
Martin Schmidt 3 October 2022

Ross Ogilvie

Analysis III
4. Exercise: Tangent Space

In Analysis II we learn that the derivative of a function F = (F1, . . . , Fn) : Rm → Rn at a point

a is a linear map, an n×m matrix,

JaF :=


∂F1

∂x1
(a) . . . ∂F1

∂xm
(a)

...
...

∂Fn

∂x1
(a) . . . ∂Fn

∂xm
(a)

 .

I call this matrix the Jacobian and denote it with the letter J . This is so we do not confuse

it with derivations, which often use the letter D. Martin uses a prime F ′(a). All three J,D, ′

are common. When the matrix is a single column we identify it with the vector. ∇ is also a

common notation in this case. When it is 1× 1 we identify it with the real number. We have

the chain rule

Ja(F ◦G) = JG(a)F ◦ JaG.

When thinking of these are matrices and vectors, we may omit the ◦ and use juxtaposition to

represent matrix multiplication.

Preparation Exercises

20. Tangency for curves.

In Definition 1.32 we define the concept of tangency for smooth maps f1, f2 at a point

x = f1(t) = f2(t). In this exercise we examine this concept for curves. A curve through

x ∈ X is a smooth map α : (−ε, ε) ⊂ R → X such that α(0) = x. Another way to

say Definition 1.33 is that the tangent space TxX is the set of curves through x with the

equivalence relation of tangency.

(a) Give the definition for two curves α, β through x to be tangential at x.

Let ϕ be a chart that contains x. Show that these curves are tangential at x if and

only if J0(ϕ ◦ α) = J0(ϕ ◦ β) ∈ Rn.

(b) Choose w ∈ Rn. Show that αw(t) := ϕ−1(tw + ϕ(x)) is a curve through x.

(c) Show that every curve through x is equivalent to αw for some w. This shows that

TxX = {[αw] | w ∈ Rn}. This correspondence is called ‘writing a tangent vector in

coordinates’.

Solution.

(a) In terms of Definition 1.32, we must compare α and β in the charts id on R and

ϕ on X. That is, we must compare the derivatives of ϕ ◦ α ◦ id−1 = ϕ ◦ α and

ϕ ◦ β at 0 as linear maps R → Rn. In our situation, the Jacobian is a single column

J0(ϕ ◦α) = d
dt
(ϕ ◦ α)

∣∣
t=0

. Because it is only a single column, we identify this matrix

with a vector in Rn. The two matrices are the same if and only if the two vectors

are the same.
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(b) We have seen previously that every coordinate chart is a diffeomorphism. We recog-

nise then that αv is the composition of the smooth map (−ε, ε) → ϕ[U ] ⊂ Rn, t 7→
tw + ϕ(x) and ϕ−1, where we choose ε small so that it lies in ϕ[U ]. This shows it is

a smooth map (−ε, ε) → X. And αw(0) = ϕ−1(ϕ(x)) = x.

(c) We see directly that ϕ ◦ αw(t) = ϕ ◦ ϕ−1(tw + ϕ(x)) = tw + ϕ(x) so J0(ϕ ◦ αw) = w.

Choose any curve α through x and set w = J0(ϕ ◦ α). Then by part (a), α and αw

are tangent at x.

21. Derivations at a point.

We refer to Theorem 1.40 in the script and the explanation that proceeds it.

(a) Consider D : C∞(X,R) → R and a point x ∈ X. Recall the definition that D is a

derivation at x.

(b) Prove that the set of derivations at x is a vector space.

(c) Let α be a curve through x. Show that Dα : C∞(X,R) → R given by Dα(f) =

(f ◦ α)′(0) is a derivation at x.

(d) Show that evaluating a partial derivative of a function with respect to a chart ϕ (see

Exercise 14(e)) is a derivation at x. That is,

f 7→ ∂f

∂ϕi
(x) =

∂(f ◦ ϕ−1)

∂yi
(ϕ(x)).

Solution.

(a) D should be R-linear. This means for all f, g ∈ C∞(X,R) and a, b ∈ R we have

D(af + bg) = aD(f) + bD(g). Additionally, it should satisfy Leibniz rule at x, ie

D(fg) = f(x)D(g) + g(x)D(f). Note how this depends on the point x.

