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How to use this Revision Tutorial

> What is examinable is the script with a focus on proofs.
» This is a study aid, not a study substitute.

» Each section tries to highlight a common theme.

> Not comprehensive, not strictly ordered.

> References eg S1.1, Ex1.
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Basic Notions
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What is a PDE?

» What is a PDE?
» Three main questions: Regularity, existence, and uniqueness
> S2.3,525
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Classifying PDEs

» Order.
P Linearity and Homogeneity.

» Elliptic, Parabolic, Hyperbolic Ex15, Ex24

» Exemplars S2.2.

5/36



Domains and boundary conditions - 52.6

» Typical Domains

» Dirichlet, Neumann, and Cauchy Problems.
» Well-posedness (Ex31).
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Chain Rule - Ex2, Ex20

1. % (u(r cosf, rsin 9))

2. o (Flx— %)
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Submanifold and Integrals - S2.1

> If & : U C RF — O (Definition 2.1) the integral on O is defined
(Definition 2.3) to be

/fdo:/ fod y/det(()Td)dp.
(0] U

» Eg0O={x®>+y?>=1,y >0} and f = x. Exl1
» Partition of Unity (Definition 2.3).
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Divergence Theorem 2.5

> Let Q C R” be bounded and open with 02 being a
(n — 1)-dimensional submanifold of R” with outward point normal N.
Let F: Q — R" be continuous and differentiable on Q such that VF
continuously extends to 9. Then we have

/v-qu—/ F-N do.
Q oQ

- Ex11(e), 12
» Integration by Parts
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Mean Value Properties and Maximum Principles

Mean Value Properties and Maximum Principles
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Properties of means - Ex19, Ex22, Ex23a

> Means, or weighted averages, are
M(u,x,r) = (C)7F [ 4 u(y)w(y — x).

> x+ A, is a set ‘centred’ at x with ‘radius’ r and G, = [, w(x) is the
normalisation.

» Spherical mean (Laplace Equation, Wave equation): set is a sphere
0B(x,r), weight is 1, C, = nw,r" 1.
» Heat mean: set is a heat ball E(x, t, r), weight w(x, t) = |x|?/t>.

» The average of a constant is the constant M(c, x,r) = c.

» For continuous functions lim, o+ M(u, x, r) = u(x).
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Mean value property - S3.2, S4.3, S5.2

» What is 0,M?
> Proof of Mean Value Property 3.3:
o o Jo(o.1) ulx + r2) do(2)

» Harmonic functions are equal to their spherical means (of any radius).
Ditto heat functions.

» Spherical means of Wave Equation obey Euler-Poisson-Darboux
equation (Lemma 5.2).
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Maximum principles - S3.3, S4.4

| 2

| 2

For elliptic and parabolic, non-degenerate critical points cannot be
extrema. Ex24

Local Maximum Principle: If u has a maximum at x, then it is
constant on B(x, r) C Q. then is is constant on E(x,t,r) C Q7.

Strong Maximum Principle 3.10: If v has a maximum on an open,
path-connected set 2 or Q, then it is constant.

Weak Maximum Principle 3.11: On a bounded domain, the maximum
is taken on the boundary.

Weak Maximum Principle gives uniqueness for Dirichlet problem.
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Mean Value Properties and Maximum Principles

Subharmonic and Inequality of Solutions - Thm 3.13,
Ex25, Ex26, Ex35

» In proof of Mean Value Property, we used Au = 0. For subsolutions
we get that u is less than its mean and maximum principle.

» Instead of uniqueness of Dirichlet problem, get inequality of solutions.
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Energy Methods

Energy Methods
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Energy Methods

Dirichlet's principle for harmonic - S3.5

» Alternative method to prove uniqueness.

>

| 2

Functional leg: {w € Q| wlsg =g} — R given by

It g (w fQO5||VWH2—Wf

M|n|m|ser is a solution to Laplace equation Thm 3.25.
Difference of two harmonic functions minimises ly o, implies
uniqueness.

There's a short calculation for the heat equation at end S4.4 with
= [q |ul?dx, f = g =0, Q does not need to be bounded. It
shows 0;e < 0.
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Energy Methods

Energy of a Wave - S5.8

» Theorem 5.7: Inhomogeneous wave equation with initial and
boundary conditions, 2 bounded domain. Then solution is unique.

> E(t) =3 [o(0:u)? + || Vul? dx. E is constant over time.
» The only solution with zero on the boundary is zero.
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Methods of Solution

Methods of Solution
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Fundamental Solutions - S3.1, S4.1

» Laplace Eqn: The Laplacian has many symmetries (Ex20) so we seek
radially symmetric solutions.

