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How to use this Revision Tutorial

> What is examinable is the script with a focus on proofs.
» This is a study aid, not a study substitute.

» Each section tries to highlight a common theme.

> Not comprehensive, not strictly ordered.

> References eg S1.1, Ex1.
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Basic Notions
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What is a PDE?
(A)\Ms( SDr\r & Q\A/\C\.\’\MS are Nourd
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» What is a PDE? \
» Three main questions: Regularity, existence, and uniqueness
> S2.3,525
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Classifying PDEs
» Order. //ﬂ/w \"'nglé\ Seriochoe WMol occurs.

P Linearity and Homogeneity. i
@k 'QAU>O L@‘*’(\OV) =ca Lo +blv L((\A4V):Lu+Lv

L LU\"O \/\QMOB,U\WMS LV:,€ inhou,
» Elliptic, Parabolic, Hyperbolic Ex15, Ex24
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Domains and boundary conditions - 52.6

» Typical Domains open ) Semenmes Lou-ded \OOV\&C(‘"‘ o
Oen \aole o\s Yleir) | AT
Q-+ = Qx (/T
3Stc= |\ = 9% (o) © Sxfeh

» Dirichlet, Neumann, and Cauchy Problems.

» Well-posedness (Ex31). i oouder
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Chain Rule - Ex2, Ex20
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Submanifold and Integrals - S2.1

» If & : U C RF — O (Definition 2.1) the integral on O is defined
(Definition 2.3) to be

/fdo:/ fod y/det(()Td)dp.
(0] U

» Eg0O={x®>+y?>=1,y >0} and f = x. Exl1
» Partition of Unity (Definition 2.3).
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Divergence Theorem 2.5

> Let Q C R” be bounded and open with 02 being a
(n — 1)-dimensional submanifold of R” with outward point normal N.
Let F: Q — R" be continuous and differentiable on Q such that VF
continuously extends to Q2. Then we have

/V-qu—/ F-N do.
Q o0
- Exl1(e), 12

P Integration by Parts SA}?‘)D&Q F & 2eo odside E—R,Rln

e ﬁ%\“‘“ VF =7 X = V)
SSLfa:(Qa) - SQSLPN so = O

3)\_@7&)3 = -SSL (@) .

9/36



Mean Value Properties and Maximum Principles

Mean Value Properties and Maximum Principles
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Properties of means - Ex19, Ex22, Ex23a

» Means, or weighted averages, are w 70

_ -
M(u,x,r) = (C) 7 [ 4 u)w(y — ).
> x+ A, is a set ‘centred’ at x with ‘radius’ r and C;, = [, Iw(x) is the
normalisation.
» Spherical mean (Laplace Equation, Wave equation): set is a sphere
0B(x,r), weight is 1, C, = nw,r" 1.
> Heat mean: set is a heat ball E(x, t, r), weight w(x, t) = [x|?/t2.

» The average of a constant is the constant M(c, x,r) = c.
. -\ x - C,
- — € = =
MO, % )=(&) Sx»(AT\ b &y =) SArw Rl
» For continuous functions lim, o+ M(u,x,r) = u(x). p.— o
70 340 Vige Gl $) L)1 ¢ U < e v
M6 -7, %, 0) ¢ MLE ) ¢ M)+, r> pcals)

co/\c\msﬁ NS
(-2 < "\LQ %) ¢ () ve
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Mean Value Properties and Maximum Principles

Mean value property - S3.2, S4.3, S5.2 ,%W
> What is 9,M?  9cM=0
» Proof of Mean Value Property 3.3: 1< - Auw=0 .

LITCTY 'e>rLU‘b("p(7> do(@®
¥+ (3
R I L O Ysp TN do®

8rnw,,f_§!9)]_) rZ) dO'( )_;\_ S

N ¢
\
- 7 e (NVu) = A S =
NWa g%(”/ov ( LD nea Do O .
» Harmonic functions are equal to their spherical means (of any radius).

Ditto heat functions. (,{b()= MLLJ\/)(,F) MO ,’3@@,r‘)9§L .

» Spherical means of Wave Equation obey Euler-Poisson-Darboux
equation (Lemma 5.2).
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Maximum principles - S3.3, S4.4

» For elliptic and parabolic, non-degenerate critical points cannot be

extrema. Ex24
. . . Leguce
» Local Maximum Principle: If u has a maximum at x, then it is

constant on B(x, r) C €. then is is constant on E(x,t,r) C Qr. Nad-
Near x & v(4g)=«wb)-uly) vo0
0=V = My, <) = 5— S‘@W)v L‘g)&a = V()= 0 (5 ub)=y)

» Strong Maximum Principle 3.10: If u has a maximum on an open,
path-connected set 2 or Q, then it is constant. QT

» Weak Maximum Principle 3.11: On a bounded domain, the maximum
is taken on the boundary.