(b) Suppose D,D′ are derivations at x and a, b ∈ R. Then aD + bD′ is a derivation.

The R-linearity is standard (but a good exercise if you are a little rusty) so I won’t

write it out but I’ll check the Leibniz rule:

(aD + bD′)(fg) = aD(fg) + bD′(fg)

= a[f(x)D(g) + g(x)D(f)] + b[f(x)D′(g) + g(x)D′(f)]

= f(x)[aD(g) + bD′(g)] + g(x)[aD(f) + bD′(f)]

= f(x)[aD + bD′](g) + g(x)[aD + bD′](f).

The zero element of this vector space is the derivation D0 that sends every function

to zero, ie D0(f) = 0. This is sufficient to show it is a vector space.
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(c) The important thing to recognise is that f ◦α is a function from (−ε, ε) to R, nothing
scary. I could have written it as J0, but I wanted to emphasis this is the completely

basic derivative of a real function. The Leibniz rule follows from the normal Leibniz

for the product of real functions (which we don’t have for vector valued functions).

Observe

Dα(af + bg) = ((af + bg) ◦ α)′(0) = (a(f ◦ α) + b(g ◦ α))′(0)

= a(f ◦ α)′(0) + b(g ◦ α)′(0) = aDα(f) + bDα(g),

and

Dα(fg) = ((fg) ◦ α)′(0) = ((f ◦ α)(g ◦ α))′(0)

= (f ◦ α)(0)(g ◦ α)′(0) + (f ◦ α)′(0)(g ◦ α)(0)

= f(x)Dα(g) +Dα(f)g(x).

By the way, another way to write this derivation is Dα(f) = Tx(f)(α) using the

identification Tf(x)R = R.

(d) This is very similar to the previous question (can you give a reason for that?). I’ll

just check the Leibniz rule. Perhaps if we write f̃ = f ◦ ϕ−1 : ϕ[U ] ⊂ Rn → R this

will be clearer:

∂(fg)

∂ϕi
(x) =

∂((fg) ◦ ϕ−1)

∂yi
(ϕ(x)) =

∂((f ◦ ϕ−1)(g ◦ ϕ−1))

∂yi
(ϕ(x)) =

∂(f̃ g̃)

∂yi
(ϕ(x))

= f̃(ϕ(x))
∂g̃

∂yi
(ϕ(x)) + g̃(ϕ(x))

∂g̃

∂yi
(ϕ(x))

= f(x)
∂g

∂ϕi
(x) + g(x)

∂g

∂ϕi
(x).

In Class Exercises

22. The tangent map.

Let X, Y be manifolds and f : X → Y . The map Tx(f) : TxX → Tf(x)Y is called the

tangent map is defined in Definition 1.35. It is also called the push-forward map or the

differential.

(a) Prove that if α and β are curves through x that are tangential, then Tx(f)(α) is

tangential to Tx(f)(β) at f(x). This shows that Tx(f) is indeed well-defined between

tangent spaces.
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(b) Suppose that Y = Rm. Using the canonical identification TyRm = Rm show how to

identify Tx(f)(α) with a vector in Rm. How does this relate to Exercise 20(a)?

(c) Let X be connected. Show that f is constant if and only if Tx(f) = 0 for all x ∈ X.

Solution.

(a) Let ϕ be a chart centered on x and ψ a chart containing f(x). Tx(f)(α) is by

definition the composition f ◦ α. Then

J0(ψ ◦ Tx(f)(α)) = J0(ψ ◦ f ◦ α)

= J0((ψ ◦ f ◦ ϕ−1) ◦ (ϕ ◦ α))

= J0(ψ ◦ f ◦ ϕ−1)J0(ϕ ◦ α)

= J0(ψ ◦ f ◦ ϕ−1)J0(ϕ ◦ β)

= J0(ψ ◦ Tx(f)(β)).

(b) Tx(f)(α) is the vector [f ◦ α] ∈ Tf(x)Rm. If we write this in coordinates using the

chart id, we get

J0(id
−1 ◦ (f ◦ α)) = J0(f ◦ α) =


∂(f1◦α)
∂t

∣∣∣
t=0

...
∂(fm◦α)

∂t

∣∣∣
t=0

 .

In particular, if we take f = ϕ : U → ϕ[U ] ⊂ Rn we get that a writing a tangent

vector in coordinates is the same thing as applying Tx(ϕ).

