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Ross Ogilvie
Analysis III

8. Exercise: Vector Fields

Preparation Exercises

47. Coordinate vector fields.

Let ϕ : U → Rn be a chart of X for an open set U ⊂ X. Then consider the vector field

Fi : U → TU with

Fi(x) = Tx(ϕ)
−1(ei) ∈ TxU ,

for i ∈ {1, . . . , n} and where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn is the i-th standard unit

vector of Rn. This is called a coordinate vector field.

(a) Show that these are vector fields Fi ∈ Vec∞(U).

(b) Show that any other vector field F on U can be written

F (x) =
∑
i

ai(x)Fi(x)

for smooth functions ai : U → R.

Solution.

(a) A vector field is another name for a section of the tangent bundle. The formula

given defines a map with π(Fi(x)) = x. We only have to check that these a smooth.

But using the chart T (ϕ) for the tangent bundle gives us

T (ϕ) ◦ Fi ◦ ϕ−1 = Tϕ−1(ϕ) ◦ Tϕ−1(x)(ϕ)
−1(ei) = ei.

This is constant, so indeed smooth.

(b) If we write any other vector field in these coordinates we get

T (ϕ) ◦ F ◦ ϕ−1 : ϕ[U ] → Rn.

Since every point in Rn is a linear combination of the basis vectors we get

T (ϕ) ◦ F ◦ ϕ−1(y) =
∑
i

ã(y)ei.

Rearranging

F (x) = T (ϕ)−1

(∑
i

ã(ϕ(x))ei

)
=
∑
i

ã(ϕ(x))T (ϕ)−1(ei),

since the tangent map is linear.
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48. Vector fields and derivations.

(a) For a vector field F on X, describe the difference and relationship between the

derivation θF defined by Theorem 2.2 and Dv described by Theorem 1.40.

(b) What is the derivation that corresponds to a coordinate vector field?

(c) Suppose that F =
∑

i ai(x)Fi(x) as in the previous exercise. Show that ΘF =∑
i aiΘFi

.

Solution.

(a) Let f : X → R be a function. Just before Theorem 1.40 in the script, for every

vector v ∈ TxX we define a derivation Dv : C∞(X,R) → R at the point x. In

essence, given a function and a vector at a point, we get a single number. If we have

a vector at every point of X then we get a number at every point of X, ie a function

X → R. This is the definition of the derivation θF (f):

θF (f) = x 7→ DF (x)(f).

Conversely, if we have a θF (f) then we can produce a derivation at any point x ∈ X:

D(f) = θF (f)(x).

(b) To answer this, we need to recall several constructions. Choose any point x ∈ X

and smooth function f : X → R. Suppose that the coordinate vector field is coming

from the chart ϕ. Then we should compute θFi
(f)(x) = DFi(x)(f). The derivation

D was defined in terms of curves. Fi(x) is a vector and is represented by the curve

α(t) = ϕ−1(tei + ϕ(x)). So

DFi(x)(f) = J0(f ◦ α) = J0(f ◦ ϕ−1(tei + ϕ(x)))

= Jϕ(x)(f ◦ ϕ−1) J0(tei + ϕ(x))

= Jϕ(x)(f ◦ ϕ−1) ei

=
∂(f ◦ ϕ−1)

∂yi
.

Thus we see that the derivation corresponding to a coordinate vector field is partial

differentiation.
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(c) This can be proved in several ways. The most direct way is that there is a vector

space isomorphism between tangent vectors and derivations at a point. Another

approach is to notice ΘFi
(ϕj) = 1 if i = j and 0 otherwise.

The previous exercises all together show that all derivations are (locally) a sum of

partial derivatives.

In Class Exercises

49. The Lie bracket in Rn .

The Lie bracket is the name of the operation on vector fields defined in Corollary 2.3. Let

us focus on Rn. The tangent bundle is trivial TRn ∼= Rn ×Rn and we can write a vector

field as F : Rn → Rn (technically we should write F (x) = (F̃ (x), x), but the tildes are

annoying).

(a) How can we calculate θF (f) for some function f : Rn → R?

(b) Let F,G : Rn → Rn be two vector fields on Rn. Show

[F,G](x) = JG(x)F (x)− JF (x)G(x) .

(c) Consider the three vector fields on R4 (we have seen these already in the exercise

about TS3):

F (x1, x2, x3, x4) := (−x2, x1, x4,−x3) ,

G(x1, x2, x3, x4) := (−x3,−x4, x1, x2)

and H(x1, x2, x3, x4) := (−x4, x3,−x2, x1) .

(i) Calculate [F,G] , [G,H] und [F,H] .

