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Ross Ogilvie
Analysis III

3. Exercise: Smooth Maps

Preparation Exercises

14. Properties of Smooth Maps.

(a) Let x ∈ X be a point that is in the domain of two charts ϕ1 : U1 → ϕ[U1] and

ϕ2 : U2 → ϕ[U2]. Let f : X → Y be a map. Show that whether f is smooth at x

does not depend on the chart.

(b) Let f : X → Y and g : Y → Z be smooth maps. Prove that g ◦ f is a smooth map.

(c) Show that a map f : Rn → Rm is smooth in the sense of Definition 1.22 (as a map

between manifolds), exactly if it is smooth in the Euclidean sense.

(d) Let X be a manifold and ϕ : U → ϕ[U ] ⊂ Rn a chart. Explain why ϕ : U → Rn is a

smooth map in the sense of manifolds.

(e) Let f : X → R be a smooth function (we often use the word function for maps to

R, though they are interchangable). Choose a chart ϕ : U → ϕ[U ] ⊂ Rn. Define for

1 ≤ i ≤ n the ith-partial derivative of f with respect to ϕ as

∂f

∂ϕi

: U → R, x 7→ ∂(f ◦ ϕ−1)

∂yi
(ϕ(x)).

Show that this is a smooth function on U . It is sometimes written as ∂f/∂ϕ,i

(especially in physics) to make clear that the index refers to the coordinate and not

which chart from the atlas.

Solution.

(a) Without loss of generality we may assume U1 = U2 (by restricting to the intersec-

tion). Let ψ be a suitable chart on Y . Because

ψ ◦ f ◦ ϕ−1
1 = (ψ ◦ f ◦ ϕ−1

2 ) ◦ (ϕ2 ◦ ϕ−1
1 )

and ϕ2 ◦ ϕ−1
1 is smooth, if ψ ◦ f ◦ ϕ−1

2 is smooth then so too is ψ ◦ f ◦ ϕ−1
1 . This also

holds vice versa. Therefore it doesn’t depend on the choice of chart.

By similar reasoning, it also doesn’t depend on the choice of chart on Y .

(b) Let ϕ, ψ, χ be suitable charts on X, Y, Z respectively. Then

χ ◦ (g ◦ f) ◦ ϕ−1 = (χ ◦ g ◦ ψ−1) ◦ (ψ ◦ f ◦ ϕ−1)

shows that g ◦ f is smooth.
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(c) The charts on Euclidean space are just the identity functions. So f is smooth in the

sense of manifolds if and only if

idRm ◦ f ◦ id−1
Rn = f

is smooth in the Euclidean sense.

(d) The trick here is to use ϕ as the map f and as the chart on X, while using id as the

chart on ϕ[U ] ⊂ Rn (a previous exercise showed that an open subset of a manifold is

itself a manifold with the same charts). Thus ϕ is smooth in the sense of manifolds

if

id ◦ ϕ ◦ ϕ−1 = id

is smooth in the Euclidean sense. Clearly it is.

(e) Again, we should use ϕ as the chart on X and id as the chart on R. The assumption

that f is a smooth map between manifolds amounts to f ◦ ϕ−1 being smooth in the

Euclidean sense.

Notice that the formula we give for the partial derivative is itself a composition.

Thus

id ◦ ∂f

∂ϕi

◦ ϕ−1 = id ◦
(
∂(f ◦ ϕ−1)

∂yi
◦ ϕ

)
◦ ϕ−1 =

∂(f ◦ ϕ−1)

∂yi
: ϕ[U ] ⊂ Rn → R

This is the partial derivative of a smooth function in the Euclidean sense, so it a

smooth function by definition.

15. Diffeomorphism.

Let X, Y be differential manifolds. Show that X and Y are diffeomorphic (Def 1.21)

exactly when there is a bijective smooth map f : X → Y whose inverse is also smooth.

Solution. Suppose that there is a bijective smooth map f : X → Y whose inverse is also

smooth. Then f is a homeomorphism. It remains to show that for any chart ψ of Y the

composition ψ◦f is a chart of X compatible with the atlas of X. It is compatible when for

any chart ϕ ofX, the compositions (ψ◦f)◦ϕ−1 = ψ◦f ◦ϕ−1 and ϕ◦(ψ◦f)−1 = ϕ◦f−1◦ψ−1

are smooth. But this is exactly the condition that f and f−1 are smooth.

Conversely, if f is a diffeomorphism then it is bijective, and further the condition that

ψ ◦ f is compatible with the atlas on X for every chart of Y is the same as the condition

that f and f−1 are smooth.
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In Class Exercises

16. Smooth maps on S1.

(a) Consider the function f(x1, x2) = 2x2 − x21. Using the stereographic projections ϕN

and ϕS show that it is a smooth map S1 → R. Visualise this function.

