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Ross Ogilvie
Analysis III

9. Exercise: Flows and Integral Curves

Preparation Exercises

52. Examples of integral curves and flows.

Let F be a smooth vector field on R2 given by

F (x, y) = (−y, x)

(a) Find the maximal integral curves of F .

(b) Write down the maximal flow of F .

(c) Consider the restriction of F to S1. What are the integral curves and maximal flow?

Solution.

(a) If we draw F , we see that it is a circular vector field. We can immediately write

down the solution to the flow equation:

γ′(t) = F (γ(t)), with γ(0) = (x0, y0),

namely γ(t) = (r cos(t− t0), r sin(t− t0)) with r =
√
x20 + y20 and (x0, y0) = γ(0). We

could also obtain this by solving the differential equation. This is maximal because

the domain of the curve is R.

(b) The flow is ϕ(t, (x0, y0)) := (r(x0, y0) cos(t − t0(x0, y0)), r(x0, y0) sin(t − t0(x0, y0))),

just the solution of the differential equation with the dependence of the solution on

the initial condition as part of the function.

But this is ugly. The flow looks nicer when you write it using rotation matrices,

because this separates the initial conditions in a clear way:

γ(t) =

(
cos t − sin t

sin t cos t

)(
x0

y0

)
.

So then we can write

ϕ(t, (x0, y0)) =

(
cos t − sin t

sin t cos t

)(
x0

y0

)

Either way, this flow is defined for all t ∈ R so it is maximal.

(c) Integral curves and flows are well behaved under restrict if the vector field restricts to

the submanifold. So the integral curves of S1 are just those curves γ which begin on

a point of S1 (and notice that they then stay in S1). The flow is just the restriction

of the flow of R2.
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53. A Flow on S2.

Consider the sphere S2 ⊂ R3. Define a vector field F : S2 → R3 by

F (x, y, z) = (−y, x, 0).

(a) Show that F is a vector field on S2 (using the identification that comes from the

inclusion map ι : S2 → R3).

(b) What are the integral curves of F?

(c) Determine the maximal flow ψ of F .

(d) Let M := S2 \ {(1, 0, 0)}. Find an open neighbourhood W of {0} ×M in R×M so

that ψ|W is a flow on M . Is ψ|W a global flow on M?

Solution.

(a) Because F · (x, y, z) = yx − xy = 0, we understand that it corresponds to a vector

field on S2 using the map T (ι).

(b) Firstly, we can work on all of R3 and then because F is a vector field of S2 the

restriction will give the solution on S2. Because the z-component of F is zero, the

z-component of a point must be constant during its flow. Thus the question reduces

to the previous exercise. We have the curves

γ(t) =

 cos t sin t 0

− sin t cos t 0

0 0 1


x0y0
z0

 .

(c) From the previous part

ϕ(t, (x, y, z)) =

 cos t sin t 0

− sin t cos t 0

0 0 1


xy
z

 .

Notice that if p ∈ S2 then ψ(t, p) ∈ S2 for all time, so it does give a flow on S2 as we

claimed it would. It is defined for all times, so maximal.

(d) The issue with removing a point of S2 is that the flow may want to move to this point.

Therefore let us understand which points p flow into (1, 0, 0), ie ψ(t, p) = (1, 0, 0) for

some t. Due to the time-homomorphism property of flows (Definition 2.8(ii)), these

points are just

p = ϕ(−t, (1, 0, 0)) =

cos t − sin t 0

sin t cos t 0

0 0 1


1

0

0

 =

cos t

sin t

0

 .
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Thus, all points of the equator want to flow through (1, 0, 0) at some time. This

means that there cannot be a global flow of this field on M , no matter how we

choose W .

To find W we need to know an amount of time a point can flow before it tries to go

to through the removed point (1, 0, 0), not necessarily the maximum amount of time.

There are many ways to do this. Observe that the difference in longitude between

any point (x, y, 0) on the equator and (1, 0, 0) is greater than 1 − x. Thus for any

point on the equator ψ(t, (x, y, z)) ̸= (1, 0, 0) for all t ∈ (−(1− x), (1− x)). In fact,

notice that this is true for all points of M and 1 − x is a positive function on M .

Thus define

W =
{
(t, (x, y, z)) ∈ R×M

∣∣∣ t ∈ (−(1− x), (1− x))
}
,

and ψ|W is a local flow of M .