» Weak Maximum Principle gives uniqueness for Dirichlet problem.

Au=0 Ve U 5 Av=0 AEv)=0
a0 w=g oSt v=T9Te oIt o oS
L Max V=0 . o V) =0
W zta < _ v =0
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Mean Value Properties and Maximum Principles

Subharmonic and Inequality of Solutions - Thm 3.13,
Ex25, Ex26, Ex35

» In proof of Mean Value Property, we used Au = 0. For subsolutions
we get that u is less than its mean and maximum principle.

» Instead of uniqueness of Dirichlet problem, get inequality of solutions.
luco

Sdarren  —DAweo orM70 = L\bﬂfM(Uk/“t")
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Energy Methods

Energy Methods

15/36



Energy Methods

Dirichlet’s principle for harmonic - S3.5

» Alternative method to prove uniqueness.

>

| 2

Functlonal lrg: {w EC(Q/\ wlpq = g} — R given by
Irg(w) = [ 05]|Vwl|? — wf. — AW =
M|n|m|ser is a solution to Laplace equation Thm 3.25.

Difference of two harmonic functions minimises ly o, implies

uniqueness.

There's a short calculation for the heat equation at end S4.4 with
= [ |ul?dx, f = g =0, Q does not need to be bounded. It

shows 0;e < 0.

Ve U= u Av=0-{ Too s O as & b

. \/;0/,30'\\00"”&5/“] -
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Energy of a Wave - S5.8

» Theorem 5.7: Inhomogeneous wave equation with initial and
boundary cc‘)Lndltlons %R‘fnded domain. Then solution is unique.

> E(t) =3 [ 8tu - ||Vu||2 dx. E is constant over time.

» The only squt|on with zero on the boundary is zero.

= ﬁfg&@)&u@zu) +2 22_@;(*)(9{9:“)
7§1§&@{:“)Z 9?()\ 4+ 27 @70&)@{’9]&“)
= éggkaékl'o z%}'u - Q_Z @?“)Q&‘A)_' ©

s
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Methods of Solution

Methods of Solution

18/36



Methods of Solution

Fundamental Solutions - S3.1, S4.1 <

» Laplace Eqn: The Laplacian has many symmetries (Ex20) so we seek
radially symmetric solutions.

» Due to Ex13, integral on every ball enclosing x = 0 the same. Choose
constants to make this 1 and vanishing at infinity:

1 —
u(x) = — 35, In[x] ) for n =2,
m’X‘ (n—2) for n > 2.

» Heat Eqn: Characteristics of the form t~!|x|2. Choose constants so it
vanishes at infinity and [, ® dx =1 (Lemma 4.2). Extend to t <0
by zero.

X2
O, t) = (4m1)n/2 exp—% for t > 0,
0 for t <0,(x,t) # (0,0).

19/36



Solving Inhomogeneous Equations - S3.1, S4.2

» As distributions, fundamental solutions obeym Theorem 3.2
and Theorem 4.4, Ex34. -

> Gives a solution of inhomogeneous problem on R". 9@13) = -..D

L(%) ~(1g) L= gaf= €

A L'Jk——,(, ) -’A\L:)C
Qe-nyu=(
» Proof typically splits integral into part near singularity and part away,
eg I, J. and u.. \ualipouce -

X
- A“vg‘(//e\aﬁﬂb c\ﬂf%@ Eodyu =L
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Green's Functions and Heat Kernel - S3.4, S4.5

>
>

| 4
>

Generalisation of Fundamental Solution to other domains 2 C R”".
Defn 3.18: Green's function Gq : {(x,y) € Q@ x Q| x#y} =R
obeys for all x € Q:

i. y— Go(x,y)— ®(x —y) is harmonic.

ii. ¥y = Ga(x,y) extends to the boundary continuously and is zero.
Defn 4.14: Heat Kernel Hg : {(x,y) €Q2x Q| x# y} xRt - R
obeys for all (x,t) € Q x R™:

i. y— Ha(x,y,t) — ®(x —y, t) solves the heat equation with initial

condition zero.

ii. ¥y = Ga(x,y) extends to the boundary continuously and is zero.

Not all domains have a Green's function. Ex31. { Lo,\)\ ZLOTS

Green's functions are symmetric Thm 3.19 and for bounded domains
unique.

