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Ross Ogilvie
Analysis III

7. Exercise: Vector Bundles II

Preparation Exercises

41. A non-trivial line bundle over R/Z.

Consider the lines Lx = R(cos πx, sin πx) ⊂ R2. Notice that Lx+1 = Lx.

(a) By writing M := {(v, [x]) ∈ R2 × R/Z | v ∈ Lx} locally as the level set of functions

F : R2 × Ux → R, prove it is a submanifold.

Hint. How can you write the line Lx as the zero set of a function?

(b) Show M is a vector bundle over R/Z. It is called the Möbius band or Möbius bundle.

Hint. Can you find non-vanishing local sections?

(c) Compute the cocycle gU0.5,U0 .

(d) Prove that (M,R/Z, π) is a non-trivial bundle.

Hint. Prove there are no non-vanishing global sections.

Solution.

(a) R2×Ux is an open set of R2×R/Z so it is enough to check that M is a submanifold

on these sets (submanifold is a local property).

Following the hint, the line Lx ⊂ R2 is the solution set (− sinπx)v1+(cosπx)v2 = 0.

Therefore take F (v, [x]) = (− sinπx)v1 + (cos πx)v2. The gradient of this is

∇F =
(
(−π cosπx)v1 + (−π sin πx)v2,− sin πx, cosπx

)
.

This is never zero. By the implicit function theorem/constant rank theorem, F−1[{0}] =
M ∩ (R2 × Ux) is a submanifold.

(b) The projection map is clearly going to be π(v, [x]) = [x].

Let ℓ(x) = (cos πx, sin πx) ∈ L(x). Over Ux ⊂ R/Z we have the local section

sx = ℓ ◦ ϕx. This is smooth because in coordinates it is

(Πi × π) ◦ sx ◦ ϕ−1
x = (Πi × π) ◦ ℓ

It is also never 0.

Non-vanishing local sections are basically equivalent to local trivialisations. Φx(t, [y]) =

tsx(y) which maps R× Ux → π−1[Ux].

(c) Another way check something is a vector bundle is in terms of cocycles. U0 ∪U0.5 =

R/Z so it sufficient to give gU0.5,U0 to determine the bundle, since all the cocycle

conditions are automatically fulfilled if there is only one element in the cocycle.
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We need to calculate Φ−1
0.5 ◦ Φ0. For x ∈ (0, 0.5)

Φ0(t, [x]) = tℓ(ϕ0([x])) = tℓ(x)

Φ0.5(t, [x]) = tℓ(ϕ0.5([x])) = tℓ(x).

Therefore we conclude that Φ−1
0.5 ◦ Φ0 = id at these points. But for x ∈ (−0.5, 0)

Φ0(t, [x]) = tℓ(ϕ0([x])) = tℓ(x)

Φ0.5(t, [x]) = tℓ(ϕ0.5([x])) = tℓ(ϕ0.5([x+ 1])) = tℓ(x+ 1) = −tℓ(x)

and so Φ−1
0.5 ◦ Φ0 = −id at these points.

(d) Suppose we have a non-vanishing global section s. Then in coordinates with respect

to Φ0 and Φ0.5 it is s̃0 : (−0.5, 0.5) → R and s̃0.5 : (0, 1) → R respectively. Since it

is non-vanishing, without loss of generality assume that s̃0 > 0.

We know from the previous part that for x ∈ (0, 0.5) that

s̃0.5(x) = gU0.5,U0([x]) s̃0(x) = s̃0(x) > 0.

On the other hand, for x ∈ (0.5, 1)

s̃0.5(x) = gU0.5,U0([x]) s̃0(x− 1) = −s̃0(x− 1) < 0.

Since s̃0.5 is continuous, we see that s̃0.5(0.5) = 0. But this contradicts the fact it is

non-vanishing.

In Class Exercises

42. Isomorphism of bundles given as cocycles.

We have seen that cocycles are a convenient way to define a bundle. Suppose that we

have two bundles E and E ′ over B given by cocycles g and g′ on the same covering of B.

Suppose that there exist smooth functions hU : U → GL(F ) for each open set U in the

cover such that

g′V,U(b) = hV (b) gV,U(b)hU(b)
−1.

Show that the bundles E and E ′ are isomorphic.

Solution. Recall that bundles constructed by cocycle are defined as the quotient of

trivial bundles F × U . To construct an isomorphism between two such bundles, we will
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give the map on these trivialisations and show that it is well-defined with respect to the

equivalence relation.