In Class Exercises

54. An example of an non-complete vector field.

Let

W := { (t, (x, y)) ∈ R× R2 | 2 (x2 + y2) · t < 1 }

and

ψ : W → R2, (t, (x, y)) 7→ 1√
1− 2 (x2 + y2) · t

· (x, y).

(a) Show that ψ is a flow on R2.

(b) Determine the corresponding vector field F ∈ Vec∞(R2).

(c) Explain why ψ is the maximal flow of F , and why F is not a complete vector field.

Solution.

(a) Let us check the properties in Definition 2.8. For each point of R2 we see that

2(x2 + y2) · t < 1 is an open interval containing zero. Notice that we can also write

the setW as those points (t, p) with 2∥p∥2 t < 1. So if (s, p) ∈ W and (t, ϕ(s, p)) ∈ W

then

1 > 2∥ψ(s, p)∥2 t = 2 · 1

1− 2∥p∥2 · s
∥p∥2 · t

1− 2∥p∥2 s > 2∥p∥2 t

1 > 2∥p∥2(t+ s),
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which shows (t + s, p) belongs to W also. Thus ψ(t, ψ(s, p)) is well-defined and we

can compute

ψ(t, ψ(s, p)) =
(
1− 2∥ψ(s, p)∥2 t

)−0.5
ψ(s, p)

=

(
1− 2t∥p∥2

1− 2s∥p∥2

)−0.5
1√

1− 2s∥p∥2
p

=
(
1− 2s∥p∥2 − 2t∥p∥2

)−0.5
p

= ψ(t+ s, p).

Finally, ψ(0, p) = (1− 0)−0.5p = p.

(b) Recall the relationship between a flow and a vector field. The flow is the set of

integral curves of the vector field, and conversely given a point p we get a curve

γ(t) = ψ(t, p) with ψ(0, p) = p, so the tangent vector at p is [γ]. When we are in

Euclidean space, we identify [γ] with γ′(0). So in this situation F (p) = ∂tψ(t, p)|t=0.

F (p) =
∂

∂

∣∣∣∣
t=0

ψ(t, p) = −0.5(1− 2∥p∥2 t)−1.5(−2∥p∥2)p
∣∣∣
t=0

= ∥p∥2 p.

The flow ψ is a maximal flow because if we add any additional point (s, p) toW with

2∥p∥2s > 1, then necessarily (t, p) ∈ W for all (−∞, s). But then this includes the

point where 2∥p∥2t = 1 and ψ is cannot be extended to such points. So the maximal

flow of F is not defined on R×R2, it is not a global flow, and by Definition 2.13 we

say that F is not complete.

A way to think about the completeness of a vector field without talking about its

flow, is that a vector field is complete when every point has an integral curve that

exists for all time. If we consider the vector field F (p) = ∥p∥2 p, we see immediately

that the direction of the integral curve γ is constant:

(γ̂)′ = −∥γ∥−3(γ′ · γ)γ + ∥γ∥−1γ′ = −∥γ∥−3(∥γ∥4)γ + ∥γ∥−1(∥γ∥2γ) = 0.

Therefore, for the initial point (1, 0) we have γ′(0) = F (1, 0) = (1, 0), so γ(t) =

(x(t), 0). The differential equation reduces to x′(t) = x(t)3 with x(0) = 1. This

has the solution x(t) = (1 − 2t)−0.5, which only exists up until time t = 0.5. This

demonstrates that there is an integral curve that does not exist for all time, so F

cannot be complete.

Think why this phrasing in terms of integral curves is exactly equivalent to the

statement with flows.
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55. Commuting flows.

Let a, b, c ∈ R be constants and the vector fields F,G ∈ Vec∞(R3) be given by

F (x1, x2, x3) = (1, x3,−x2) and G(x1, x2, x3) = (a, b, c) .

(a) Determine the flows ψF and ψG induced by F and G respectively, and determine for

which values of a, b, c the flows commute with one another: i.e. for all t, s ∈ R

ψF (t, ψG(s, x)) = ψG(s, ψF (t, x)).

(b) Calculate [F,G], and determine for which values of a, b, c the Lie bracket is zero,

[F,G] = 0.

Solution.

