Introduction to Partial Differential Equations Revision Tutorial

Martin Schmidt - Ross Ogilvie

Universität Mannheim

HSS 2021

How to use this Revision Tutorial

- What is examinable is the script with a focus on proofs.
- This is a study aid, not a study substitute.
- Each section tries to highlight a common theme.
- Not comprehensive, not strictly ordered.
- ► References eg S1.1, Ex1.

Basic Notions

Mean Value Properties and Maximum Principles

Energy Methods

Methods of Solution

Behaviour of Solutions

Distributions and Weak Solutions

What is a PDE?

- What is a PDE?
- ▶ Three main questions: Regularity, existence, and uniqueness
- S2.3, S2.5

Classifying PDEs

- Order.
- Linearity and Homogeneity.

Elliptic, Parabolic, Hyperbolic Ex15, Ex24

Exemplars S2.2.

Domains and boundary conditions - S2.6

Typical Domains

- Dirichlet, Neumann, and Cauchy Problems.
- ► Well-posedness (Ex31).

Chain Rule - Ex2, Ex20

1.
$$\frac{\partial}{\partial \theta} \left(u(r\cos\theta, r\sin\theta) \right)$$

2. $\frac{\partial^2}{\partial t^2} \left(F(x-t^2) \right)$

Submanifold and Integrals - S2.1

If Φ : U ⊂ ℝ^k → O (Definition 2.1) the integral on O is defined (Definition 2.3) to be

$$\int_O f \ d\sigma = \int_U f \circ \Phi \ \sqrt{\det((\Phi')^T \Phi')} d\mu.$$

• Eg
$$O = \{x^2 + y^2 = 1, y > 0\}$$
 and $f = x$. Ex11

Partition of Unity (Definition 2.3).

Divergence Theorem 2.5

Let Ω ⊆ ℝⁿ be bounded and open with ∂Ω being a (n-1)-dimensional submanifold of ℝⁿ with outward point normal N. Let F : Ω → ℝⁿ be continuous and differentiable on Ω such that ∇F continuously extends to ∂Ω. Then we have

$$\int_{\Omega} \nabla \cdot F \ d\mu = \int_{\partial \Omega} F \cdot N \ d\sigma.$$

- Ex11(e), 12
- Integration by Parts

Basic Notions

Mean Value Properties and Maximum Principles

Energy Methods

Methods of Solution

Behaviour of Solutions

Distributions and Weak Solutions

Properties of means - Ex19, Ex22, Ex23a

- Means, or weighted averages, are $M(u, x, r) = (C_r)^{-1} \int_{x+A_r} u(y)w(y-x).$
- ▶ $x + A_r$ is a set 'centred' at x with 'radius' r and $C_r = \int_{A_r} w(x)$ is the normalisation.
- Spherical mean (Laplace Equation, Wave equation): set is a sphere $\partial B(x, r)$, weight is 1, $C_r = n\omega_n r^{n-1}$.
- Heat mean: set is a heat ball E(x, t, r), weight $w(x, t) = |x|^2/t^2$.
- The average of a constant is the constant M(c, x, r) = c.

For continuous functions $\lim_{r\to 0^+} M(u, x, r) = u(x)$.

Mean value property - S3.2, S4.3, S5.2

- What is $\partial_r M$?
- ► Proof of Mean Value Property 3.3: $\frac{\partial}{\partial r} \frac{1}{n\omega_n} \int_{\partial B(0,1)} u(x+rz) \, d\sigma(z)$

- Harmonic functions are equal to their spherical means (of any radius). Ditto heat functions.
- Spherical means of Wave Equation obey Euler-Poisson-Darboux equation (Lemma 5.2).

Maximum principles - S3.3, S4.4

- For elliptic and parabolic, non-degenerate critical points cannot be extrema. Ex24
- Local Maximum Principle: If u has a maximum at x, then it is constant on B(x, r) ⊂ Ω. then is is constant on E(x, t, r) ⊂ Ω_T.

- Strong Maximum Principle 3.10: If u has a maximum on an open, path-connected set Ω or Ω_T, then it is constant.
- Weak Maximum Principle 3.11: On a bounded domain, the maximum is taken on the boundary.
- Weak Maximum Principle gives uniqueness for Dirichlet problem.

Subharmonic and Inequality of Solutions - Thm 3.13, Ex25, Ex26, Ex35

- In proof of Mean Value Property, we used Δu = 0. For subsolutions we get that u is less than its mean and maximum principle.
- Instead of uniqueness of Dirichlet problem, get inequality of solutions.

