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Ross Ogilvie

Analysis III
10. Exercise: Multilinear Maps and Tensors

In the exercises below, let V, V1, . . . , Vn,W be finite dimensional normed vector spaces over K.

We will ignore the norms though, because in finite dimensions all norms are equivalent and

linear maps are automatically continuous.

We will make use of the Kronecker notation

δi,j =

1 if i = j

0 otherwise.

Preparation Exercises

58. The difference between linear and multilinear.

Give an example of a multilinear map in L(R,R;R). Does it belong to L(R2;R)?

Solution. Instead of give an example, we find all possible examples. Let A ∈ L(R,R;R).
Let a = A(1, 1). Then by multilinearity, A(x, y) = xA(1, y) = xyA(1, 1) = xya. Thus

A is completely determined by its value at (1, 1). Even though we can consider A as a

function from R2 to R, it is not a linear map in L(R2;R) because for any scalar λ

A(λx, λy) = λA(x, λy) = λ2A(x, y),

so instead it is quadratic with respect to the vector space R2 = R× R.

59. The dual space and matrices.

Recall that the dual of a vector space V is defined to be V ′ := L(V ;K). Consider a basis

{ei} of V . Show that the dual basis {Ai ∈ V ′} defined by Ai(ej) = δi,j is indeed a basis

for V ′. (Note, to define a linear map, it is enough to give its values on a basis of the

domain.)

Suppose further that {fi} is a basis of W . Define Bi,j ∈ L(V ;W ) by Bi,j(ek) = fiδj,k.

Argue that these elements form a basis of L(V ;W ). Explain this result in terms of

matrices.

Solution. A set of vectors is a basis when its elements are linearly independent and

spanning. Suppose that there are scalars ci such that
∑

ciAi = 0 ∈ V ′. Evaluating this

at ej shows that cj = 0. Hence {Ai} is linearly independent. Next, choose any element

A ∈ V ′. Consider the difference

A−
∑
i

A(ei)Ai ∈ V ′.
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If we evaluate this difference at ej, then we see the result is zero. Hence this difference is

the zero function in V ′. In other words A =
∑

i A(ei)Ai. This shows that {Ai} span V ′.

For {Bi,j} essentially the same ideas work, but the algebra is a little more difficult.

Suppose we had a linear dependence
∑

i,j ci,jBi,j = 0. Evaluating this at ek shows that

0 =
∑
i,j

ci,jBi,j(ek) =
∑
i,j

ci,jfiδj,k =
∑
i

ci,kfi.

But the {fi} are a basis of W , and so it must be that ci,k = 0 for all i. Since this holds for

all k, all the scalars vanish. We have therefore shown that {Bi,j} are linearly independent.

As to whether they are spanning, choose any B ∈ L(V ;W ) we know that there exist

scalars bi,j such that B(ek) =
∑

i bi,kfi. But then the difference

B(ek)−
∑
i,j

bi,jBi,j(ek) =
∑
i

bi,kfi −
∑
i

bi,kfi = 0.

Since this holds for all k, we conclude that B =
∑

i,j bi,jBi,j.

The connection to matrices is that Bi,j is essentially the matrix with a 1 in the (i, j)

position and zeroes elsewhere. Such a matrix acts on the jth basis vector of V to give

the ith basis vector of W , and acts on all other basis vectors to give zero. The proof we

just gave shows that all linear maps between V and W can be represented as a matrix. If

we view K as a one-dimensional vector space over itself with 1 as a basis vector, then we

have shown that V ′ is represented by a matrix that has only one row. The dual element

Ai has a 1 in the ith position and the remaining elements are zero. For this reason, dual

vectors are sometimes called row vectors.

In Class Exercises

60. An iterative definition of multilinear maps.

We know that the space of linear maps is itself a vector space. Explain why the space of

multilinear maps L(V1, V2;W ) is isomorphic to L(V1;L(V2;W )).

Solution. Let Φ : L(V1, V2;W ) → L(V1;L(V2;W )) be

Φ(A)(v1)(v2) = A(v1, v2)

for v1 ∈ V1 and v2 ∈ V2. For every v1 we have a linear map B = Φ(A)(v1) in L(V2;W )

since

B(av2 + bv′2) = A(v1, av2 + bv′2) = aA(v1, v2) + bA(v1, v
′
2)
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by multilinearity. Likewise is Φ(A) a linear map between V1 and L(V2;W ) since

Φ(A)(av1 + bv′1)(v2) = A(av1 + bv′1, v2) = aA(v1, v2) + bA(v′1, v2)

= aΦ(A)(v1)(v2) + bΦ(A)(v′1)(v2).

