
Introduction to Partial Differential Equations
Revision Tutorial

Martin Schmidt – Ross Ogilvie

Universität Mannheim

HSS 2021

1 / 36



How to use this Revision Tutorial

I What is examinable is the script with a focus on proofs.

I This is a study aid, not a study substitute.

I Each section tries to highlight a common theme.

I Not comprehensive, not strictly ordered.

I References eg S1.1, Ex1.
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Basic Notions

What is a PDE?

I What is a PDE?

I Three main questions: Regularity, existence, and uniqueness

I S2.3, S2.5

4 / 36



Basic Notions

Classifying PDEs

I Order.

I Linearity and Homogeneity.

I Elliptic, Parabolic, Hyperbolic Ex15, Ex24

I Exemplars S2.2.
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Basic Notions

Domains and boundary conditions - S2.6

I Typical Domains

I Dirichlet, Neumann, and Cauchy Problems.

I Well-posedness (Ex31).
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Basic Notions

Chain Rule - Ex2, Ex20

1. ∂
∂θ

(
u(r cos θ, r sin θ)

)
2. ∂2

∂t2

(
F (x − t2)

)
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Basic Notions

Submanifold and Integrals - S2.1

I If Φ : U ⊂ Rk → O (Definition 2.1) the integral on O is defined
(Definition 2.3) to be∫

O
f dσ =

∫
U
f ◦ Φ

√
det((Φ′)TΦ′)dµ.

I Eg O = {x2 + y2 = 1, y > 0} and f = x . Ex11

I Partition of Unity (Definition 2.3).
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Basic Notions

Divergence Theorem 2.5

I Let Ω ⊆ Rn be bounded and open with ∂Ω being a
(n − 1)-dimensional submanifold of Rn with outward point normal N.
Let F : Ω̄→ Rn be continuous and differentiable on Ω such that ∇F
continuously extends to ∂Ω. Then we have∫

Ω
∇ · F dµ =

∫
∂Ω

F · N dσ.

- Ex11(e), 12

I Integration by Parts

9 / 36



Mean Value Properties and Maximum Principles

Basic Notions

Mean Value Properties and Maximum Principles

Energy Methods

Methods of Solution

Behaviour of Solutions

Distributions and Weak Solutions

10 / 36



Mean Value Properties and Maximum Principles

Properties of means - Ex19, Ex22, Ex23a

I Means, or weighted averages, are
M(u, x , r) = (Cr )−1

∫
x+Ar

u(y)w(y − x).

I x + Ar is a set ‘centred’ at x with ‘radius’ r and Cr =
∫
Ar

w(x) is the
normalisation.

I Spherical mean (Laplace Equation, Wave equation): set is a sphere
∂B(x , r), weight is 1, Cr = nωnr

n−1.

I Heat mean: set is a heat ball E (x , t, r), weight w(x , t) = |x |2/t2.

I The average of a constant is the constant M(c , x , r) = c .

I For continuous functions limr→0+ M(u, x , r) = u(x).
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Mean Value Properties and Maximum Principles

Mean value property - S3.2, S4.3, S5.2

I What is ∂rM?

I Proof of Mean Value Property 3.3:
∂
∂r

1
nωn

∫
∂B(0,1) u(x + rz) dσ(z)

I Harmonic functions are equal to their spherical means (of any radius).
Ditto heat functions.

I Spherical means of Wave Equation obey Euler-Poisson-Darboux
equation (Lemma 5.2).
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Mean Value Properties and Maximum Principles

Maximum principles - S3.3, S4.4

I For elliptic and parabolic, non-degenerate critical points cannot be
extrema. Ex24

I Local Maximum Principle: If u has a maximum at x , then it is
constant on B(x , r) ⊂ Ω. then is is constant on E (x , t, r) ⊂ ΩT .

I Strong Maximum Principle 3.10: If u has a maximum on an open,
path-connected set Ω or ΩT , then it is constant.