» Due to Ex13, integral on every ball enclosing x = 0 the same. Choose
constants to make this 1 and vanishing at infinity:

1 —
u(x) = — 35, In[x] ) for n =2,
m’X‘ (n—2) for n > 2.

» Heat Eqn: Characteristics of the form t~!|x|2. Choose constants so it
vanishes at infinity and [, ® dx =1 (Lemma 4.2). Extend to t <0
by zero.

X2
O, t) = (471'1],:)"/2 exp—% for t > 0,
0 for t <0,(x,t) # (0,0).
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Solving Inhomogeneous Equations - S3.1, S4.2

» As distributions, fundamental solutions obey L® = §. Theorem 3.2
and Theorem 4.4, Ex34.

» Gives a solution of inhomogeneous problem on R".

» Proof typically splits integral into part near singularity and part away,
eg I, J. and u..
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Green’s Functions and Heat Kernel - S3.4, S4.5

>
>

v

Generalisation of Fundamental Solution to other domains Q2 C R".
Defn 3.18: Green's function Gq : {(x,y) € Q@ x Q| x# y} =R
obeys for all x € Q:

i. vy Go(x,y)— ®(x —y) is harmonic.

ii. ¥y = Ga(x,y) extends to the boundary continuously and is zero.
Defn 4.14: Heat Kernel Hg : {(x,y) €2 x Q| x#y} xRt - R
obeys for all (x,t) € Q x R™:

i. y— Ha(x,y,t) —®(x — y, t) solves the heat equation with initial

condition zero.

ii. ¥y = Ga(x,y) extends to the boundary continuously and is zero.
Not all domains have a Green's function. Ex31.

Green's functions are symmetric Thm 3.19 and for bounded domains
unique.
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Representation Formula - S3.4, S4.5 Ex29, Ex39

> Green's Representation Theorem 3.16: For an open and bounded
domain  to which the divergence theorem applies and u € C?(Q):

u(x) = —/Q Ga(x,y)Ayu(y) d"y — /BQ u(z)V,Ga(x,z) - N do(z).
» Theorem 4.16

/ i(y,s) — Au(y,s))Ha(x,y,t —s) d"y ds

o
?O

/ /muzsv Ha(x,z,t —s)- N(z) do(z) ds

0

+ [ty 0Ha(x 0 'y,
> Proves existence of Dirichlet problems constructively.
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Heat equation in S* - S4.7, Ex40

P This section gives us an alternate method to construct heat kernels.
All functions can be written as the sum (or integral) of eigenfunctions
of the Laplacian.

> If the initial condition is an eigenfunction fi of —A with eigenvalue
Ak a solution is e*)‘ktfk( ). Ex32 separable solutions.

> Writing h(x) = [ h(k)fi(x) dk gives the solution

u(x, t) = / h(k)e Mt (x) dk.

» If have a periodic initial condition, only periodic eigenfunctions are
needed, we get the heat kernel on St

u(x, t) =Y h(k)e *fi(x) = /[Ze 2miky e =AEf (x) | h(y) dy
keZ keZ

» To handle [0,1]: again use eigenfunctions, or reflect St.
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Methods of Solution

Transport Equation and D'Alembert’s Formula
-S1.1,S1.2,S5.1, Ex 41

» The Transport equation: (0; + b-V)u = 0.
» Solved by g(x — bt) for initial condition u(x,0) = g(x).

» 1D Wave Equation factors into two transport equations
ag - 8>2( = (0r — 0x)(0r + Ox).
> D'Alembert’'s Formula:
u(x,t) = 3le(x +t) + g(x — )] + 3 [ h(y
» Duhamel’s principle: turn an inhomogeneous problem into an initial
value one.
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Method of Characteristics - S1.5 Ex8-10

» A generalisation of the transport equation for non-constant
coefficients.

» You choose a path along which the values of the function can be
described by an ODE system, parametrised by the initial point.

» Example: xOxu +2ydyu=u
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Wave Equation and Method of Descent - 5$5.3-5.6 Ex44

>
>

1D Wave Equation on R can be solved by D’Alembert’s formula.

1D Wave Equation on R™ transformed to 1D Wave Equation on R by
reflection principle.

The spherical means of solutions to the wave equation obey the
Euler-Poisson-Darboux equation.

In odd dimensions, there is a transformation that reduces the EPD
equation to the 1D Wave Equation on R,

Any solution to the wave equation extends to a solution in higher
dimensions, if you let it be constant in the extra directions: u — 0.

In even dimensions, extend the solution to one dimension higher, then
solve.

