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35. Sugar, we’re going down swinging.

First let ' € R™ x R be an open and connected region. A function v : Q' — R is called a

sub-solution of the heat equation if v — Av < 0.

(a) Mean value estimate for sub-solutions Take any point (z,t) € Q' and a small radius r > 0
so that E(z,t,r) € Q' (refer to Definition 4.6). Modify the proof the mean value property
of the heat equation to show that

1 lz —y|?
o)< g [ o) dy ds
4rm E(x,t,r) ‘t - 8|2

holds for all sub-solutions. (2 Points)

Now let €2 C R™ be an open, bounded, and path connected region. We denote the parabolic
cylinder of Q by Qr := Q x (0,7] as in Section 4.4. Suppose that v : Q7 — R is a sub-solution

that extends continuously to Q.

(b) Mazximum principle for sub-solutions Following on from (a), establish that if v takes the

value supg, . v on {7, then it is constant. (2 Points)

(c) A monotonicity property For j € {1,2} let f; : @ x (0,7) = R, h; : @ = R, and g; :
0§ x [0,T] be smooth functions, and likewise let u; : Q x (0,T") be smooth functions with

continuous extensions to the boundary that satisfy

iéj—AUj:fj on € x (O,T)
uj(x,0) = hj(xz) on Q
U; = gy on 0f) x [O,T]

Suppose further that f1 < fs, g1 < go, and h; < ho. Show in this case that u; < ug as well.

(2 Points)
36. Heat death of the universe.
First a corollary to Theorem 4.3:
(a) Suppose that h € Cp(R™) N LY(R™) and u is defined as in Theorem 4.3. Show
u(e, 0] < ]
sup |u(z,t)] < ———+ .
IGH£1 (4mt)n/2 H
(2 Points)

The above corollary shows how solutions to the heat equation on R"™ x R™ with such initial
conditions behave: they tend to zero as t — oco. Physically this is because if h € L' then there

is a finite amount of total heat, which over time becomes evenly spread across the plane.



37.

On open and bounded domains 2 C R™ we can have different behaviour, due to the boundary
conditions holding the temperature steady. In this question we determine the long time behaviour
of solutions u to the heat equation on open and bounded sets  with u(z,t) = g(z) on 9Q x Rt
and u(x,0) = h(z). Assume that there is a steady state solution, i.e. a solution to the Dirichlet
problem for the Laplace equation Av = 0 and v|gq = ¢g. We claim u — v as t — oo. Let

w(z,t) = u(x,t) — v(z). The claim is equivalent to w — 0.

(b) What PDE and boundary conditions does w obey? (2 Points)
(c) Let I, be the function from Theorem 4.3 that solves heat equation on R" with [,,(x,0) =

mk(x) for m a constant and k : R™ — [0, 1] a smooth function of compact support such
that k|q = 1. Why must k exist? Why does l,,, — 0 as t — 0o? What boundary conditions
on 2 does it obey? (8 Points)

(d) Use the monotonicity property to show that w tends to zero. (2 Points)

Hint. Consider a = sup,cq |w(z,0)].

The Fourier transform.

Recall that the Fourier transform of a function h(z) : R® — R is defined in Section 4.6 to be a
function h(k) : R® — R given by

h(k) = / e~ kY R (1) dy.
Lemma 4.20 shows that it is well-defined for Schwartz functions.

(a) Give the definition of a Schwartz function. (1 Point)
(b) Argue that f: R — R given by f(z) = exp(—2?) is a Schwartz function. (1 Point)
(c) Show that the Fourier transform of exp(—A2z%) for a constant A > 0 is
VTA T exp(—n?k?A™?). You may use that [, exp(—a?)dz = /7.
(2 Points)
(d) Show that gj\f(k‘) = 27rik:jf(k:) for Schwartz functions f : R” — R. (2 Points)
(e) If u : R x R is a solution to the heat equation, we can apply a Fourier transform in the
space coordinate to get a function u(k,t). Show that this function obeys
ou

a5+ 4%k 4 = 0.

Solve this ODE in the time variable. (2 Points)

(f) Suppose that we have the initial condition u(z,0) = h(z) for x € R for a Schwartz function
h. Then a(k,0) = h(k). Apply the inverse Fourier transformation to rederive the solution
given in Theorem 4.3. (2 Points)