Basic Notions

Mean Value Properties and Maximum Principles

Energy Methods

Methods of Solution

Behaviour of Solutions

Distributions and Weak Solutions

Dirichlet's principle for harmonic - S3.5

- Alternative method to prove uniqueness.
- ► Functional $I_{f,g} : \{w \in \overline{\Omega} \mid w|_{\partial\Omega} = g\} \to \mathbb{R}$ given by $I_{f,g}(w) = \int_{\Omega} 0.5 \|\nabla w\|^2 wf$.
- Minimiser is a solution to Laplace equation Thm 3.25.
- Difference of two harmonic functions minimises *l*_{0,0}, implies uniqueness.
- There's a short calculation for the heat equation at end S4.4 with $e(t) = \int_{\Omega} |u|^2 dx$, f = g = 0, Ω does not need to be bounded. It shows $\partial_t e \leq 0$.

Energy of a Wave - S5.8

Theorem 5.7: Inhomogeneous wave equation with initial and boundary conditions, Ω bounded domain. Then solution is unique.

•
$$E(t) = \frac{1}{2} \int_{\Omega} (\partial_t u)^2 + \|\nabla u\|^2 dx$$
. *E* is constant over time.

The only solution with zero on the boundary is zero.

Basic Notions

Mean Value Properties and Maximum Principles

Energy Methods

Methods of Solution

Behaviour of Solutions

Distributions and Weak Solutions

Fundamental Solutions - S3.1, S4.1

- Laplace Eqn: The Laplacian has many symmetries (Ex20) so we seek radially symmetric solutions.
- Due to Ex13, integral on every ball enclosing x = 0 the same. Choose constants to make this 1 and vanishing at infinity:

$$\Phi_L(x) = \begin{cases} -\frac{1}{2\omega_2} \ln |x| & \text{for } n = 2, \\ \frac{1}{n(n-2)\omega_n} |x|^{-(n-2)} & \text{for } n > 2. \end{cases}$$

Heat Eqn: Characteristics of the form t⁻¹|x|². Choose constants so it vanishes at infinity and ∫_{ℝⁿ} Φ dx = 1 (Lemma 4.2). Extend to t ≤ 0 by zero.

$$\Phi_{H}(x,t) = \begin{cases} \frac{1}{(4\pi t)^{n/2}} \exp{-\frac{|x|^2}{4t}} & \text{for } t > 0, \\ 0 & \text{for } t \le 0, (x,t) \ne (0,0). \end{cases}$$

Solving Inhomogeneous Equations - S3.1, S4.2

- As distributions, fundamental solutions obey $L\Phi = \delta$. Theorem 3.2 and Theorem 4.4, Ex34.
- Gives a solution of inhomogeneous problem on \mathbb{R}^n .

▶ Proof typically splits integral into part near singularity and part away, eg *I_e*, *J_e* and *u_e*.

Green's Functions and Heat Kernel - S3.4, S4.5

- Generalisation of Fundamental Solution to other domains $\Omega \subset \mathbb{R}^n$.
- ▶ Defn 3.18: Green's function G_{Ω} : { $(x, y) \in \Omega \times \Omega \mid x \neq y$ } $\rightarrow \mathbb{R}$ obeys for all $x \in \Omega$:
 - i. $y \mapsto G_{\Omega}(x, y) \Phi(x y)$ is harmonic.
 - ii. $y \mapsto G_{\Omega}(x, y)$ extends to the boundary continuously and is zero.
- Defn 4.14: Heat Kernel H_Ω: {(x, y) ∈ Ω × Ω | x ≠ y} × ℝ⁺ → ℝ obeys for all (x, t) ∈ Ω × ℝ⁺:
 - i. $y \mapsto H_{\Omega}(x, y, t) \Phi(x y, t)$ solves the heat equation with initial condition zero.
 - ii. $y \mapsto G_{\Omega}(x, y)$ extends to the boundary continuously and is zero.
- ▶ Not all domains have a Green's function. Ex31.
- Green's functions are symmetric Thm 3.19 and for bounded domains unique.