I Weak Maximum Principle 3.11: On a bounded domain, the maximum
is taken on the boundary.

I Weak Maximum Principle gives uniqueness for Dirichlet problem.
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Mean Value Properties and Maximum Principles

Subharmonic and Inequality of Solutions - Thm 3.13,
Ex25, Ex26, Ex35

I In proof of Mean Value Property, we used ∆u = 0. For subsolutions
we get that u is less than its mean and maximum principle.

I Instead of uniqueness of Dirichlet problem, get inequality of solutions.
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Energy Methods

Dirichlet’s principle for harmonic - S3.5

I Alternative method to prove uniqueness.

I Functional If ,g : {w ∈ Ω | w |∂Ω = g} → R given by
If ,g (w) =

∫
Ω 0.5‖∇w‖2 − wf .

I Minimiser is a solution to Laplace equation Thm 3.25.

I Difference of two harmonic functions minimises I0,0, implies
uniqueness.

I There’s a short calculation for the heat equation at end S4.4 with
e(t) =

∫
Ω |u|

2dx , f = g = 0, Ω does not need to be bounded. It
shows ∂te ≤ 0.
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Energy Methods

Energy of a Wave - S5.8

I Theorem 5.7: Inhomogeneous wave equation with initial and
boundary conditions, Ω bounded domain. Then solution is unique.

I E (t) = 1
2

∫
Ω(∂tu)2 + ‖∇u‖2 dx . E is constant over time.

I The only solution with zero on the boundary is zero.
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Methods of Solution

Fundamental Solutions - S3.1, S4.1

I Laplace Eqn: The Laplacian has many symmetries (Ex20) so we seek
radially symmetric solutions.

I Due to Ex13, integral on every ball enclosing x = 0 the same. Choose
constants to make this 1 and vanishing at infinity:

ΦL(x) =

{
− 1

2ω2
ln |x | for n = 2,

1
n(n−2)ωn

|x |−(n−2) for n > 2.

I Heat Eqn: Characteristics of the form t−1|x |2. Choose constants so it
vanishes at infinity and

∫
Rn Φ dx = 1 (Lemma 4.2). Extend to t ≤ 0

by zero.

ΦH(x , t) =

{
1

(4πt)n/2 exp− |x |
2

4t for t > 0,

0 for t ≤ 0, (x , t) 6= (0, 0).
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Methods of Solution

Solving Inhomogeneous Equations - S3.1, S4.2

I As distributions, fundamental solutions obey LΦ = δ. Theorem 3.2
and Theorem 4.4, Ex34.

I Gives a solution of inhomogeneous problem on Rn.

I Proof typically splits integral into part near singularity and part away,
eg Iε, Jε and uε.
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Methods of Solution

Green’s Functions and Heat Kernel - S3.4, S4.5

I Generalisation of Fundamental Solution to other domains Ω ⊂ Rn.
I Defn 3.18: Green’s function GΩ : {(x , y) ∈ Ω× Ω | x 6= y} → R

obeys for all x ∈ Ω:

i. y 7→ GΩ(x , y)− Φ(x − y) is harmonic.
ii. y 7→ GΩ(x , y) extends to the boundary continuously and is zero.

I Defn 4.14: Heat Kernel HΩ : {(x , y) ∈ Ω× Ω | x 6= y} × R+ → R
obeys for all (x , t) ∈ Ω× R+:

i. y 7→ HΩ(x , y , t)− Φ(x − y , t) solves the heat equation with initial
condition zero.

ii. y 7→ GΩ(x , y) extends to the boundary continuously and is zero.

I Not all domains have a Green’s function. Ex31.

I Green’s functions are symmetric Thm 3.19 and for bounded domains
unique.
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Methods of Solution

Representation Formula - S3.4, S4.5 Ex29, Ex39

I Green’s Representation Theorem 3.16: For an open and bounded
domain Ω to which the divergence theorem applies and u ∈ C 2(Ω):

u(x) = −
∫

Ω
GΩ(x , y)4yu(y) dny −

∫
∂Ω

u(z)∇zGΩ(x , z) · N dσ(z).