(b) Visualise the function g(x1, x2) = (x2+1)2− 2 on S1. Explain the connection to the

previous function.

(c) Consider the antipodal map A : S1 → S1 defined by x 7→ −x. Show it is smooth.

Interpret this map geometrically.

(d) Let F : R2 → R be a smooth function. Argue that f = F |S1 is a smooth function.

Hint. Consider F = Πi first.

(e) Are there any smooth functions on S1 that aren’t of this form?

Solution.

(a) We write f in coordinates. This means using charts:

id ◦ f ◦ ϕ−1
N (y) = f

(
∥y∥2 − 1

∥y∥2 + 1
,

2y

∥y∥2 + 1

)
=

2y

∥y∥2 + 1
−
(
∥y∥2 − 1

∥y∥2 + 1

)2

,

id ◦ f ◦ ϕ−1
S (y) = f

(
−∥y∥2 − 1

∥y∥2 + 1
,

2y

∥y∥2 + 1

)
=

2y

∥y∥2 + 1
−
(
−∥y∥2 − 1

∥y∥2 + 1

)
.

These are ugly, but smooth. Since every point belongs to the domain of either ϕN

or ϕS, f is smooth at every point.

Here is a visualisation of this function https://www.math3d.org/m3nQhJEgS.

(b) This function is the same as the previous one, because x21 + x22 = 1 on S1 and

g = (x2 + 1)2 − 2 = x22 + 2x2 − 1 = 1− x21 + 2x2 − 1 = f.

This shows that two functions may actually be the same function when restricted to

a submanifold.

(c) In general if you want to show a map S1 → S1 is smooth, you need to write it in four

sets of coordinates: ϕN ◦ f ◦ ϕ−1
N , ϕN ◦ f ◦ ϕ−1

S , ϕS ◦ f ◦ ϕ−1
N , ϕS ◦ f ◦ ϕ−1

S . But observe

that a(N) = S and a(S) = N , so we only need to write it in two sets of coordinates
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to ensure that every possibility for x and A(x) are covered. Namely

ϕS ◦ A ◦ ϕ−1
N : R → R

ϕS ◦ A ◦ ϕ−1
N (y) = ϕS ◦ A

(
∥y∥2 − 1

∥y∥2 + 1
,

2y

∥y∥2 + 1

)
= ϕS

(
−∥y∥2 − 1

∥y∥2 + 1
,− 2y

∥y∥2 + 1

)
=

− 2y
∥y∥2+1

1− ∥y∥2−1
∥y∥2+1

= −y,

and

ϕN ◦ A ◦ ϕ−1
S : R → R

ϕN ◦ A ◦ ϕ−1
S (y) = ϕN

(
∥y∥2 − 1

∥y∥2 + 1
,

−2y

∥y∥2 + 1

)
=

− 2y
∥y∥2+1

1− ∥y∥2−1
∥y∥2+1

= −y.

Both of these are smooth.

This map sends each point on the circle to its opposite, its antipode.

(d) The calculation that Πi is a smooth function on S1 is basically the same calcula-

tion as Exercise 11(e). Therefore we can write f(x) = F (Π1|S1(x),Π2|S1(x)) as the
composition of smooth maps.

(e) No, but it is a bit tricky to prove. Take a smooth function of compact support

χ : [0.5, 1.5] → R such that χ(1) = 1. Define F (x) = χ(∥x∥)f(x̂) for ∥x∥ ∈ [0.5, 1.5]

and F (x) = 0 otherwise. I leave it to you to prove that this is a smooth function

Rn → R.

17. Smooth maps on R/Z.

(a) Show that f : R/Z → R, [x] 7→ sin 2πx is a well defined function. Show further that

it is a smooth function.

(b) Prove that functions f : R/Z → R are equivalent to functions F : R → R with

F (x+ 1) = F (x) for all x ∈ R.

(c) Prove further that a function on R/Z is smooth if and only if its periodic version is

smooth.
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(d) Generalise this result to maps R/Z → Y .

Solution.

(a) If x+n ∈ [x] then sin 2π(x+n) = sin(2πx+2πn) = sin 2πx. Therefore the definition

of f is independent of the choice of representative. In other words, it is well defined.

To show it is smooth at [x], use the chart ϕx. Then id◦f ◦ϕ−1
x : (x−0.5, x+0.5) → R

is just t 7→ sin 2πt. This is smooth.

(b) Suppose we have a periodic function F : R → R. Define f([x]) = F (x). This

is well defined because if x + n is another representative of [x] then F (x + n) =

F (x + (n − 1)) = · · · = F (x) gives the same output. Conversely, given a function

f : R/Z → R define F = f ◦ p. Then F (x + 1) = f([x + 1]) = f([x]) = F (x) is

periodic.

(c) See next part.

(d) Nothing about part (b) relied on the target space being R. So it immediately gen-

eralises. The relationship F = f ◦ p will be useful.