Call our map G : E → E ′. In the trivialisation over U we define G : F × U ⊂ E →
F × U ⊂ E ′ by

G(f, b) := (hU(b)f, b).

This is a bundle isomorphism in this trivialisation, because hU(b) is an invertible linear

transformation by definition. Indeed, the inverse is

G−1(f ′, b) = (hU(b)
−1f ′, b) ∈ F × U.

It only remains to show that this is a well-defined map.

If V is another open set of the cover and b ∈ U ∩ V then (fV , b) ∼ (fU , b) if and only if

fV = gV,U(b)fU by definition of the equivalence relation on E. Now apply G to both of

these

G(fU , b) = (hU(b)fU , b)

G(fV , b) = (hV (b)fV , b).

Are these the same point in E ′?

g′V,U(b)(hU(b)fU) = hV (b) gV,U(b)hU(b)
−1 hU(b)fU

= hV (b) gV,U(b)fU

= hV (b)fV .

So yes they are. Thus G is well-defined.

43. Direct sum of two Möbius bundles over R/Z.

Consider the Möbius bundle M over R/Z. Prove that M ⊕M is the trivial rank 2 bundle

over R/Z.

Solution. We will use the cocycle method we just proved. We have already computed

the cocycles of M , so the cocycle of the direct sum is

gU0.5,U0([x]) =

I2 for x ∈ (0, 0.5)

−I2 for x ∈ (0.5, 1)

where I2 is the 2-dimensional identity matrix. We need to find matrix function h0 : U0 →
GL(R2) and h0.5 : U0.5 → GL(R2) that transform this cocycle into the trivial cocycle. Let

h : R → GL(R2) be the half-speed rotation of the plane

h(x) =

(
cosπx sin πx

− sin πx cosπx

)
.
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Then we can take h0 = h◦ϕ0 and h0.5 = h◦ϕ0.5. For x ∈ (0, 0.5), h0([x]) = h(x) = h0.5([x])

and therefore

h0.5([x]) gU0.5,U0([x])h0([x])
−1 = h(x) I2 h(x)

−1 = I2.

However for x ∈ (0.5, 1), h0.5([x]) = h(x) but

h0([x]) = h0([x− 1]) = h(x− 1) =

(
cos π(x− 1) sinπ(x− 1)

− sin π(x− 1) cos π(x− 1)

)

=

(
− cosπx − sinπx

sinπx − cos πx

)
= −h(x).

In this case,

h0.5([x]) gU0.5,U0([x])h0([x])
−1 = h(x) (−I2) (−h(x))−1 = I2.

Whew. How can we understand this geometrically? We constructed the Möbius bundle

originally as a line twisting in R2. We can imagine the second Möbius bundle as another

line twisting in the same way, but at 90-degrees to the first one. This will also give a

Möbius band. But the vector sum of the two lines is just all of R2.

44. Classification of line bundles over R/Z.

In this exercise we will classify all line bundles over R/Z. Let E be a line bundle over

R/Z.

(a) Use a previous exercise to argue that π−1[U0] and π−1[U0.5] must be trivial bundles.

(b) Explain why GL(R) = R×.

(c) Because E trivialisations over the cover U = {U0, U0.5}, we can describe E over by

a single cocycle g = gU0.5,U0 : U0 ∩ U0.5 → R×. Let {φU : U → [0, 1]} be a partition

of unity for U . Define hU : U → R+ by

hU([x]) =

(∑
V ∈U

φV ([x])gV,U([x])
2

)1/2

.

For example,

hU0([x]) =
(
φU0([x])gU0,U0([x])

2 + φU0.5([x])gU0.5,U0(x)
2
)1/2

=
(
φU0([x]) + φU0.5([x])g([x])

2
)1/2

.

Why is hU0 well-defined at [x] = [0] even though gU0.5,U0([x]) is not defined there?

Show, using the cocycle properties that hU0.5h
−1
U0

= |g|−1.
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(d) Hence show that E is isomorphic to a bundle whose cocycle has |g′U0.5,U0
(x)| = 1.

(e) Show that E is isomorphic to either the trivial bundle R×R/Z or the Möbius bundle.

Solution.

(a) U0 is diffeomorphic to the interval (−0.5, 0.5), which is diffeomorphic to the whole

real line. For example, using the map

t 7→ sin 2πt

1 + cos 2πt
.