(a) There is a subtle difference between local and global flows, but here we will see that

these vector fields are complete and so generate global flows. A global flow on X is

a map ψ : R×X → X with the ‘initial’ property ψ(0, x) = x and the ‘continuation’

property ψ(t, ψ(s, x)) = ψ(s + t, x). If we fix a point x0 and consider where this

point moves as time t changes, we get a path αx0(t) := ψ(t, x0). The vector field

associated to a flow is F (x) = [αx]. Reversing this, finding the flow associated to a

vector field, requires solving a differential equation.

For F , this is the differential equation

x′1(t) = 1, x′2(t) = x3(t), x′3(t) = −x2(t),

with initial condition x(0) = (x10), x20, x30). Immediately we have x1(t) = t + x10.

The other two components are a well-known system with solution x2(t) = x20 cos t+

x30 sin t and x3(t) = −x20 sin t+ x30 cos t. The flow is

ψF (t, x) = (t+ x1, x2 cos t+ x3 sin t, −x2 sin t+ x3 cos t).

The DE system for G is very easy, everything moves in a straight line with constant

speed, giving the flow

ψG(t, x) = x+ (a, b, c)t.

Now we can compute

ψF (t, ψG(s, x)) = ψF (t, (x1 + as, x2 + bs, x3 + cs))

= (t+ x1 + as, (x2 + bs) cos t+ (x3 + cs) sin t,−(x2 + bs) sin t+ (x3 + cs) cos t)

ψG(s, ψF (t, x)) = (t+ x1 + as, x2 cos t+ x3 sin t+ bs,−x2 sin t+ x3 cos t+ cs).

The first components are always equal. The second components are equal when

bs cos t+ cs sin t = bs and the third when −bs sin t+ cs cos t = cs. We can divide out

the s, and due to the linear independence of trig functions, it must be that b = c = 0.
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Geometrically, the flow ψF moves points in a circles around the axis x2 = x3 = 0,

while increasing their x1 at a constant rate. The two flows commute exactly when

ψG moves parallel to this axis.

(b) This is in Euclidean space, so we use the formulas from Exercise 22.

[F,G] = G′F − F ′G = 0 · F −

0 0 0

0 0 1

0 −1 0

 ·

ab
c

 =

 0

c

−b

 .

Thus the two fields commute when b = c = 0, exactly when the flows commute. This

is a general truth: flows commute exactly when the vector fields commute (Corollary

2.21).

56. A trichotomy of integral curves.

Let X be a manifold, F a smooth vector field on X, x0 ∈ X, and γ : J → X the maximal

integral curve of F with γ(0) = x0.

(a) Show there is a trichotomy: either γ is constant, or γ is injective, or γ is periodic,

and these are mutually exclusive. Periodic means that J = R, γ is non-constant,

and there is a number p > 0 so that

γ(t+ p) = γ(t) for all t ∈ R.

This number p is called a period of γ. It is not unique; for example if p is a period,

so is 2p.

Hint: Assume that γ is not constant or injective, and try to show that it is periodic.

(b) Show γ is constant exactly when F (x0) = 0.

(c) Suppose that γ is periodic. Show that there is a minimal period p0 > 0: that means

p0 is a period of γ and there are no other periods in the interval 0 < p < p0.

Hint: Prove this by contradiction.

(d) Suppose that γ is periodic. Show that any period is a multiple of the minimal period.

(e) Suppose that γ is periodic. Show that γ|[0,p0) is injective and the map f : S1 → X

defined by

f(cos(θ), sin(θ)) = γ
( p0
2π

· θ
)

for all θ ∈ R

is an embedding with f [S1] = γ[R]. It follows that that the image γ[R] is a subman-

ifold of X.

Hint: Constant Rank Theorem.
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Solution.

(a) Clearly if γ is constant or periodic then it is not injective, and conversely if γ is

injective then it is not constant or periodic. Periodic functions are by definition not

constant. Therefore the three types are mutually exclusive.

Suppose now that γ is not constant or injective. Then there exists times such that

γ(t0) = γ(t1) = x1. Suppose that t0 < t1 without loss of generality. Now we apply

the uniqueness of integral curves, Theorem 2.5(ii). Let p = t1−t0 and α(t) = γ(t+p),

which is still an integral curve of F and has α(t0) = γ(t1). Then α(t) = γ(t) for all

t for which they are both defined.