These two properties shows that Φ is well defined. It is linear because evaluation is linear:

Φ(aA+ bA′)(v1)(v2) = (aA+ bA′)(v1, v2) = aA(v1, v2) + bA′(v1, v2)

= aΦ(A)(v1)(v2) + bΦ(A′)(v1)(v2).

Finally, it’s easy to see that the inverse is

Φ−1(C)(v1, v2) = C(v1)(v2).

Together this shows that Φ is an isomorphism.

This map Φ, believe it or not, has a special name. It is called currying, https://en.

wikipedia.org/wiki/Currying, named after Haskell Curry. It is sometimes called par-

tial evaluation, which is closely related.

61. An isomorphism between L(V ;W ) and L(V,W ′;K).

Use the iterative definition of multilinear maps to give an isomorphism between L(V ;W )

and L(V,W ′;K).

Solution. Recall the fact that the dual of the dual is canonically isomorphic to the

original space (at least, this is always true in finite dimensions). Then

L(V,W ′;K) ∼= L(V,L(W ′;K)) ∼= L(V,W ′′) ∼= L(V,W ).

62. Dimension of L(V1, . . . , Vn;W ).

Show that

dimL(V1, . . . , Vn;W ) = dim(V1) · . . . · dim(Vn) · dim(W )

Solution. As a base case, L(V1;W ) is the familiar space of linear maps from V1 to W ,

each of which can be written as a dimW rows by dimV1 columns matrix. Thus it is

a vector space of dimV1 · dimW . Next, by the iterative definition of multilinear maps

L(V1, . . . , Vn;W ) ∼= L(V1,L(V2, . . . , Vn;W )). The formula follows by induction.
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63. Tensor spaces.

Prove the following isomorphisms:

(a) L(V ;W ) ∼= V ′ ⊗W .

(b) V1 ⊗ V2 ⊗ V3
∼= V1 ⊗ (V2 ⊗ V3) ∼= (V1 ⊗ V2)⊗ V3

(c) L(V1, . . . , Vn;W ) ∼= L(V1 ⊗ . . .⊗ Vn;W )

Solution.

(a) This is probably the most useful isomorphism, because it enables us to reduce spaces

of linear maps to tensor products, and I find tensor products easier. Simply V ′⊗W =

L(V,W ′;K) ∼= L(V ;W ).

(b) We will prove the first isomorphism. By definition V1⊗V2⊗V3 = L(V ′
1 , V

′
2 , V

′
3 ;K). On

the other hand, we have seen that the space of multilinear maps can be understood

inductively as linear maps into the space of multilinear maps. Hence

L(V ′
1 , V

′
2 , V

′
3 ;K) ∼= L(V ′

1 ;L(V ′
2 , V

′
3 ;K)) = L(V ′

1 ;V2 ⊗ V3) ∼= L(V ′
1 , (V2 ⊗ V3)

′;K)

= V1 ⊗ (V2 ⊗ V3).

(c) First, let us show that dualising distributes over the tensor product: (V ⊗ W )′ =

V ′ ⊗W ′. This follows since

(V ⊗W )′ ∼= L(V ′;W )′ = L(W ;V ′) ∼= L(V,W ;K) = V ′ ⊗W ′.

(Perhaps it is also a good exercise as to why the dual of the linear maps from V to

W is the linear maps from W to V . Also called the transpose of a map.)

We can now prove the exercise. I’ll show only the proof in the case n = 2, higher n

follow similarly by induction.

L(V1, V2;W ) ∼= L(V1;L(V2;W )) = L(V1;V
′
2 ⊗W ) = V ′

1 ⊗ (V ′
2 ⊗W )

∼= V ′
1 ⊗ V ′

2 ⊗W

L(V1 ⊗ V2;W ) ∼= L(V1 ⊗ V2,W
′;K) = (V1 ⊗ V2)

′ ⊗W ∼= (V ′
1 ⊗ V ′

2)⊗W

∼= V ′
1 ⊗ V ′

2 ⊗W

64. The tensor product.

(a) Prove or disprove:
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(i) the tensor product of vectors

V1 × . . .× Vn → V1 ⊗ . . .⊗ Vn, (v1, . . . , vn) 7→ v1 ⊗ . . .⊗ vn

is commutative in the case V1 = . . . = Vn.

(ii) every vector in V1 ⊗ . . .⊗ Vn is pure (coherent).

Solution.

