Analysis III 11. Exercise: Forms

Preparation Exercises

66. The wedge product

In this exercise we will do some calculations with the antisymmetric algebras of $V = \mathbb{R}^3$. Let $\{e_i\}$ be a basis of V and $\{\alpha_i\}$ the corresponding dual basis of V'.

- (a) Show that $\beta = \alpha_1 \otimes \alpha_2 \alpha_2 \otimes \alpha_1$ belongs to $\bigwedge^2 V'$.
- (b) Consider the antisymmeterising operation \mathcal{A} defined in the proof of Theorem 3.4. Compute $\mathcal{A}^1(\alpha_3) \in \bigwedge^1 V'$ and $\mathcal{A}^2(\alpha_1 \otimes \alpha_2) \in \bigwedge^2 V'$.
- (c) Compute $\langle \beta, e_1 \otimes e_3 \rangle = \beta(e_1, e_3)$ using the definition of tensors as linear maps and also using the formula on page 71 of the script (notice that $\beta = \alpha_1 \wedge \alpha_2$).
- (d) Compute the wedge product $\beta \wedge \alpha_3$.
- (e) In the proof of Theorem 3.4, it is proved that the wedge products span the space of antisymmetric tensors by a dimension count argument. Given an antisymmetric tensor, can you find an algorithm to write it as a sum of wedge products of basis elements?

In Class Exercises

67. Dual 1-forms to a vector field (using dot product).

Let $F \in \operatorname{Vec}^{\infty}(\mathbb{R}^3)$ be a smooth vector field on \mathbb{R}^3 that is nowhere vanishing. Find a tensor field α of $T'\mathbb{R}^3$ (a 1-differential form on \mathbb{R}^3), so that the kernel of α at every point is orthogonal to F. Orthogonal means using the dot product of \mathbb{R}^3

68. Local representations of tensor fields.

Let X be an n-dimensional smooth manifold and f a tensor field in $T_p^q X$. To simplify the notation, we will only consider the case p=0, q=2, but for other tensor spaces everything holds completely analogously. Further, let (U,ϕ) be a chart of X and denote the components of ϕ by $\phi_1, \ldots, \phi_n : U \to \mathbb{R}$. These induce 1-forms $\alpha_k := \mathrm{d}\phi_k$ in $T_0^1 U \subset$ $T_0^1 X$. By definitions these 1-forms act as $\alpha_k(x)(v) = T_x(\phi_k)(v)$ for every $x \in U$ und $v \in T_x X$.

General Hint. It will be useful to consider the (local) vector fields E_k on U

$$E_k(x) = T_x(\phi)^{-1}(e_k).$$

These are often called the coordinate vector fields.

(a) Show there exist functions $f_{k,l}: U \to \mathbb{R}$, so that

$$f|U = \sum_{k,l=1}^{n} f_{k,l} \cdot \alpha_k \otimes \alpha_l.$$

More precisely, we mean that for all $x \in U$ and $v, w \in T_xX$

$$f(x)(v, w) = \sum_{k,l=1}^{n} f_{k,l}(x) \alpha_k(x)(v) \alpha_l(x)(w).$$

Show further that these functions are unique. This way of describing f is called representing f in local coordinates. The functions $f_{k,l}$ are called the coefficient functions.

- (b) Show that f|U is smooth exactly when the functions $f_{k,l}$ are all smooth.
- (c) Show that f is a 2-form exactly when the coefficients are antisymmetric: $f_{k,l} = -f_{l,k}$.

69. Closed and exact differential forms.

A p-form ω on a manifold X is called closed if $d\omega = 0$, and it is called exact if there is a (p-1)-form θ on X with $\omega = d\theta$.

Consider $X = \mathbb{R}^3$ and let $x, y, z : \mathbb{R}^3 \to \mathbb{R}$ be the usual coordinate functions. Investigate whether the following forms are closed and or exact.

- (a) $\omega = yz dx + xz dy + xy dz$
- **(b)** $\omega = x dx + x^2y^2 dy + yz dz$
- (c) $\omega = 2xy^2 dx \wedge dy + z dy \wedge dz$