In particular, because J is an open interval γ is defined for at least [t0, t1] = [t0, t0+p]

and α for at least [t0 − p, t0]. But then

γ̃ : t 7→

γ(t) for t ∈ [t0, t0 + p]

α(t) for t ∈ [t0 − p, t0]

is an integral curve of F with γ̃(t0) = γ(t0). Since γ is maximal, it must be that

in fact it is defined on at least [t0 − p, t0 + p]. On the other hand, α must also be

a maximal integral curve, and γ̃ shows it is also defined on at least [t0 − p, t0 + p].

From the definition of α, γ must be defined on at least [t0 − p, t0 + 2p]. Every time

that we iterate this argument, we show that the domain of γ extends −p and +p

further than we had assumed. The only possibility is that J = R. Finally then we

have shown that γ(t+ p) = γ(t) for all t ∈ R; it is periodic.

(b) If γ is constant, then [γ] is the zero vector and so from the integral curve equation

[γ(t)] = F (γ(t)) we have that F (x0) = 0.

Conversely, if F (x0) = 0 then the curve γ(t) = x0 solves the integral curve equation.

The solutions are unique.

(c) Let P be the set of positive periods. Suppose there were no minimal period. Because

P is bounded from below by 0, it has an infimum p = inf P . If p > 0, choose a

sequence pk ∈ P converging to the infimum. Then by the continuity of γ

γ(t+ p) = lim
k→∞

γ(t+ pk) = lim
k→∞

γ(t) = γ(t).

This contradicts the fact that P has no minimum. It must be that if there is no

minimal period then inf P = 0.

Now we continue the argument in local coordinates. Choose a chart ϕ containing

x0 = γ(0) and consider the curve γ̃ : R → Rn, γ̃ = ϕ ◦ γ. Again, take a sequence

of periods pk, this time which converge to zero. We compute the derivative of γ̃

at t = 0, using the fact that we know it exists (γ is smooth) and the equivalence
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between limits of functions and limits of sequences of function values:

γ̃′(0) = lim
k→∞

γ̃(0 + pk)− γ̃(0)

pk − 0
= lim

k→∞

γ̃(0)− γ̃(0)

pk
= 0.

Thus F (x0) = 0 and it follows from the previous question that γ is constant. But

this contradicts the definition of periodic. Therefore there must exist a minimal

period.

(d) Let p0 be the minimal period and p be any other period. Then so is p+ kp0 for any

integer k ∈ Z. Thus there is a unique period p + kp0 ∈ [0, p0). But the only period

in this interval is 0. Therefore p = −kp0.

(e) If γ|[0,p0) were not injective, then there would be points t0, t1 ∈ [0, p0) with γ(t0) =

γ(t1). We have seen in the proof of (a) that if γ(t0) = γ(t1) then t1 − t0 is a period.

So we would have a period 0 < |t1 − t0| < p0, which is a contradiction.

Consider the function f : S1 → X. It is well defined because γ is periodic. Again

from (b) we know that γ has non-vanishing derivative, so f is an immersion. And

we have just seen that γ|[0,p0) is injective, so f must be too. It remains to show that

f is a homeomorphism, specifically that the inverse is continuous.

Choose any point x1 of γ[R]. Since f has constant rank, we know from the constant

rank theorem (alternative version) that there are charts (ϕ, U) of S1 and (ψ, V ) of

X with x1 ∈ U so that

ψ ◦ f ◦ ϕ−1(θ) = (θ, 0, . . . , 0).

Let Π(x1, x2, . . . , xn) = x1. Then ϕ−1 ◦ Π ◦ ψ is continuous, and is equal to f−1 on

γ[R] ∩ V .

Another proof uses that f is an injective immersion. Then because S1 is compact,

by a previous exercise it is an embedding.

Additional Exercises

57. The integral curves of vector fields with the form λF .

Let X be a manifold, F ∈ Vec∞(X) a vector field, λ ∈ C∞(X,R) a smooth function,

G := λF ∈ Vec∞(X) the rescaling of F , and p0 ∈ X a point.

Suppose that α : I → X is an integral curve of F with α(0) = p0 and that f : J → I is a

solution to the initial value problem

f ′(t) = λ(α(f(t))) with f(0) = 0.
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Show then that β := α ◦ f : J → X is an integral curve of G with 0 ∈ J and β(0) = p0.

Moreover, show that every integral curve of G can be obtained in this way.