/5\: C\\’CAL = Q\‘@(x—v\) — LCI-@-(x—O)) . Werde Q\,_.J\'(_,,\L\/\;b
T gadn o eI, %o
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Representation Formula - 53.4, S4.5 Ex29, Ex39

> Green's Representation Theorem 3.16: For an open and bounded
domain Q to which the divergence theorem applies and u € C?(Q):

Pl ¥
J '

u(x)=— . Ga(x,y)Lyt(y) d” uUz)V,Ga(x,z) - N do(z).
» Theorem 4.16 Q D
\1
u(x, t) / / (v,s) — Au(y,s))Ha(x,y,t —s) d"y ds
L)

/ /89 2,5)VzHa(x, 2, t = s) - N(z) do(z) ds

+ [ sy 0)Halx.y. ) oy,
W)

> Proves existence of Dirichlet problems constructively.
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. . — N
Heat equation in S* - S4.7, Ex40 ﬁﬂr;.mkﬁ: sdoer s(k&\,:;t

P This section gives us an alternate method to construct heat kernels.
All functions can be written as the sum (or integral) of eigenfunctions
of the Laplacian.

> If the initial condition is an eigenfunction fi of —A with eigenvalue
Ak a solution is e *f,(x). Ex32 separable solutions.

» Writing h(x) = | B(k@x) dk gives the solution

u(x, t) = / h(k)e Mt (x) d.

» If have a periodic initial condition, only periodic eigenfunctions are
needed, we get the heat kernel on S! \

u(x, t) =Y h(k)e ¥ fi(x) = / [Z e 2k e=MtE (x) | h(y) dy

keZ keZ

» To handle [0,1]: again use eigenfunctions, or reflect S*.
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Methods of Solution

Transport Equation and D'Alembert’s Formula

JSI1,S1.2, S5.1, Ex 41 rugu 7 Ak 3Tk
Sk L B £ *'(S*"D&- A

» The Transport equation: (9; + b - V)u =0. 9!/ N fgégjc_ggx Hde
» Solved by g(x — gt) Ecgr initial condition u(x,0) = (x) = 2 (2 +bdx)
9{ (f)b"bt)) = VB . _l’f__——l = Va - L"°> N ras W=
Vé (x-09)) = Va ’)U—\D’Q =Ny ~LVD)(><-rot)
» 1D Wave Equatlon factors into two transport equatlons
R—R=0—0)0+00N=0  (H#IWVZO
» D’'Alembert’'s Formula: @{’”%‘)U‘:V
u(x,t) = 3le(x +t) + glx — )] + 5 ;7 h(y
» Duhamel’s principle: turn an inhomogeneous problem into an initial
value one.
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Methods of Solution

Method of Characteristics - S1.5 Ex8-10

» A generalisation of the transport equation for non-constant
coefficients.

» You choose a path along which the values of the function can be
described by an ODE system, parametrised by the initial point.

> Example: xDyu +Rypyu =u
(@ 2 ()= u(x6), 3

&R

C)&&S ——-" _@_.‘3—:13 )(\lu'\ %‘\—g:y)xu_\vls)vu

§1§U’\ GQODQ

X = ux (), 3C°D
k ‘ 93> = ‘agz’ = by
3 —E 2o -
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Wave Equation and Method of Descent - 5$5.3-5.6 Ex44

>
4

1D Wave Equation on R can be solved by D’Alembert’s formula.

1D Wave Equation on R™ transformed to 1D Wave Equation on R by
reflection principle.

The spherical means of solutions to the wave equation obey the
Euler-Poisson-Darboux equation.

In odd dimensions, there is a transformation that reduces the EPD
equation to the 1D Wave Equation on R,

Any solution to the wave equation extends to a solution in higher
dimensions, if you let it be constant in the extra directions: u — 0.

In even dimensions, extend the solution to one dimension higher, then
solve.

All these transformations change the PDE, but also the
boundary/initial conditions.
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Behaviour of Solutions

Behaviour of Solutions

27/36



Behaviour of Solutions

Regularity of Harmonic Functions

» Harmonic functions are by definition u € C?(Q) with Au = 0.
» A harmonic distribution is a distribution U : D'(Q2) with AU =0 in
the sense of distributions. VSl D (,(LN{’):O

» Weak Mean Value Property 3.6, Ex 27: For all balls B(x.r) C Q and
all test functions ¢ : (0, r) — R with total mass zerg [t = 0,|the

distribution is zero for the test function ‘ m\ g
%)

fusly) = s o

» All harmonic distributions have the weak mean value property
(Lemma 3.6).

> Weyl's Lemma 3.7: All harmonic distributions come from a smooth
harmonic function.
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Behaviour of Solutions

Other Theorems for Harmonic Functions

» Analytic Cor3.22: All harmonic functions are analytic. Proof follows
from representation formula.

» Liouville's theorem 3.5 Ex23: The only harmonic functions on R” that
are bounded are the constant functions.

» Removable Singularity Lemma 3.24: If a harmonic function on
Q\ {x} is bounded, it extends to a harmonic function on Q.