(ii) For these three fields, check that the Jacobi identity holds:

[F, [G,H]] = [[F,G], H] + [G, [F,H]] .

Solution.

(a) If we have a tangent vector v ∈ Rn at a point x ∈ Rn, then Dv(f) is the directional

derivative:

Dv(f) =
d

dt

∣∣∣∣
t=0

f(x+ vt) = ∇f · v,

because a path representing the tangent vector v is y(t) = x + vt. It follows then

that θF (f)(x) = ∇f(x) · F (x).
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(b) We firstly calculate θF ◦ θG − θG ◦ θF and then try to see which vector field it could

come from. Let f : Rn → R be any function. Note that

∂

∂xi

(
∇f ·G

)
=

∂

∂xi

∑
j

(∂jf)Gj =
∑
j

(∂j∂if)Gj + (∂jf) (∂iGj)

Now we can compute half the expression.

θF ◦ θG(f) = θF

(
∇f ·G

)
= ∇

(
∇f ·G

)
· F

=
∑
i,j

(∂j∂if)Gj Fi + (∂jf) (∂iGj)Fi

Swapping F and G gives an expression for θG ◦ θF (f) too. The difference is

θF ◦ θG(f)− θG ◦ θF (f) =
∑
i,j

(∂jf) (∂iGj)Fi − (∂jf) (∂iFj)Gi

=
∑
j

(∂jf)
∑
i

(∂iGj)Fi − (∂iFj)Gi

= ∇f ·

(∑
i

(∂iGj)Fi − (∂iFj)Gi

)
j

= ∇f ·
(
∇Gj · F −∇Fj ·G

)
j

Thus we see that [F,G] is the vector field whose j-th component has the formula in

the bracket. But the Jacobian matrix JF of a function F : Rn → Rn is the matrix

whose j-th row is the gradient of Fj. Thus this formula is the same as the formula

in the question.

(c) We can use the formula we just derived:

[F,G] = JG · F − JF ·G(x)

=


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



−x2

x1

x4

−x3

−


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0



−x3

−x4

x1

x2



=


−x4

x3

−x2

x1

−


x4

−x3

x2

−x1

 =


−2x4

2x3

−2x2

2x1


Similarly we have [G,H](x) = (−2x2, 2x1, 2x4,−2x3) and [F,H](x) = (2x3, 2x4,−2x1,−2x2).

(d) For this part, we could go ahead and calculate another three Lie brackets. But notice

that in fact [F,G] = 2H, [G,H] = 2F and [F,H] = −2G. It follows that

[F, [G,H]] = [F, 2F ] = 2F ′ · F − F ′ · 2F = 0,

[[F,G], H] + [G, [F,H]] = [2H,H] + [G,−2G] = 0.
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If [F,G] = 2H reminds you of the cross-product in R3, there’s a good reason. Con-

sider these vector fields at the point x = (1, 0, 0, 0). Then

F (1, 0, 0, 0) := (0, 1, 0, 0) ,

G(1, 0, 0, 0) := (0, 0, 1, 0)

and H(1, 0, 0, 0) := (0, 0, 0, 1) .

so we can see these vectors as the basis of R3 and the Lie bracket as twice the

cross-product.

50. The computation of the Lie Bracket for submanifolds of Rn.

Let X ⊂ Rn be a submanifold of Rn and F,G ∈ Vec∞(X). With the help of Theo-

rem 2.22(iii),(iv) devise a formula to compute [F,G]. Prove your formula.

Solution. Using Theorem 2.22(iii), extend F and G to vector fields on Rn called F̃ , G̃.

Then by Theorem 2.22(iii) and the exercise on the Lie bracket in Rn we have that

[F,G]X = [F̃ , G̃]Rn = JG̃ · F̃ − JF̃ · G̃.

So here we already have a formula that avoids using coordinate charts. There is the

practical question of how to find extensions of vector fields on X. If the manifold is a

submanifold, many times the formula for the vector field will already be the restriction

of formulas on Rn.

If you are in the situation where there is not an easy extension, here is a practical way

to construct one. Choose a point x ∈ X. Because X is a submanifold, we know that

locally X is the graph of a function h : U → Rn−k. For simplicity, assume it is a graph

over the coordinates y = (x1, . . . , xk). In other words, y 7→ (y, h(y)) is the inverse of the

chart ϕ(x) = (x1, . . . , xk) of X. Thus we can write the vector fields F (y, h(y)), G(y, h(y))

in this neighbourhood as functions of y alone. Then F̃ (x) := F (y, h(y)) is an extension

of F to U × Rn−k, and likewise for G̃. The advantage of this choice of extension is that

they are constant in the variables xk+1, . . . , xn, so for example

JG̃ · F̃ =


∂G̃1

∂x1
. . . ∂G̃1

∂xk
0 . . . 0

...
...