Choose any point x ∈ R or [x] ∈ R/Z. Let ψ be a chart of Y near f([x]) = F (x).

Then

ψ ◦ f ◦ ϕ−1
x = ψ ◦ f ◦ p = ψ ◦ F = ψ ◦ F ◦ id−1

shows that f is smooth if and only if F is smooth.

18. A partition of unity for the interval (0, 4).

We consider the open interval M = (0, 4) as a 1-dimensional manifold. Take an open

cover of M :

U1 := (0, 2) , U2 := (1, 3) , and U3 := (2, 4).

(a) Give an example of three functions f1, f2, f3 ∈ C∞(M) with these properties:

0 ≤ fk ≤ 1, supp(fk) ⊂ Uk, f1 + f2 + f3 = 1.

(The support of a function is defined to be the closure of the points on which it is

non-zero, supp(fk) := {x ∈M | fk(x) ̸= 0 } ⊂M .) These functions form a partition

of unity for M (Definition 1.26).

(b) Theorem 1.27 is even stronger! What additional property does the partition of unity

given by Theorem 1.27 have, which our example does not have?

(c) Is it possible to have a partition of unity of M with this additional property and

which has only finitely many functions (fk)?
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Solution.

(a) Suppose that we could find a smooth function g that was constant 1 on (2−a, 2+a)
for 0 < a < 0.5, constant 0 outside (1 + a, 3 − a) and valued in [0, 1]. Then f1 =

1− g, f2 = g, f3 = 1− g would be an example of the sort we want.

There is a few standard ways to construct such smooth functions, often called bump,

hat, cut-off, or plateau functions by various authors. In “Beweis der Existenz der

Zerlegung der Eins” Martin gives one. Here is another. We begin with the basic

example of a non-analytic function A(x) = exp(−x−1) for x > 0 and A(x) = 0 for

x ≤ 0. The function A(x)A(1 − x) is then smooth and zero outside (0, 1). For

many purposes this function is already useful. Let I(x) =
∫ x

0
A(t)A(1 − t) dt and

B(x) = I(x)/I(1). Then B(x) is a smooth function that is constant 0 for x ≤ 0

and constantly 1 for x ≥ 1. In other words, it is a smooth function that ‘joins’ two

constant functions.

We can take then

g(x) = B

(
x− (1 + a)

(2− a)− (1 + a)

)
+B

(
x− (3− a)

(2 + a)− (3− a)

)
.

https://www.desmos.com/calculator/fdhywa4enf.

(b) The stronger property that the partition in Theorem 1.27 has is that the supports

of the fk are compact, not just closed. For our example, supp(f1) = (0, 2− a) =

(0, 2− a] is closed in M (note, the closure is taken in the manifold M). This is not

compact, because the open cover {(n−1, 2)}n∈N has no finite subcover.

(c) No. By the definition of partition of unity M =
⋃
supp(fk). If there were only

finitely many fk and their supports were compact, then M would be the finite union

of compact sets, thus compact. But M is not compact.

Additional Exercises

19. Diffeomorphism as an equivalence.

In Exercise 13 you gave two incompatible atlases on the topological space R. Therefore

we have two manifolds: the standard one (R,A) and your example (R, Ã). Show these

two manifolds are diffeomorphic.

Why is diffeomorphism an equivalence relation on manifolds?

This leads to the question: on a topological space X how many manifold structures exist

that are mutually non-diffeomorphic? Often these are called ‘exotic’ manifold structures.
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Solution. I will use my example f : R → R defined by

f(x) =

x if x ≤ 0,

2x if x > 0.

The two atlases are A = {id} and Ã = {f}. I claim that f : (R, Ã) → (R,A) is a

diffeomorphism. We know it is a homeomorphism from Exercise 13. But this seems

strange because it doesn’t look like f is differentiable. However we need to interpret this

in the sense of manifolds: f is smooth as a map between manifolds if

id ◦ f ◦ f−1 : R → R

is smooth in the Euclidean sense. This is just the identity function, so it is smooth. The

inverse is also the identity. Hence f is a diffeomorphism between these two manifolds.

Every manifold is diffeomorphic to itself using the identity map. The inverse of a diffeo-

morphism is a diffeomorphism, so the relationship is symmetric. And the composition of

diffeomorphisms is again a diffeomorphism, which gives transitivity.

Up to diffeomorphism, there is only one manifold structure on R. That’s how I could

be confident your example from Exercise 13 would be diffeomorphic to the standard at-

las. The only Euclidean space Rn that has exotic manifold structures is R4. The list for

spheres is

Dimension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Smooth types 1 1 1 ≥1 1 1 28 2 8 6 992 1 3 2 16256 2 16
It is completely known except for n = 4.
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Terminology

glatt = smooth.

Zerlegung der Eins = partition of unity.

Träger = support (symbol is supp).
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