All these transformations change the PDE, but also the
boundary/initial conditions.
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Behaviour of Solutions

Behaviour of Solutions

27/36



Behaviour of Solutions

Regularity of Harmonic Functions

>
>

Harmonic functions are by definition u € C?(Q) with Au = 0.
A harmonic distribution is a distribution U : D'(Q2) with AU =0 in
the sense of distributions.

Weak Mean Value Property 3.6, Ex 27: For all balls B(x, r) C 2 and
all test functions ¢ : (0, r) — R with total mass zero [¢ =0, the
distribution is zero for the test function

P(ly = x1)

nwply — x|"—1°

few(y) =

All harmonic distributions have the weak mean value property
(Lemma 3.6).

Weyl's Lemma 3.7: All harmonic distributions come from a smooth
harmonic function.
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Behaviour of Solutions

Other Theorems for Harmonic Functions

» Analytic Cor3.22: All harmonic functions are analytic. Proof follows
from representation formula.

» Liouville's theorem 3.5 Ex23: The only harmonic functions on R” that
are bounded are the constant functions.

» Removable Singularity Lemma 3.24: If a harmonic function on
Q\ {x} is bounded, it extends to a harmonic function on Q.

» Unique Continuation Ex30: There is at most one harmonic extension
of a harmonic function to a larger domain.
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Solutions of the Heat Equation

» Cor 4.26: Any solution of heat equation is smooth in t, analytic in x.

> Ex 36: For open and bounded domains with boundary conditions that
are constant in time. If there is a steady state solution, then all other
continuous initial conditions tend to the steady state solution as
t — 00.

» Theorem 4.11: For the heat equation on R" with continuous bounded
initial condition, there is at most one solution with u(x, t) < Ae?*I".
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Distributions and Weak Solutions

Distributions and Weak Solutions
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Definition of Distributions - S2.4, Ex17

| 2

| 2

>

Support: supp f = closure {x | f(x) = 0}. The support of a function
is compact < it is bounded.

Test functions D(Q): the set C§°(£2, R) of smooth functions with
compact support in Q with a certain topology (a non-norm topology).

The topology comes from the semi-norms ||¢|| k.o = sup,cx [0“¢|.

Distribution are linear and continuous functions F € D'(Q).
Continuity means: for all compact K C 2, there exist multiindices «;
and constants C; such that for all test functions with supp ¢ C K:

IF() <D Cilldlli

For any f € L} (Q) there is a distribution Fr € D'(Q) given by

loc

Fr(p) = fQ f¢. This association is injective Lemma 2.9.
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Distributions and Weak Solutions

Operations on Distributions

| 2

| 2

Distributions are a vector space over R:
(aF + bG)(¢) = aF(¢) + bG(9).
Differentiation: O;F is the distribution defined by ¢ — —F(0;¢).

Multiplication with a smooth function g: (gF)(¢) = F(g¢).
Convolution with test function g: (g * F)(¢) = F(¢ * Pg) where
Pg(x) = g(—x).

0xF=F.

Lemma 2.7: The convolution of a distribution corresponds to a
smooth function.

Lemma 2.8: for f € C(§2) we can undo the correspondence with
Fe(Axe) = f(x) as € — 0.
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Distributions and Weak Solutions

Weak solutions

| 2

If a function solves a PDE, its distribution also solves the PDE (in the
sense of distributions).

Are there other solutions if we look among distributions? This is the
most general setting for the PDE.

Allows you to consider discontinuous boundary conditions.

You might find that the only distributions that solve the PDE
correspond to functions.
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Distributions and Weak Solutions

Weak solutions to Transport and 1D wave - Ex18, Ex2.10,
Ex42

» We have seen that solutions are F(x — bt) and F(x — t) + G(x + t)
respectively when F and G are sufficiently differentiable.

» For all L} _ function the corresponding distributions are solutions.
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Weak solutions to first order systems - S1.4, Ex5-7

» Section 1.4 we look for solutions to scalar conversation PDEs
(Section 1.3): dru+ f'(u) Oxu =0 for f : R — R. Particularly
Burger's equation f(u) = u?.

> These PDEs are not linear, so distribution methods don't apply nicely.

» By method of characteristics, for some initial conditions no C?
solution possible.

» Instead we look for solutions that are C!(R?) except for certain
curves in the domain. We require that desirable Properties hold
‘under the integral sign’.

» Theorem 1.11: f € C? strictly convex, initial condition is bounded
and L1, then there is a unique solution of the scalar conservation PDE
obeying Rakine-Hugonoit and Lax entropy conditions.
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