Representation Formula - S3.4, S4.5 Ex29, Ex39

Green's Representation Theorem 3.16: For an open and bounded domain Ω to which the divergence theorem applies and u ∈ C²(Ω):

$$u(x) = -\int_{\Omega} G_{\Omega}(x,y) \triangle_{y} u(y) d^{n}y - \int_{\partial \Omega} u(z) \nabla_{z} G_{\Omega}(x,z) \cdot N d\sigma(z).$$

▶ Theorem 4.16

$$\begin{split} u(x,t) &= \int_0^t \int_\Omega (\dot{u}(y,s) - \bigtriangleup u(y,s)) H_\Omega(x,y,t-s) \ d^n y \ ds \\ &- \int_0^t \int_{\partial\Omega} u(z,s) \nabla_z H_\Omega(x,z,t-s) \cdot N(z) \ d\sigma(z) \ ds \\ &+ \int_\Omega u(y,0) H_\Omega(x,y,t) \ d^n y. \end{split}$$

Proves existence of Dirichlet problems constructively.

Heat equation in \mathbb{S}^1 - S4.7, Ex40

- This section gives us an alternate method to construct heat kernels. All functions can be written as the sum (or integral) of eigenfunctions of the Laplacian.
- ▶ If the initial condition is an eigenfunction f_k of $-\Delta$ with eigenvalue λ_k a solution is $e^{-\lambda_k t} f_k(x)$. Ex32 separable solutions.
- Writing $h(x) = \int \hat{h}(k) f_k(x) dk$ gives the solution

$$u(x,t)=\int \hat{h}(k)e^{-\lambda_k t}f_k(x) dk.$$

If have a periodic initial condition, only periodic eigenfunctions are needed, we get the heat kernel on S¹

$$u(x,t) = \sum_{k \in \mathbb{Z}} \hat{h}(k) e^{-\lambda_k t} f_k(x) = \int \left[\sum_{k \in \mathbb{Z}} e^{-2\pi i k y} e^{-\lambda_k t} f_k(x) \right] h(y) \, dy$$

• To handle [0,1]: again use eigenfunctions, or reflect S^1 .

Transport Equation and D'Alembert's Formula - S1.1, S1.2, S5.1, Ex 41

- The Transport equation: $(\partial_t + b \cdot \nabla)u = 0.$
- Solved by g(x bt) for initial condition u(x, 0) = g(x).

- ▶ 1D Wave Equation factors into two transport equations $\partial_t^2 \partial_x^2 = (\partial_t \partial_x)(\partial_t + \partial_x).$
- D'Alembert's Formula: $u(x,t) = \frac{1}{2}[g(x+t) + g(x-t)] + \frac{1}{2}\int_{x-t}^{x+t} h(y) dy.$
- Duhamel's principle: turn an inhomogeneous problem into an initial value one.

Method of Characteristics - S1.5 Ex8-10

- A generalisation of the transport equation for non-constant coefficients.
- You choose a path along which the values of the function can be described by an ODE system, parametrised by the initial point.

• Example: $x\partial_x u + 2y\partial_y u = u$

Wave Equation and Method of Descent - S5.3-5.6 Ex44

- ▶ 1D Wave Equation on \mathbb{R} can be solved by D'Alembert's formula.
- ▶ 1D Wave Equation on ℝ⁺ transformed to 1D Wave Equation on ℝ by reflection principle.
- The spherical means of solutions to the wave equation obey the Euler-Poisson-Darboux equation.
- In odd dimensions, there is a transformation that reduces the EPD equation to the 1D Wave Equation on ℝ⁺.
- Any solution to the wave equation extends to a solution in higher dimensions, if you let it be constant in the extra directions: u → ū.
- In even dimensions, extend the solution to one dimension higher, then solve.
- All these transformations change the PDE, but also the boundary/initial conditions.

Basic Notions

Mean Value Properties and Maximum Principles

Energy Methods

Methods of Solution

Behaviour of Solutions

Distributions and Weak Solutions

Regularity of Harmonic Functions

- Harmonic functions are by definition $u \in C^2(\Omega)$ with $\Delta u = 0$.
- A harmonic distribution is a distribution $U : \mathcal{D}'(\Omega)$ with $\Delta U = 0$ in the sense of distributions.
- ▶ Weak Mean Value Property 3.6, Ex 27: For all balls $B(x, r) \subset \Omega$ and all test functions $\psi : (0, r) \rightarrow \mathbb{R}$ with total mass zero $\int \psi = 0$, the distribution is zero for the test function

$$f_{x,\psi}(y) = \frac{\psi(|y-x|)}{n\omega_n|y-x|^{n-1}}$$

- All harmonic distributions have the weak mean value property (Lemma 3.6).
- Weyl's Lemma 3.7: All harmonic distributions come from a smooth harmonic function.

