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Ross Ogilvie

Analysis III
1. Exercise: Topology

You do not require a certain number of exercise points to be admitted to the exam. Regardless,

exercises are one of the best way to learn mathematics and improve your understanding, and I

encourage you to do as many of them as possible.

The exercises are divided into three types. “Preparation Exercises” should be attempted your-

self (or with a partner) before the tutorial. Please submit these exercises as a pdf to

r.ogilvie@math.uni-mannheim.de

the day before the tutorial. I will read and provide feedback. Even if you do not have a full

solution, it’s very useful for me to see what you find difficult so I can make sure to cover it

in the tutorial. There are also “In Class Exercises”, which we will try to solve together in the

tutorial. Finally there are “Additional Exercises”. These might be exercises that go beyond

the course or that give a deeper explanation.

Preparation Exercises

1. Continuity in metric spaces.

Exercise 1.7 in the script.

In this question we show that the ε-δ-definition of continuity in metric spaces agrees with

the definition of continuity in topological spaces.

Let (X, d) and (X ′, d′) be two metric spaces, and f : X → X ′ a map between them.

Demonstrate the following are equivalent:

(1) For every open subset O′ of X ′, the pre-image f−1[O′] is open in X.

(2) For every point p ∈ X and every ε > 0, there exists a δ > 0 so that for every point

q ∈ X with d(p, q) < δ it holds that d′(f(p), f(q)) < ε.

2. Homeomorphism.

Let f : X → Y . Define what it means for f to be a homeomorphism (look this up if

necessary). Show that this is equivalent to:

• f is bijective

• f is continuous

• f is an open map: For every open set U ⊂ X, the image f [U ] is open in Y .

Hint. Show for all subsets A ⊂ X that (f−1)−1[A] = f [A].
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3. A Characterisation of connected spaces.

Let X be a metric space. Show that the following properties are equivalent:

(1) X is connected (Definition 1.8).

(2) There does not exists two non-empty open subsets U, V of X with U ∪ V = X and

U ∩ V = ∅.

In Class Exercises

4. Closed and Open subsets of Rn are Hausdorff and Lindelöf.

In the lectures, a manifold was defined as a Hausdorff and Lindelöf topological space

together with an atlas. Here are facts that make it easy to check the topological properties:

(1) Beispiel 1.2(iv): Every subset of a metric space is a metric space.

(2) Every metric space is Hausdorff.

(3) Definition 1.28: A topological space is called locally compact when every point has a

neighbourhood U so that U is compact.

(4) Every open subset and every closed subset of a locally compact space is a locally

compact space.

(5) Theorem 1.29(ii,iii): A locally compact Hausdorff space is Lindelöf if and only if it

can be written as the countable union of compact sets.

(a) Explain why (1) is true.

(b) Why does it follow from these five facts that every closed subset of Rn is Hausdorff

and Lindelöf?

[Hint. Let Kn = B(0, n) and notice Rn = ∪n∈NKn.]

(c) Prove that every open subset of Rn is Hausdorff and Lindelöf.

5. The subspace topology.

Let A ⊂ X be a subset of a topological space (X, τ). Define the subspace topology

τA = {A ∩ U |U ∈ τ}.

(a) Prove this is a topology on A.

(b) Suppose A is an open subset of X. Show that V ∈ τA if and only if V ∈ τ and

V ⊂ A.

(c) Show that B closed set of (A, τA) if and only if it the intersection of a closed set of

X with A.
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(d) Let X = R and A = [0, 1). Give an example of an open set in τA that is not in τ .

(e) Let A = {0} ∪ {n−1 | n ∈ N+} ⊂ R. What are the connected components of A (in

the subspace topology)?

6. The quotient topology.

Let X be a topological space and ∼ an equivalence relation. Recall that [x] := {y ∈
X | y ∼ x} is called the equivalence class of x. Every point of X belongs to exactly

one equivalence class. Define X/ ∼ to be the set of equivalence classes. This is called

the quotient space. There is a surjective function p : x 7→ [x] called the quotient map or

quotient projection. We define a topology on X/ ∼ by

τ∼ = {V ∈ P(X) | p−1[V ] is open in X}.

(a) Prove this is a topology.

(b) Prove that p is continuous.

(c) Show that x ∼ y ⇔ x − y ∈ Z is an equivalence relation on R. We usually call the

quotient space R/Z.

(d) Show that if U is open in R then p[U ] is open in R/Z.

(e) Choose any point [x] ∈ R/Z. Let I = (x − 0.5, x + 0.5) ⊂ R be an interval and

U = p[I]. Prove that p|I : I → U is a homeomorphism.

Additional Exercises

7. (Not) Hausdorff and Lindelöf Manifolds, the type of spaces we study in this course,

are defined to be both Hausdorff and Lindelöf. In this question we give two examples:

The ’line with two origins’ is not Hausdorff and the ’long ray’ is not Lindelöf. This is

extra material to help you understand these properties.

(a) Let D = R ∪ {0′}. A set U is open in D if U is a subset of R and is open in R,
or if U contains the new point 0′ and U ∪ {0} \ {0′} is open in R. Show that the

sequence (n−1)n∈N+ has both 0 and 0′ as limit points (the definition of convergence

in a topological space is after Definition 1.6). The space D is called the ’line with

two origins’.

(b) Consider the topological space R := N × [0, 1) with the ordering (m,x) < (n, y) if

m < n, or m = n and x < y. Give a function f : R → [0,∞) that preserves the

order relation.
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(c) There exists a set Ω, called the first uncountable ordinal, with the following proper-

ties:

(1) it is uncountable

(2) it is well-ordered. A set is well-ordered when there is an order relation < in

which every non-empty subset has a minimum, a smallest element. R with the

normal order is not well-ordered, for example (0, 1) does not contain a minimum.

N with the usual order is well-ordered.

(3) for every a ∈ Ω, the subset H(a) := {b ∈ Ω | b < a} is countable.

Let R′ := Ω × [0, 1) with the ordering (a, x) < (b, y) if a < b, or a = b and x ≤ y.

Let 0Ω be the minimum of Ω so that O = (0Ω, 0) is the minimum of R′. An open

interval in R′ has the form I(α, β) := {ϕ ∈ R′ | α < ϕ < β} for α, β ∈ R′ or

J(β) = {O} ∪ I(O, β) = {ϕ ∈ R′ | ϕ < β}. Find an uncountable collection of open

intervals such that no intervals intersect. Why is R′ not Lindelöf?

R′ is called the ’long ray’ (R is called a ray, or half-line).

If you are interested in these strange topological spaces, the famous reference is Steen

and Seebach’s Counterexamples in Topology. An online reference is the database website

π-Base https://topology.jdabbs.com/.

Terminology

Bild = image.

Urbild = pre-image.

Homöomorphismus = homeomorphism.

Umgebung = neighbourhood.

unabzählbar = uncountable.

zusammenhängend = connected.

4

https://topology.jdabbs.com/