Solution. First, 0 ∈ J because the initial condition f(0) = 0 means that f is defined at

0, and β(0) = α(f(0)) = α(0) = p0. This leaves the main property, that β is an integral

curve of G. Choose any chart ϕ containing p0. We must show that [β(t)] = G(β(t)), or

in other words

(ϕ ◦ β)′(t) = Tβ(t)(ϕ)G(β(t)),

because this is the meaning of tangent vectors in a manifold being equal. We compute

both sides

(ϕ ◦ β)′(t) = (ϕ ◦ α ◦ f)′(t) = (ϕ ◦ α)′(f(t)) · f ′(t) = (ϕ ◦ α)′(f(t)) · λ(α(f(t)))

Tβ(t)(ϕ)G(β(t)) = Tβ(t)(ϕ)
[
λ(β(t)) · F (β(t))

]
= λ(β(t)) · Tβ(t)(ϕ)F (β(t))

= λ(β(t)) · Tα(f(t))(ϕ)F (α(f(t))) = λ(β(t)) · (ϕ ◦ α)′(f(t)).

The last equality follows because α is an integral curve for F , so (ϕ◦α)′(s) = Tα(s)(ϕ)F (α(s))

for all s. This shows that the two sides are in fact equal, and thus β is an integral curve

of G.

Conversely, suppose that we have integral curves α of F and β of G with α(0) = β(0) = p0.

If F (p0) = 0, then so is G and the integral curves are simply α(t) = β(t) = p0 for all t.

In this case we have f(t) = λ(p0)t, which solves the DE.

Let us assume then that F (p0) ̸= 0, and so there is a neighbourhood of p0 where F

is non-zero. Thus there exists an interval I = (−ε, ε) so that α : I → α[I] ⊂ X is a

diffeomorphism by the inverse function theorem. Likewise, we can restrict the domain of

β to J so that f := α−1 ◦ β : J → I is a well-defined smooth map. It remains to show

that f satisfies the DE. But we have already calculated that

(ϕ ◦ β)′(t) = (ϕ ◦ α ◦ f)′(t) = (ϕ ◦ α)′(f(t)) · f ′(t)

and

[β(t)] = G(β(t)) = λ(α(f(t))) · F (α(f(t))) = λ(α(f(t))) · [α(f(t))],

so f must satisfy this DE.

58. Integral curves on the torus.

For each a > 0 let

Fa : S1 → TS1, (x0, x1) 7→
(
a(−x1, x0), (x0, x1)

)
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be a non-vanishing smooth vector field with the maximal integral curve γa : R → S1 with

γa(0) = (1, 0).

Next we consider the 2-dimensional manifold T2 := S1 × S1. This subset of R2 × R2 is a

torus, a doughnut (donut). For constants a, b > 0 we define the vector field

Ga,b : T2 → TT2,
(
(x1, y1), (x2, y2)

)
7→
(
Fa(x1, y1) , Fb(x2, y2)

)
.

(a) Prove that the curve

ηa,b : R → T2 = TS1 × TS1, t 7→
(
γa(t), γb(t)

)
is the maximal integral curve of Ga,b with ηa,b(0) =

(
(1, 0), (1, 0)

)
∈ T2.

(b) Suppose a
b
∈ Q. Show that ηa,b is periodic and determine the minimal period.

The image is a submanifold called a torus knot.

(c) Suppose a
b
∈ R \Q. Show that ηa,b is injective, but that it is not an embedding.

Remark. In this case, the image ηa,b[R] is in fact dense in T2.

Solution.

(a) [ηa,b] = ([γa], [γb]) ∈ TS1 × TS1. γa is the integral curve of Fa on S1, so [ηa,b] =

(Fa, Fb) = Ga,b. It is maximal because it is defined for all R, and it starts at the

given point η(0) = (γa(0), γb(0)) = ((1, 0), (1, 0)).

(b) Suppose that a/b = r/s ∈ Q for r, s ∈ N with no common factors. Let p0 = 2πr/a =

2πs/b. This is a period, because

ηa,b(t+ p0) = (γa(t+ 2πr/a), γb(t+ 2πs/b)) = (γa(t), γb(t)) = ηa,b(t).

Since γa is not constant, neither is ηa,b and thus it must be periodic.

If p is a period of ηa,b then it must be a period of both components. But we know the

minimal period of γa is 2π/a and any other period is a multiple of this. Therefore

p = 2πk/a. Likewise p = 2πl/b. So a/b = k/l. Because we assumed r, s had no

common factors, it follows that k = nr and l = ns. Therefore p is a multiple of p0.