I Theorem 4.16

u(x , t) =

∫ t

0

∫
Ω

(u̇(y , s)−4u(y , s))HΩ(x , y , t − s) dny ds

−
∫ t

0

∫
∂Ω

u(z , s)∇zHΩ(x , z , t − s) · N(z) dσ(z) ds

+

∫
Ω
u(y , 0)HΩ(x , y , t) dn y .

I Proves existence of Dirichlet problems constructively.
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Methods of Solution

Heat equation in S1 - S4.7, Ex40

I This section gives us an alternate method to construct heat kernels.
All functions can be written as the sum (or integral) of eigenfunctions
of the Laplacian.

I If the initial condition is an eigenfunction fk of −∆ with eigenvalue
λk a solution is e−λk t fk(x). Ex32 separable solutions.

I Writing h(x) =
∫
ĥ(k)fk(x) dk gives the solution

u(x , t) =

∫
ĥ(k)e−λk t fk(x) dk.

I If have a periodic initial condition, only periodic eigenfunctions are
needed, we get the heat kernel on S1

u(x , t) =
∑
k∈Z

ĥ(k)e−λk t fk(x) =

∫ [∑
k∈Z

e−2πikye−λk t fk(x)

]
h(y) dy

I To handle [0, 1]: again use eigenfunctions, or reflect S1.
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Methods of Solution

Transport Equation and D’Alembert’s Formula
- S1.1, S1.2, S5.1, Ex 41

I The Transport equation: (∂t + b · ∇)u = 0.

I Solved by g(x − bt) for initial condition u(x , 0) = g(x).

I 1D Wave Equation factors into two transport equations
∂2
t − ∂2

x = (∂t − ∂x)(∂t + ∂x).

I D’Alembert’s Formula:
u(x , t) = 1

2 [g(x + t) + g(x − t)] + 1
2

∫ x+t
x−t h(y) dy .

I Duhamel’s principle: turn an inhomogeneous problem into an initial
value one.
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Methods of Solution

Method of Characteristics - S1.5 Ex8-10

I A generalisation of the transport equation for non-constant
coefficients.

I You choose a path along which the values of the function can be
described by an ODE system, parametrised by the initial point.

I Example: x∂xu + 2y∂yu = u
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Methods of Solution

Wave Equation and Method of Descent - S5.3-5.6 Ex44

I 1D Wave Equation on R can be solved by D’Alembert’s formula.

I 1D Wave Equation on R+ transformed to 1D Wave Equation on R by
reflection principle.

I The spherical means of solutions to the wave equation obey the
Euler-Poisson-Darboux equation.

I In odd dimensions, there is a transformation that reduces the EPD
equation to the 1D Wave Equation on R+.

I Any solution to the wave equation extends to a solution in higher
dimensions, if you let it be constant in the extra directions: u 7→ ū.

I In even dimensions, extend the solution to one dimension higher, then
solve.

I All these transformations change the PDE, but also the
boundary/initial conditions.
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Behaviour of Solutions

Regularity of Harmonic Functions

I Harmonic functions are by definition u ∈ C 2(Ω) with ∆u = 0.

I A harmonic distribution is a distribution U : D′(Ω) with ∆U = 0 in
the sense of distributions.

I Weak Mean Value Property 3.6, Ex 27: For all balls B(x , r) ⊂ Ω and
all test functions ψ : (0, r)→ R with total mass zero

∫
ψ = 0, the

distribution is zero for the test function

fx ,ψ(y) =
ψ(|y − x |)

nωn|y − x |n−1
.

I All harmonic distributions have the weak mean value property
(Lemma 3.6).

I Weyl’s Lemma 3.7: All harmonic distributions come from a smooth
harmonic function.
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Behaviour of Solutions

Other Theorems for Harmonic Functions

I Analytic Cor3.22: All harmonic functions are analytic. Proof follows
from representation formula.