Since all line bundles over R are trivial (in fact all vector bundles over a contractible

space are trivial and all line bundles over a simple connected space a trivial), E must

be trivial over U0.

(b) GL(R) is the set of invertible linear maps from R to R. Take a linear map L : R → R
and call L(1) = a. For any other value L(t) = tL(1) = ta, which shows that L is just

multiplication by a. If L is invertible, then a ̸= 0. Thus GL(R) = R× with group

operation as multiplication and identity 1.

(c) There are a few things to notice with the definition of hU . First, this is well-defined

on all of U even though gV,U is only defined on the intersection V ∩ U . This is

because if [x] ∈ U \ V then φV ([x]) = 0 so we don’t need to calculate gV,U([x]) at

those points. Further, the expression inside the bracket is a positive sum, so hU is a

positive function.

It’s actually cleaner to prove the property in full generality:

hU =

(∑
W∈U

φW g2W,U

)1/2

=

(∑
W∈U

φW

(
gW,V gV,U

)2)1/2

=
(
g2V,U

)1/2(∑
W∈U

φW g2W,V

)1/2

= |gV,U |hV .

(d) By a previous exercise, E is isomorphic to a bundle with the cocycle

g′U0.5,U0
= hV gU0.5,U0h

−1
U = |g|−1g.

This cocycle is unit length.

(e) We may as well assume that E is the represented by the cocycle from the previous

part. gU0.5,U0 is a smooth function that takes the values ±1. By taking hU0 =
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sign gU0.5,U0([0.25]) and hU0.5 = 1 we can assume that gU0.5,U0([0.25]) = 1. There are

only two such gU0.5,U0 :

gU0.5,U0([x]) = 1,

and

gU0.5,U0([x]) =

1 for x ∈ (0, 0.5)

−1 for x ∈ (0.5, 1)
.

These are the trivial bundle and Möbius bundle respectively.

Additional Exercises

45. Triviality of the homomorphism bundle.

Let (E,B, π) and (E ′, B, π′) be two vector bundles over a base manifold B. Consider the

homomorphism bundle (Hom(E,E ′), B, π′′). People often say “Hom-bundle” for short.

In parts (b) and (c) there are two methods of proof: try to find a non-vanishing sections

or examine the cocycles.

(a) What is the rank of Hom(E,E ′).

(b) Show that when E and E ′ are trivial bundles, then so too is Hom(E,E ′).

(c) Prove or disprove: Hom(E,E ′) is trivial, then the bundles E and E ′ must be trivial.

Hint: Examine the Möbius bundle M .

Solution.

(a) The rank is the dimension of the fibre. The fibres of the Hom-bundle are the homo-

morphisms from the fibre F of the first bundle to the fibre F ′ of the second. If these

vector spaces are dimensions r and r′ respectively then the homomorphisms can be

identified with r′ × r matrices. Hence they form a vector space of dimension rr′.

(b) If E and E ′ are trivial, we know that there exists non-vanishing sections {v1, . . . , vr}
and {v′1, . . . , v′r′} which are every point are linearly independent. This means there

is an isomorphism of vector bundles between E and Rr × B, and composing with

the coordinate projections Rr → R gives us smooth functions ai : E → R such that

v =
∑r

k=1 ak(v)vk(π(v)). These functions are linear because they are the composition

of linear functions. Therefore we have bundle homomorphisms

sij(b) : v 7→ ai(v)v
′
j(b) ∈ E ′ for v ∈ π−1[{b}].
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The zero homomorphism is the one that maps all vectors to zero. Notice that for

each of sij and for each b ∈ B we have sij(b)(vi(b)) = v′j(b) ̸= 0. Hence there is

at least one vector in π−1[{b}] that is not mapped to zero, which shows that sij is

non-vanishing.

They are also linearly independent: suppose that 0 =
∑

k,l cklskl(b). Applying this

to the point vi(b) gives 0 =
∑

l cilv
′
l(b). The linear independence of the v′j(b) now

forces cil = 0 for all l. Repeating this with the other basis sections of E shows all

coefficients to be zero.

We have found rr′ linearly-independent non-vanishing sections of Hom(E,E ′). There-

fore it is trivial.

Each of these functions is essentially the matrix with 1 in the (i, j)th component

and 0 elsewhere because the map sends vi(b) to v′j(b) and other vectors vk(b) to zero

and these are basis vectors of π−1[{b}] and π′−1[{b}] respectively. This proof was

essentially the proof that matrices uniquely represent homomorphisms with respect

to given bases of the vector spaces.