Since this applies to any period, p0 must be minimal.

(c) Suppose that a/b is irrational but η is not injective, η(t0) = η(t1). It follows that

p = t1 − t0 is a period of γa and γb and so therefore a multiple p = 2πk/a = 2πl/b

for integers k, l. But then a/b = k/l is rational. By contradiction, if a/b is irrational

then η is injective.

To see that it is not an embedding, we use Exercise 54(f). Consider the sequence

tk = 2πk/a. This gives a sequence of distinct points ((1, 0), sk) = ηa,b(tk), where
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sk = γb(tk). Every infinite collection of points in a compact space must have an

accumulation point, so {sk} ⊂ S1 must have an accumulation point s ∈ S1 \ {sk}.
But then ((1, 0), s) is an accumulation point of {ηa,b(tk)} that does not lie in ηa,b[R].
Exercise 54(f) now tells us that this is not an embedding.

59. Aligning coordinates with a vector field.

Again let X be a manifold. Let n := dim(X) be its dimension, x0 ∈ X a point, and

F ∈ Vec∞(X) a vector field with F (x0) ̸= 0. Show that there is a chart (U, ϕ) containing

x0 ∈ U such that

Tx(ϕ)
−1(e1) = F (x) for all x ∈ U .

Hint: Let ψ be the maximal flow of F . Then we know that ψ is defined on (−ε, ε)×U ′ for

some ε > 0 and neighbourhood U ′ ∋ x0. Next choose an (n−1)-dimensional submanifold

S of U ′ with x0 ∈ S and F (x0) ̸∈ Tx0S (explain why there must exists such an S). Finally,

apply the inverse function theorem to ψ.

Solution. We follow the advice of the hint. Let ψ be the maximal flow of F . Then

we know that ψ is defined on (−ε, ε) × U ′ for some ε > 0 and neighbourhood U ′ ∋ x0.

Choose some chart ϕ1 : U ′′ → Rn with ϕ1(x0) = 0 and U ′′ ⊆ U ′, and let us write

F1(y) := Tϕ−1
1 (y)(ϕ1)F (ϕ

−1
1 (y)) : Rn → Rn for the vector field F in these local coordinates.

Consider the hyperplane H ⊂ Rn perpendicular to F1(0). There must be some neigh-

bourhood V ⊂ H of the origin such that F1(y) is not parallel to H for all y ∈ V . One

way to see this is to consider the ‘vertical component’ F1(y) · F1(0) which is non-zero at

the origin and therefore is non-zero on a neighbourhood of the origin.

We now push this back up to the manifold. Let S = ϕ(V ) be the (n − 1)-dimensional

manifold. The key idea here is that S is transverse to the vector field, ie the vector field

is not tangent to this submanifold, so when we flow this submanifold with ψ, St sweeps

out points of X and does not just slide along itself. We want to use this motion of St to

make a coordinate system.

Consider the function h : R×V → U ′′, (t, y) 7→ ψ(t, ϕ−1
1 (y)) where we identify V ⊆ H with

subsets Rn−1. This map is full rank at (0, 0), because the derivatives in the y direction

are tangent to S and the derivative in the t-direction is F (x0) which is not tangent to

S. By the inverse function theorem there is a neighbourhood U and a smooth function

ϕ : U → Rn which is its inverse.

In fact ϕ is a chart compatible with the atlas of X. Clearly ϕ is bijection onto its image

because it is the inverse function of h. This also explains why it is a homeomorphism.
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Compatibility with the atlas in this follows from the fact that h and ϕ are smooth as

maps between manifolds.

To explain this coordinate chart a little further, if a point x ∈ X can be written as ψ(t, x1)

with x1 in S, then ϕ(x) = (t, ϕ1(x1)). You could say that we pick a point x1 ∈ S and

then flow it with ψ for some time. The points it flows through then have the coordinates

of the ‘starting point’ x1 and the ‘arrival time’ t. Of course, x1 is a point in the manifold,

not a point in Euclidean space, so we can’t use it as a coordinate directly; instead we

push it down into Euclidean space with ϕ1, where it lies in H by definition.

The desired result now follows easily, because

Tx(ϕ)
−1(e1) = Tx(h)(e1) = ∂tψ(t, x) = F (x).
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