Other Theorems for Harmonic Functions

- Analytic Cor3.22: All harmonic functions are analytic. Proof follows from representation formula.
- ▶ Liouville's theorem 3.5 Ex23: The only harmonic functions on ℝⁿ that are bounded are the constant functions.
- Removable Singularity Lemma 3.24: If a harmonic function on Ω \ {x} is bounded, it extends to a harmonic function on Ω.
- Unique Continuation Ex30: There is at most one harmonic extension of a harmonic function to a larger domain.

Solutions of the Heat Equation

- ► Cor 4.26: Any solution of heat equation is smooth in t, analytic in x.
- Ex 36: For open and bounded domains with boundary conditions that are constant in time. If there is a steady state solution, then all other continuous initial conditions tend to the steady state solution as t → ∞.
- ► Theorem 4.11: For the heat equation on Rⁿ with continuous bounded initial condition, there is at most one solution with u(x, t) ≤ Ae^{a|x|²}.

Basic Notions

Mean Value Properties and Maximum Principles

Energy Methods

Methods of Solution

Behaviour of Solutions

Distributions and Weak Solutions

Definition of Distributions - S2.4, Ex17

- Support: supp f = closure {x | f(x) = 0}. The support of a function is compact ⇔ it is bounded.
- Test functions D(Ω): the set C₀[∞](Ω, ℝ) of smooth functions with compact support in Ω with a certain topology (a non-norm topology).
- ▶ The topology comes from the semi-norms $\|\phi\|_{K,\alpha} = \sup_{x \in K} |\partial^{\alpha} \phi|$.
- Distribution are linear and continuous functions *F* ∈ D'(Ω). Continuity means: for all compact *K* ⊂ Ω, there exist multiindices α_i and constants C_i such that for all test functions with supp φ ⊆ K:

$$|F(\phi)| \leq \sum C_i \|\phi\|_{\mathcal{K},\alpha_i}.$$

For any $f \in L^1_{loc}(\Omega)$ there is a distribution $F_f \in \mathcal{D}'(\Omega)$ given by $F_f(\phi) = \int_{\Omega} f \phi$. This association is injective Lemma 2.9.

Operations on Distributions

- Distributions are a vector space over ℝ: (aF + bG)(φ) = aF(φ) + bG(φ).
- ▶ Differentiation: $\partial_i F$ is the distribution defined by $\phi \mapsto -F(\partial_i \phi)$.
- Multiplication with a smooth function $g: (gF)(\phi) = F(g\phi)$.
- Convolution with test function $g: (g * F)(\phi) = F(\phi * Pg)$ where Pg(x) = g(-x).
- $\blacktriangleright \ \delta * F = F.$
- Lemma 2.7: The convolution of a distribution corresponds to a smooth function.
- Lemma 2.8: for $f \in C(\Omega)$ we can undo the correspondence with $F_f(\lambda_{x,\epsilon}) \to f(x)$ as $\epsilon \to 0$.

Weak solutions

- If a function solves a PDE, its distribution also solves the PDE (in the sense of distributions).
- Are there other solutions if we look among distributions? This is the most general setting for the PDE.
- Allows you to consider discontinuous boundary conditions.
- You might find that the only distributions that solve the PDE correspond to functions.

Weak solutions to Transport and 1D wave - Ex18, Ex2.10, Ex42

- We have seen that solutions are F(x bt) and F(x t) + G(x + t) respectively when F and G are sufficiently differentiable.
- For all L^1_{loc} function the corresponding distributions are solutions.

Weak solutions to first order systems - S1.4, Ex5-7

- Section 1.4 we look for solutions to scalar conversation PDEs (Section 1.3): ∂_tu + f'(u) ∂_xu = 0 for f : ℝ → ℝ. Particularly Burger's equation f(u) = ¹/₂u².
- ▶ These PDEs are not linear, so distribution methods don't apply nicely.
- By method of characteristics, for some initial conditions no C¹ solution possible.
- ► Instead we look for solutions that are C¹(ℝ²) except for certain curves in the domain. We require that desirable Properties hold 'under the integral sign'.
- ► Theorem 1.11: f ∈ C² strictly convex, initial condition is bounded and L¹, then there is a unique solution of the scalar conservation PDE obeying Rakine-Hugonoit and Lax entropy conditions.