(c) Suppose that f is constant. Then f(x) = q for some q ∈ Y and all x ∈ X. Choose

any point x ∈ X and a curve α through x. Then the push-forward f ◦ α is the

constant map t→ q. This is the zero element of the tangent space.

Conversely, suppose that Tx(f) = 0. Then its rank is everywhere 0. By Corollary

1.46, for every point y ∈ T [X] the preimage f−1[{y}] is a submanifold of dimension

dimX−0 = dimX. Submanifolds of the same dimension must be open, and because

it is the preimage of a point it is also closed. BecauseX is connected, the submanifold

must therefore be all of X. In other words, X = f−1[{y}], so f [X] = y, which shows

f is constant.

23. Examples of tangent vectors.

(a) Let α, β : R → S1 be given by α(t) = (sin t, cos t) and β(t) = (sin t2, cos t2). Do these

curves through (0, 1) give the same tangent vector in T(0,1)S1?
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(b) Write α in coordinates with respect to ϕN and ϕS.

(c) How do you transform a vector written in coordinates with respect to one chart into

another chart?

(d) Let ι : S1 → R2 be the map ι(x1, x2) = (x1, x2). This is called the inclusion map.

Let v be a tangent vector in TxS1. Show that w := Tx(ι)(v) ∈ R2 is perpendicular

to x.

Conversely, choose any w ∈ R2 with w ·x = 0 and set α(t) = (cos |w|t)x+(sin |w|t)ŵ.
Show that w = Tx(ι)([α]). (2 Points)

Hence we make the identification

TxS1 = {w ∈ R2 |w · x = 0 } .

(e) Recall the maps f : S1 → R and A : S1 → S1 from Exercise 16. Write T(1,0)(f)(α)

and T(1,0)(ι ◦ A)(α) using natural identifications. Interpret these results.

Solution.

(a) We can use the test from Exercise 20(a) with the chart ϕS.

(ϕS ◦ α)(t) = ϕS(sin t, cos t) =
cos t

1 + sin t

Jt(ϕS ◦ α) =
− sin t(1 + sin t)− cos2 t

(1 + sin t)2
=

−1

1 + sin t

J0(ϕS ◦ α) = −1,

and

(ϕS ◦ β)(t) = ϕS(sin t
2, cos t2) =

cos t2

1 + sin t2

Jt(ϕS ◦ β) =
−2t sin t2(1 + sin t2)− 2t cos2 t2

(1 + sin t2)2

J0(ϕS ◦ β) = 0.

Thus the curves are not tangential.

(b) We have already written α in coordinates with respect to ϕS in the previous part.

(ϕN ◦ α)(t) = ϕN(sin t, cos t) =
cos t

1− sin t

Jt(ϕN ◦ α) = − sin t(1− sin t) + cos2 t

(1− sin t)2
=

1

1− sin t

J0(ϕN ◦ α) = 1.

We see that in different coordinates, the same vector [α] may have different repre-

sentations.
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(c) A vector written in coordinates with respect to ϕ1 is a fancy name for J0(ϕ1 ◦ α).

J0(ϕ2 ◦ α) = J0(ϕ2 ◦ ϕ−1
1 ◦ ϕ1 ◦ α) = Jϕ1(x)(ϕ2 ◦ ϕ−1

1 )J0(ϕ1 ◦ α)

by the chain rule. In other words, you change coordinate expressions of vectors, you

multiply by the Jacobian matrix of the change of coordinates map.

(d) Let α be a curve in S1 representing v, that is x = α(0) and v = [α]. Then Tx(ι)(v) =

[ι◦α]. But ι is just the identity map considered as a map between manifolds so ι◦α
is just t 7→ α(t) ∈ R2 and w = α′(0).

To show that w is perpendicular to x, note that |α(t)|2 = 1 because it lies in the

circe. Differentiating gives 2α(t) · α′(t) = 0. At t = 0 this gives x · w = 0.

Conversely, suppose w ∈ R2 is perpendicular to x. We need to find a path in S1 with

this as its tangent vector: α(t) = (cos |w|t)x+ (sin |w|t)ŵ works.

This argument did not depend on the dimension, so the same result holds for TxSn.