∂G̃n

∂x1
. . . ∂G̃n

∂xk
0 . . . 0


F̃1

...

F̃n

 =


∂G̃1

∂x1
. . . ∂G̃1

∂xk
...

...
∂G̃n

∂x1
. . . ∂G̃n

∂xk


F̃1

...

F̃k


(G̃′F̃ )j(x) =

k∑
i=0

∂G̃j

∂xi

Fi(x) =
k∑

i=0

(
∂Gj

∂xi

+
n−k∑
l=1

∂Gj

∂xk+l

∂hl

∂xi

)
Fi(x)
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The derivatives of h can also be found relatively easily by solving the linear system

∂f

∂y
+

∂f

∂(xk+1, . . . , xn)
Jh = 0,

where f(y, h(y)) = c describes X in this neighbourhood as a level set. Hence we can

compute the Lie bracket at this point x using just the vector fields F,G defined on X and

a level set describing X locally. If your submanifold is not defined using level sets, well

then it probably has nice charts and you should probably just compute the Lie bracket

using them.

Additional Exercises

51. Properties of the Lie bracket. Let X be an n-dimensional manifold.

(a) Show: the Lie bracket has the following properties for all vector fields F,G,H ∈
Vec∞(X) and scalars a ∈ R.

(i) R-linear: [aF,G] = a[F,G].

(ii) anti-symmetric: [F,G] = −[G,F ].

(iii) Jacobi identity: [F, [G,H]] + [G, [H,F ]] + [H, [F,G]] = 0.

Hint: The pairing F → θF is injective (and for smooth vector fields and derivations

it is bijective), so it is enough to show equality for the corresponding derivations.

Eg. to show [aF,G] = a[F,G] you can show θ[aF,G] = θa[F,G].

(b) Show that coordinate vector fields commute: [Fi, Fj] = 0 for every i, j.

Solution.

(a) The Lie bracket is a local construct, so choose any point x ∈ X and a chart ϕ : U →
Rn. Let f : U → R be any smooth function. Applying the definitions of Theorems

1.40 and 2.2 to a general manifold gives

θF (f) : x 7→ DF (x)(f) =
d

dt

∣∣∣∣
t=0

f(α(t)) for [α] = F (x)

=
d

dt

∣∣∣∣
t=0

f(ϕ−1(ϕ(x) + vt)) for v = Tx(ϕ)(F (x)).

The formulas are equivalent, but depending on how the vectors of the vector field

are described, whether as curves or in local coordinates, one formula might be easier

than the other. Now the derivation θ[F,G] = θF ◦ θG − θG ◦ θF .
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R-linear: Notice that θF is R-linear in F :

θaF (f)(x) =
d

dt

∣∣∣∣
t=0

f(ϕ−1(ϕ(x) + avt)) for v = Tx(ϕ)(F (x))

=
d

d(s/a)

∣∣∣∣
s=0

f(ϕ−1(ϕ(x) + vs)) for s = at

= a θF (f)(x).

And linearity in f follows from the Leibniz rule. Thus

θ[aF,G](f) = θaF

(
θG(f)

)
− θG

(
θaF (f)

)
= a θF

(
θG(f)

)
− θG

(
a θF (f)

)
= a θF

(
θG(f)

)
− a θG

(
θF (f)

)
= a θ[F,G](f) = θa[F,G](f)

Anti-symmetry also follows from the linearity of θF in F :

θ−[G,F ] = −θ[G,F ] = −θG ◦ θF + θF ◦ θG = θ[F,G]

Finally we must show the Jacobi identity.

θ[F,[G,H]](f) = θF

(
θGθH(f)− θHθG(f)

)
− (θGθH − θHθG)

(
θF (f)

)
= θF θGθH(f)− θF θHθG(f)− θGθHθF (f) + θHθGθF (f).

If you permute the F ,G, and H to compute the other two terms, you see that every

permutation of θF θGθH occurs twice, once with each sign. Therefore the sum is zero.

(b) Here the second version of the formula for θF is very useful, because v = Tx(ϕ)(Fi(x)) =

Tx(ϕ)Tx(ϕ)
−1ei = ei for every point x ∈ U . Then

θFi
θFj

(f)(x) = θFi

(
y 7→ d

dt

∣∣∣∣
t=0

f(ϕ−1(ϕ(y) + ejt))

)
(x)

=
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

f(ϕ−1(ϕ(x) + eis+ ejt))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

f(ϕ−1(ϕ(x) + eis+ ejt))

= θFj
θFi

(f).