» Unique Continuation Ex30: There is at most one harmonic extension
of a harmonic function to a larger domain.

iy
No/\ CAQL‘I\’\Z z[e ¥ x»0 C\&/K'/O —r(za',ok()).¥0xl+<...

o 1o .

Consider lls) = %?%t \ELEY no conbions Ddeminto Qo)
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Solutions of the Heat Equation

» Cor 4.26: Any solution of heat equation is smooth in t, analytic in x.

> Ex 36: For open and bounded domains with boundary conditions that
are constant in time. If there is a steady state solution, then all other
continuous initial conditions tend to the steady state solution as
t — o0.

» Theorem 4.11: For the heat equation on R" with continuous bounded
initial condition, there is at most one solution with u(x, t) < Ae?*I".

I [l w Wk ol 0 on AR
A U—>0 Na,au/n(%;&cao Codl.

—
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Distributions and Weak Solutions

Distributions and Weak Solutions
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. . . - - - ‘l((.)
Definition of Distributions - S2.4, Exl?—i—%;%%—‘

| 2

| 2

>

Support: supp f = closure {x | f(x) = 0}. The support of a function
is compact < it is bounded.

Test functions D(Q): the set C§°(£2, R) of smooth functions with
compact support in Q with a certain topology (a non-norm topology).

The topology comes from the semi-norms ||¢|| k.o = sup,cx [0“¢|.

Distribution are linear and continuous functions F € D'(Q).
Continuity means: for all compact K C 2, there exist multiindices «;
and constants C; such that for all test functions with supp ¢ C K:

IF(B) <D Cilldllia

For any f € L} (Q) there is a distribution Fr € D'(Q) given by

loc

Fr(o) = fQ f¢. This association is injective Lemma 2.9.
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Distributions and Weak Solutions

Operations on Distributions

» Distributions are a vector space over R:
(aF + bG)(¢) = aF(¢) + bG(9).
» Differentiation: J;F is the distribution defined by ¢ — —F(0;¢).

Fal4) - gSr)«# = =109 = -7 (o9 / AUENCORT

» Multiplication with a smooth function g: (gF)(¢) = F(g¢).

» Convolution with test function g: (g * F)(¢) = F(¢ * Pg) where
Pg(x) = g(—x). ﬁﬁ@) == R ($eR)

> xF=F.

» Lemma 2.7: The convolution of a distribution corresponds to a
smooth function. Pﬂ«/] Ad e st a“"‘: =5

» Lemma 2.8: for f € C(2) we can undo the correspondence with
Fe(Xye) = f(x )ase—>0.

>\x >‘Y,£:( :
S”I:w\”c% ) )
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Distributions and Weak Solutions

Weak solutions
| ect

» If a function solves a 'PDE, its distribution also solves the PDE (in the
sense of distributions).

P Are there other solutions if we look among distributions? This is the
most general setting for the PDE.

» Allows you to consider discontinuous boundary conditions.

» You might find that the only distributions that solve the PDE
correspond to functions.

o CDJC"'QX) =0
(@e WEN®) = (Br-2r) (@) = ferle) -9 Ll
= - (29 + F (2P = SSL- WP« u D

= S(@raw\ '@xu)}‘?: Boce:o .
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Weak solutions to Transport and 1D wave - Ex18, Ex2.10,
Ex42

» \We have seen that solutions are F(x — bt) and@ G(x+1t)
respectively when F and G are sufficiently differentiable.

» For all L1 function the corresponding distributions are solutions.

S\&ow _(D»(X ‘Q So\uen {J‘WQU.—Q,- g0 o L sease 4&3\4‘
F)= § 0 L0408t
(@300) ()= P2t 2,9) = g £L0 (3ct-0n8) ot

LY =x—+t v=xxt Axo\Jc:\ \( —\l \': 2 dudv
Qb= %li ?aﬁ Qv ’%qé = .4 +ovd
xd‘ A9 -"?\/¢

- e 0 [aca -2t At -4 QdwdV (9, +3)F =0
=5 0(o— v Av) e = SLyodw=o



Weak solutions to first order systems - S1.4, Ex5-7

» Section 1.4 we look for solutions to scalar conversation PDEs
(Section 1.3): Oru+ f'(u) Oxu =0 for f : R — R. Particularly
Burger's equation f(u) = u?.

> These PDEs are not linear, so distribution methods don’t apply nicely.

» By method of characteristics, for some initial conditions no C?
solution possible.

» Instead we look for solutions that are C!(R?) except for certain
curves in the domain. We require that desirable Properties hold
‘under the integral sign’.

» Theorem 1.11: f € C? strictly convex, initial condition is bounded
and L1, then there is a unique solution of the scalar conservation PDE
obeying Rakine-Hugonoit and Lax entropy conditions.

36/36