(e) If we just wanted to calculate tangent vectors, there is nothing to do here. T(1,0)(f)(α)

is by definition the equivalence class of f ◦ α and T(1,0)(ι ◦ A)(α) is the equivalence

class of ι ◦ A ◦ α.
But let us explore a little deeper. We know that for T(1,0)(f)(α) we can write this

as a vector in R (ie a real number). We get the vector

J0(f ◦ α) = d

dt

∣∣∣∣
t=0

f(cos t, sin t) = 2 cos t+ 2 sin t cos t
∣∣∣
t=0

= 2.

The interpretation is that as we move along α the function f is changing, and at

t = 0 it is increasing with speed 2.

For T(1,0)(ι ◦ A)(α) we get the curve t 7→ (− cos t,− sin t), a curve through (−1, 0).

Using the natural identification

T(1,0)(ι ◦ A)(α) =
d

dt

∣∣∣∣
t=0

(− cos t,− sin t)

= (sin t,− cos t)
∣∣∣
t=0

= (0,−1).

The antipodal map reflects the circle. It is not surprising therefore that it reflects

tangent vectors.

24. The tangent space as a vector space.
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We know that the tangent space TxX is the set of equivalence classes of curves through

x. We want this to be a vector space, but one cannot add curves to one another.

As in Theorem 1.36 let ϕ be a chart centered on x, ϕ(x) = 0. Then because ϕ is a

homeomorphism, the induced map Φ := Tx(ϕ) is a bijection from V := TxX to Tϕ(x)Rn =

Rn. We give V the structure of a vector space which makes Φ an isomorphism. Explicitly

[α] + [β] = Φ−1
(
Φ([α]) + Φ([β])

)
,

a[α] = Φ−1
(
aΦ([α])

)
.

The question is, does the vector space structure depend on the choice of chart ϕ? If we

add two vectors according to one chart, do we get the same answer to when we add them

according to another chart?

Prove directly that the vector space structure on the tangent space does not depend on

the choice of chart (Theorem 1.36(i)).

Solution. We begin by describing the inverse Φ−1 : Rn → V more carefully. Choose a

v ∈ Rn. We know from Exercise 20 that αv = ϕ−1(tv) is a curve through x. Φ(αw) is

defined to be the curve ϕ ◦ αw ◦ id−1(t) = tw, which shows Φ−1(w) = [αw].

Let ψ be another chart centered on x, and Ψ = Tψ(x)(ψ) and βw(t) = Ψ−1(tw) be the

construction in this chart. We need to show that αΦ(α)+Φ(β) and βΨ(α)+Ψ(β) are tangential

at x and that αaΦ(α) and βaΨ(α) are also tangential. We do this by comparing them in the

ϕ chart:

J0(ϕ ◦ αΦ(α)+Φ(β)) = J0

(
ϕ ◦ ϕ−1

(
t[Φ(α) + Φ(β)]

))
= Φ(α) + Φ(β)

and

J0
(
ϕ ◦ βΨ(α)+Ψ(β)

)
= J0

(
ϕ ◦ ψ−1

(
t[Ψ(α) + Ψ(β)]

))
= J(ϕ ◦ ψ−1)0 [Ψ(α) + Ψ(β)]

= J(ϕ ◦ ψ−1)0 [J0(ψ ◦ α) + J0(ψ ◦ β)]

= J0(ϕ ◦ ψ−1)J0(ψ ◦ α) + J0(ϕ ◦ ψ−1)J0(ψ ◦ β)

= J0(ϕ ◦ ψ−1 ◦ ψ ◦ α) + J0(ϕ ◦ ψ−1 ◦ ψ ◦ β)

= J0(ϕ ◦ α) + J0(ϕ ◦ β)

= Φ(α) + Φ(β),

where we used the chain rule J(F ◦ G) = JF ◦ JG in the second line, and in reverse in

the 5th line. Because these vectors are equal, by Exercise 20 we know that the curves

are tangential. The proof for vector scaling is similar. This shows that the vector space

structure does not depend on the choice of chart.
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Additional Exercises

25. Tangent vectors and Derivations at a point.

Using the results already developed in this exercise sheet, give your own proof of Theorem

1.40. That is, prove that [α] → Dα is a well-defined bijection and that it preserves the

vector space structure.

Terminology

f und g berühren = f and g are tangential.
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