This shows θ[Fi,Fj ] = 0, and hence [Fi, Fj] = 0.

More explanation/another example: Perhaps it is useful to see how special this prop-

erty is by doing the same computation for F and G from Exercise 47(c) considered
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as vector fields on S3. Choose the point x0 = (1, 0, 0, 0) and a small neighbourhood

U ⊂ S3 of this point. Then we can use the chart ϕ(x1, x2, x3, x4) = (x2, x3, x4) which

has inverse ϕ−1(y1, y2, y3) = (h(y), y1, y2, y3) for h(y) = +
√

1− ∥y∥2. Let y = ϕ(x)

be the corresponding local coordinate for any point x. First we compute the vectors

in local coordinates

vF (y) := Tx(ϕ)F (x(y)) = (x1, x4,−x3) = (h(y), y3,−y2),

vG(y) := Tx(ϕ)G(x(y)) = (−x4, x1, x2) = (−y3, h(y), y1).

Take any smooth function f : S3 → R. The application of θF to f is standard:

θF (f)(x) =
d

dt

∣∣∣∣
t=0

f ◦ ϕ−1(y + vF (y)t).

Here is the important point. When we apply θG to this, we make the substitution

y + vG(y)s for y, but the vector vF also depends on y! This gives

θGθF (f)(x) =
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

f ◦ ϕ−1
(
y + vG(y)s+ vF (y + vG(y)s)t

)
.

Now I think you can see why the order of θF and θG is important. Let’s complete

this calculation now:

y + vG(y)s = (y1 − y3s, y2 + h(y)s, y3 + y1s)

vF (y + vG(y)s) = vF (y1 − y3s, y2 + h(y)s, y3 + y1s)

= (h(y + vG(y)s), y3 + y1s,−y2 − h(y)s))

θGθF (f)(x) =
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

f ◦ ϕ−1
(
y + vG(y)s+ vF (y + vG(y)s)t

)

=
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

f ◦ ϕ−1

y1 − y3s+ h(y + vG(y)s)t

y2 + h(y)s+ (y3 + y1s)t

y3 + y1s+ (−y2 − h(y)s)t


Let’s assume that f is given as the restriction of a smooth function on R4, which

is always possible, so that we can use vector calculus for the next steps. You can

also do this with the chain rule for manifolds with the tangent map instead of the

gradient and Jacobian, and of course it is basically the same thing, but I think it is
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a little clearer to write it this way. We continue

θGθF (f)(x) = ∇f · J(ϕ−1) · d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

y1 − y3s+ h(y + vG(y)s)t

y2 + h(y)s+ (y3 + y1s)t

y3 + y1s+ (−y2 − h(y)s)t



= ∇f · J(ϕ−1) · d

ds

∣∣∣∣
s=0

h(y + vG(y)s)

y3 + y1s

−y2 − h(y)s



= ∇f · J(ϕ−1) ·

h′(y) · vG(y)
y1

−h(y)

 .

In the same way

y + vF (y)t = (y1 + h(y)t, y2 + y3t, y3 − y2t)

vG(y + vF (y)t) = (−y3 + y2t, h(y + vF (y)t), y1 + h(y)t)

θF θG(f)(x) =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

f ◦ ϕ−1
(
y + vF (y)t+ vG(y + vF (y)t)s

)

= ∇f · J(ϕ−1) · d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

y1 + h(y)t+ (−y3 + y2t)s

y2 + y3t+ h(y + vF (y)t)s

y3 − y2t+ (y1 + h(y)t)s



= ∇f · J(ϕ−1) · d

dt

∣∣∣∣
t=0

 −y3 + y2t

h(y + vF (y)t)

y1 + h(y)t



= ∇f · J(ϕ−1) ·

 y2

h′(y) · vF (y)
h(y)


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Finally we can say

θ[F,G](f)(x) = ∇f · J(ϕ−1) ·

y2 − h′(y) · vG(y)
h′(y) · vF (y)− y1

2h(y)



= ∇f · J(ϕ−1) ·

 x3 + x−1
1 (x2, x3, x4) · (−x4, x1, x2)

−x−1
1 (x2, x3, x4) · (x1, x4,−x3)− x2

2x1



= ∇f · J(ϕ−1) · x−1
1

 x1x3 − x2x4 + x1x3 + x2x4

−(x1x2 + x3x4 − x3x4)− x1x2

2x2
1



= ∇f ·


−x−1

1 x2 −x−1
1 x3 −x−1

1 x4

1 0 0

0 1 0

0 0 1

 ·

 2x3

−2x2

2x1

 = ∇f ·


−2x4

2x3

−2x2

2x1


and this is the same answer we found previously.
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