(−1)i−1∂Fi

∂xi
dxi ∧ dx1 ∧ . . . d̂xi · · · ∧ dxn

=
∑
i

∂Fi

∂xi
dx1 ∧ · · · ∧ dxn

= div(F ) · dx1 ∧ · · · ∧ dxn.

(c) ∫
∂X

η =

∫
X

dη =

∫
X

d(ιFω) =

∫
X

div(F ) · ω

74. A differential form which is closed but not exact.

Consider on the punctured plane R2 \ {0} the 1-form

ω := − y

x2 + y2
dx+

x

x2 + y2
dy.

(a) Show that ω is closed.

(b) Compute
∫
S1 ω .

(c) Why does it follow from that ω is not exact?

Remark. Due to d(dη) = 0 we see that every exact form is closed. Poincaré’s Lemma

says that on star-shaped regions in Rn that the converse is also true: every closed form

is exact. The example in this exercise shows that such a converse result cannot hold for

general regions.

Solution.

(a)

dω = −
(
x2 + y2 − 2y2

(x2 + y2)2

)
dy ∧ dx+

(
x2 + y2 − 2x2

(x2 + y2)2

)
dx ∧ dy = 0

(b) We use the parametrisation f and result from Exercise 43 on the last tutorial sheet:∫
S1
ω =

∫ 2π

0

−sin t

1
d(cos t) +

cos t

1
d(sin t) =

∫ 2π

0

sin2 t dt+ cos2 t dt = 2π.
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(c) By Stokes’ theorem if ω were exact then this integral would be zero.

Additional Exercises

75. An integration.

Let ω = y dx+ z dy be a 1-form on R3. Consider the restriction of ω to the 2-sphere S2,

with the parametrisation

S2 = { (sin(φ) sin(ϑ), cos(φ) sin(ϑ), cos(ϑ)) ∈ R3 |φ ∈ [0, 2π), ϑ ∈ [0, π] }.

Verify through direct computation that Stokes’ theorem holds for this case:∫
S2

dω = 0.

Solution. First,

dω = dy ∧ dx+ dz ∧ dy.

We will also need to calculate the pullback by the parametrisation f(φ, ϑ) = (sin(φ) sin(ϑ), cos(φ) sin(ϑ), cos(ϑ)):

f ∗dx = d(sin(φ) sin(ϑ)) = cos(φ) sin(ϑ)dφ+ sin(φ) cos(ϑ)dϑ

f ∗dy = − sin(φ) sin(ϑ)dφ+ cos(φ) cos(ϑ)dϑ

f ∗dz = − sin(ϑ)dϑ

f ∗(dy ∧ dx) = − sin2(φ) sin(ϑ) cos(ϑ)dφ ∧ dϑ+ cos2(φ) sin(ϑ) cosϑdϑ ∧ dφ

= − sin(ϑ) cos(ϑ)dφ ∧ dϑ

f ∗(dz ∧ dy) = − cos(φ) sin2(ϑ)dϑ ∧ dφ

= cos(φ) sin2(ϑ)dφ ∧ dϑ

We can ignore sets of measure zero when pulling back using the parametrisation.∫
S2

dω =

∫
[0,2π]×[0,π]

f ∗dω

=

∫
[0,2π]×[0,π]

[
− sin(ϑ) cos(ϑ) + cos(φ) sin2(ϑ)

]
dφ ∧ dϑ

=

∫ π

0

[∫ 2π

0

− sin(ϑ) cos(ϑ) + cos(φ) sin2(ϑ) dφ

]
dϑ

=

∫ π

0

−2π sin(ϑ) cos(ϑ) dϑ =

∫ π

0

−π sin(2ϑ) dϑ = 0.
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76. Volume forms on compact connected manifolds.

Let X be a compact connected orientable n-dimensional manifold without boundary, and

suppose that ω is a non-vanishing n-form. Show that ω is not exact.

Hint. Calculate
∫
X
ω in two ways: with Stokes’ theorem and with Definition 3.21.

Solution. Suppose that ω was exact: ω = dη. Then by Stokes’ theorem

0 =

∫
∅
η =

∫
∂X

η =

∫
X

dη =

∫
X

ω.

On the other hand, from the definition of integration on manifolds, let {(Uk, ϕk)} be an

oriented atlas of X and fk the corresponding partition of unity. Without loss of generality,

assume all the sets Uk are connected. Write ω = gkdϕk,1 ∧ · · · ∧ dϕk,n. Because gk is non-

vanishing, it has a definite sign on Uk. Because we are using an orientable atlas, all of

the functions gk have the same sign. Assume this sign is positive. Then∫
X

ω =
∑
k

∫
ϕk[Uk]

fk(ϕ
−1
k (x))gk(ϕ

−1
k (x)) dx1 . . . dxn ≥

∫
ϕ0[U0]

f0(ϕ
−1
0 (x))g0(ϕ

−1
0 (x)) dx1 . . . dxn > 0

since the integral of a non-negative continuous function that is positive at a point must

be positive. This is contradiction. Hence ω is not exact.
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