(i) This is false, the tensor product is not commutative even when the vector spaces

are all the same. Consider n = 2 and V = R2 with the standard basis e1, e2. Let

the dual space V ′ have the dual basis A1, A2. By the construction of the double

dual, V acts on V ′ by v(A) := A(v). Let’s apply Definition 3.2 to the following

two tensors

e1 ⊗ e2, e2 ⊗ e1 : V
′ × V ′ → R

e1 ⊗ e2(A1, A2) := e1(A1) · e2(A2) = A1(e1) · A2(e2) = 1,

e2 ⊗ e1(A1, A2) := e2(A1) · e1(A2) = A1(e2) · A2(e1) = 0,

so clearly they are different tensors.

(ii) This is false. Let’s continue the example from the previous part. I claim that

t = e1 ⊗ e2 − e2 ⊗ e1 is not a pure tensor. Let it act on two arbitrary vectors of

V ′, namely A = a1A1 + a2A2 and B = b1A1 + b2A2:

t(A,B) = e1(A)e2(B)− e2(A)e1(B) = a1b2 − a2b1.

However, a pure tensor would produce

(c1e1 + c2e2)⊗ (d1e1 + d2e2)(A,B) = (c1a1 + c2a2)(d1b1 + d2b2)

= c1d1a1b1 + c2d1a2b1 + c1d2a1b2 + c2d2a2b2

So we would need for c1d2 = 1 and c2d1 = −1 but also c1d1 = 0. This is not

possible.

(b) Show that in V1 ⊗ . . . ⊗ Vn the linear span of the pure tensors is V1 ⊗ . . . ⊗ Vn, ie.

every element of V1 ⊗ . . .⊗ Vn is a finite linear combination of the pure tensors.

Solution. For each j = 1, . . . , n let {ei,j}i=1,...,dimVj
be a basis of Vj and {Ai,j}i=1,...,dimV ′

j

be the dual basis of V ′
j . By multilinearity, an element A of L(V1, . . . , Vn;K) is exactly

determined by its values A(ei1,1, ei2,2, . . . , ein,n). But

Aj1,1 ⊗ · · · ⊗ Ajn,n(ei1,1, ei2,2, . . . , ein,n) = δi1,j1 · · · · · δin,jn .
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This allows us to write

A =

dimV1∑
i1=1

dimV2∑
i2=1

· · ·
dimVn∑
in=1

A(ei1,1, ei2,2, . . . , ein,n)Ai1,1 ⊗ · · · ⊗ Ain,n.

Thus we have written every element of L(V1, . . . , Vn;K) = V ′
1 ⊗ . . . V ′

n as a sum of

pure tensors.

Additional Exercises

65. Riemannian metric.

Let X be a manifold. Let L(TX, TX;R) denote the vector bundle whose fibre over x ∈ X

is the R-vector space of bilinear forms TxX×TxX → R. A Riemannian metric (or simply

a metric) on X is a global smooth section G of this vector bundle, such that g(x) is a

scalar product on TxX for ever x ∈ X (it is symmetric and positive definite).

Show that every manifold has a Riemannian metric.

Hint. Choose a cover of X by coordinate charts. Construct a Riemannian metric in each

coordinate chart. ‘Glue’ them all together using a partition of unity.

Solution. Let us first do this in a single coordinate chart ϕ : U → Rn. Then we know

that T (ϕ) is a diffeomorphism between TU and TRn. This has an obvious Riemannian

metric, namely the dot product. Explicitly, if v, w ∈ TxU , then we define

g(x)(v, w) = Tx(ϕ)v · Tx(ϕ)w.

We see that this very much depends on the choice of chart.

Now let X be covered by an atlas A and let (αα) be a subordinate partition of unity.

In each coordinate neighbourhood Uα we have a Riemannian metric gα. Let g(x) =∑
αα(x)gα(x). This is a well-defined global section, because αα vanishes outside Uα and

at any point at most finitely many of the terms are non-zero. Bilinearity and symmetry

are also immediate, because the sum of symmetric bilinear forms is again a symmetric

bilinear form. It remains to show positive definiteness. But the partition of unity is

non-negative, so g(x) must be non-negative. Suppose that v ∈ TxX is a non-zero vector.

There must be at least one αα that does not vanish at x because they sum to 1, so it

follows that

g(x)(v, v) =
∑

αα(x)gα(x)(v, v) ≥ α0(x)g0(x)(v, v) > 0.

This shows positive definiteness.

Terminology

köherent = coherent. In English, we called these tensors pure, simple, or elementary.
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