Now we give the proof in terms of the cocycles. If gV,U is a cocycle for E and g′V,U
is a cocycle for E ′ then the cocycle for the hom bundle is complicated. It is a map

g̃V,U : V ∩ U → GL(Hom(E,E ′)) that acts by

C 7→ g′V,U ◦ C ◦ g−1
V,U .

But if both bundles are trivial then they can be represented by cocycles that are the

identity. Then g̃ : C → C is also the identify.

(c) This is false. We give as our counterexample the bundle H := Hom(M,M) as

suggested by the hint. Because the rank of M is 1, so too is the rank of H, as

discussed in part (a). Thus it is sufficient to give a non-vanishing section of H. But

this is easy: the identity map idM fits the description.

Let us give a more complete picture of H. Every bundle homomorphism s : M → M

must act as scalar multiplication on each fibre, because those are the only homomor-

phism R → R. But scaling the fibre is independent of the choice of trivialisations; the
trivialisations preserve the vector space structure. Therefore for each point h ∈ H

we can describe it as a pair (a, x) where x = π(h) is the base point and a is the

scalar. Conversely, given (a, x) consider the homomorphism aid on π−1[{x}]. This

describes the correspondence between H and the trivial bundle R× S1.

This proof does not generalise to higher dimensional homomorphism bundles, be-

cause in general there are many more homomorphisms Rr → Rr′ than just scaling,

and these other homomorphisms do not need to be preserved by the trivialisations.

It does not even generalise to the Hom-bundle between line bundles L and L′, be-

cause while it is true that Hom(R,R) = R×, how to identify the fibres of L and L′
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with R depends on the trivialisations. It does generalise to the bundle Hom(L,L)

for (L,B, π) a line bundle, because then we can use the special homomorphism id.

We have seen in the previous part that the cocycles of a Hom bundle can be com-

plicated. However in one-dimension, all linear maps commute (they are just multi-

plication). So the cocycle g̃V,U is just

C 7→ gV,U ◦ C ◦ g−1
V,U = C.

In other words, g̃V,U = 1. Hence it is trivial.

46. The dual bundle of a vector bundle.

Let (E,B, π) be a vector bundle over a manifold B, with fibre F = Rn. Further, let U be

an open cover of B so that π trivialises over every set U ∈ U . Denote the cocycles of π

with respect to this cover by gV,U : U ∩ V → GL(Rn).

Show that the dual bundle (Ẽ, B, π̃) to π is described over U by the cocycle (g̃V,U)V,U∈U

with

g̃V,U : U ∩ V → GL(Rn), x 7→
(
gV,U(x)

T
)−1

.

Solution. The dual bundle is by definition a special type of homomorphism bundle,

namely Hom(E,R × B). Thus we should look to Theorem 1.59. In that theorem, the

cocycle of a Hom-bundle is described by the function Π(A,B) : C 7→ B ◦ C ◦ A−1 ∈
Hom(F, F ′) where A ∈ GL(F ) and B ∈ GL(F ′) are respectively the transition functions

of the source and target bundles at a point and C ∈ Hom(F, F ′) is a homomorphism

between the fibres F and F ′ and thus itself a point of the fibre of the Hom-bundle.

In this situation, we have F = Rn and F ′ = R, and at some point b ∈ U ∩ V ⊂ B we

have A = gV,U(b) ∈ GL(Rn) and B = 1 (the transition functions for the trivial bundle are

always the identity matrix). We can also describe C ∈ Hom(Rn,R) as a column vector

that acts by C : v 7→ CTv (we will explain why we should think of it this way shortly).

Thus, for v ∈ Rn the transition acts as

g̃V,U(b)(C) : v 7→ B(C(A−1(v))) = CT gV,U(b)
−1v =

(
(gV,U(b)

T )−1C
)T

v ∈ R

g̃V,U(b) : C 7→ (gV,U(b)
T )−1C ∈ Hom(Rn,R)

g̃V,U(b) = (gV,U(b)
T )−1 ∈ GL(Hom(Rn,R))

We can now explain why we thought of C ∈ Hom(Rn,R) as a column vector, because

we want it to be acted on by an element of GL(Hom(Rn,R)) and these act on column

vectors. Notice that transpose and inversion of matrices commute, so it doesn’t matter

which order we write those operations.
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