I Liouville’s theorem 3.5 Ex23: The only harmonic functions on Rn that
are bounded are the constant functions.

I Removable Singularity Lemma 3.24: If a harmonic function on
Ω \ {x} is bounded, it extends to a harmonic function on Ω.

I Unique Continuation Ex30: There is at most one harmonic extension
of a harmonic function to a larger domain.
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Behaviour of Solutions

Solutions of the Heat Equation

I Cor 4.26: Any solution of heat equation is smooth in t, analytic in x.

I Ex 36: For open and bounded domains with boundary conditions that
are constant in time. If there is a steady state solution, then all other
continuous initial conditions tend to the steady state solution as
t →∞.

I Theorem 4.11: For the heat equation on Rn with continuous bounded
initial condition, there is at most one solution with u(x , t) ≤ Aea|x |

2
.
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Distributions and Weak Solutions

Definition of Distributions - S2.4, Ex17

I Support: supp f = closure {x | f (x) = 0}. The support of a function
is compact ⇔ it is bounded.

I Test functions D(Ω): the set C∞0 (Ω,R) of smooth functions with
compact support in Ω with a certain topology (a non-norm topology).

I The topology comes from the semi-norms ‖φ‖K ,α = supx∈K |∂αφ|.
I Distribution are linear and continuous functions F ∈ D′(Ω).

Continuity means: for all compact K ⊂ Ω, there exist multiindices αi

and constants Ci such that for all test functions with suppφ ⊆ K :

|F (φ)| ≤
∑

Ci‖φ‖K ,αi
.

I For any f ∈ L1
loc(Ω) there is a distribution Ff ∈ D′(Ω) given by

Ff (φ) =
∫

Ω f φ. This association is injective Lemma 2.9.
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Distributions and Weak Solutions

Operations on Distributions

I Distributions are a vector space over R:
(aF + bG )(φ) = aF (φ) + bG (φ).

I Differentiation: ∂iF is the distribution defined by φ 7→ −F (∂iφ).

I Multiplication with a smooth function g : (gF )(φ) = F (gφ).

I Convolution with test function g : (g ∗ F )(φ) = F (φ ∗ Pg) where
Pg(x) = g(−x).

I δ ∗ F = F .

I Lemma 2.7: The convolution of a distribution corresponds to a
smooth function.

I Lemma 2.8: for f ∈ C (Ω) we can undo the correspondence with
Ff (λx ,ε)→ f (x) as ε→ 0.
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Distributions and Weak Solutions

Weak solutions

I If a function solves a PDE, its distribution also solves the PDE (in the
sense of distributions).

I Are there other solutions if we look among distributions? This is the
most general setting for the PDE.

I Allows you to consider discontinuous boundary conditions.

I You might find that the only distributions that solve the PDE
correspond to functions.
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Distributions and Weak Solutions

Weak solutions to Transport and 1D wave - Ex18, Ex2.10,
Ex42

I We have seen that solutions are F (x − bt) and F (x − t) + G (x + t)
respectively when F and G are sufficiently differentiable.

I For all L1
loc function the corresponding distributions are solutions.
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Distributions and Weak Solutions

Weak solutions to first order systems - S1.4, Ex5-7

I Section 1.4 we look for solutions to scalar conversation PDEs
(Section 1.3): ∂tu + f ′(u) ∂xu = 0 for f : R→ R. Particularly
Burger’s equation f (u) = 1

2u
2.

I These PDEs are not linear, so distribution methods don’t apply nicely.

I By method of characteristics, for some initial conditions no C 1

solution possible.

I Instead we look for solutions that are C 1(R2) except for certain
curves in the domain. We require that desirable Properties hold
‘under the integral sign’.

I Theorem 1.11: f ∈ C 2 strictly convex, initial condition is bounded
and L1, then there is a unique solution of the scalar conservation PDE
obeying Rakine-Hugonoit and Lax entropy conditions.
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