Martin Schmidt

Ross Ogilvie

Analysis III 8. Exercise: Vector Fields

Preparation Exercises

47. Coordinate vector fields.

Let $\phi: U \to \mathbb{R}^n$ be a chart of X for an open set $U \subset X$. Then consider the vector field $F_i: U \to TU$ with

$$F_i(x) = T_x(\phi)^{-1}(e_i) \in T_x U ,$$

for $i \in \{1, \ldots, n\}$ and where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^n$ is the *i*-th standard unit vector of \mathbb{R}^n . This is called a coordinate vector field.

- (a) Show that these are vector fields $F_i \in \operatorname{Vec}^{\infty}(U)$.
- (b) Show that any other vector field F on U can be written

$$F(x) = \sum_{i} a_i(x) F_i(x)$$

for smooth functions $a_i: U \to \mathbb{R}$.

48. Vector fields and derivations.

- (a) For a vector field F on X, describe the difference and relationship between the derivation θ_F defined by Theorem 2.2 and D_v described by Theorem 1.40.
- (b) What is the derivation that corresponds to a coordinate vector field?
- (c) Suppose that $F = \sum_{i} a_i(x) F_i(x)$ as in the previous exercise. Show that $\Theta_F = \sum_{i} a_i \Theta_{F_i}$.

In Class Exercises

49. The Lie bracket in \mathbb{R}^n .

The Lie bracket is the name of the operation on vector fields defined in Corollary 2.3. Let us focus on \mathbb{R}^n . The tangent bundle is trivial $T\mathbb{R}^n \cong \mathbb{R}^n \times \mathbb{R}^n$ and we can write a vector field as $F : \mathbb{R}^n \to \mathbb{R}^n$ (technically we should write $F(x) = (\tilde{F}(x), x)$, but the tildes are annoying).

- (a) How can we calculate $\theta_F(f)$ for some function $f : \mathbb{R}^n \to \mathbb{R}$?
- (b) Let $F, G : \mathbb{R}^n \to \mathbb{R}^n$ be two vector fields on \mathbb{R}^n . Show

$$[F,G](x) = JG(x) F(x) - JF(x) G(x) .$$

(c) Consider the three vector fields on \mathbb{R}^4 (we have seen these already in the exercise about $T\mathbb{S}^3$):

$$F(x_1, x_2, x_3, x_4) := (-x_2, x_1, x_4, -x_3) ,$$

$$G(x_1, x_2, x_3, x_4) := (-x_3, -x_4, x_1, x_2)$$

and
$$H(x_1, x_2, x_3, x_4) := (-x_4, x_3, -x_2, x_1) .$$

(i) Calculate [F, G], [G, H] und [F, H].

(ii) For these three fields, check that the *Jacobi identity* holds:

$$[F, [G, H]] = [[F, G], H] + [G, [F, H]].$$

50. The computation of the Lie Bracket for submanifolds of \mathbb{R}^n .

Let $X \subset \mathbb{R}^n$ be a submanifold of \mathbb{R}^n and $F, G \in \text{Vec}^{\infty}(X)$. With the help of Theorem 2.22(iii),(iv) devise a formula to compute [F, G]. Prove your formula.

Additional Exercises

51. Properties of the Lie bracket. Let X be an n-dimensional manifold.

- (a) Show: the Lie bracket has the following properties for all vector fields $F, G, H \in$ Vec^{∞}(X) and scalars $a \in \mathbb{R}$.
 - (i) **R**-linear: [aF, G] = a[F, G].
 - (ii) anti-symmetric: [F, G] = -[G, F].
 - (iii) Jacobi identity: [F, [G, H]] + [G, [H, F]] + [H, [F, G]] = 0.

Hint: The pairing $F \to \theta_F$ is injective (and for smooth vector fields and derivations it is bijective), so it is enough to show equality for the corresponding derivations. Eg. to show [aF, G] = a[F, G] you can show $\theta_{[aF,G]} = \theta_{a[F,G]}$.

(b) Show that coordinate vector fields commute: $[F_i, F_j] = 0$ for every i, j.