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17. Distributions.

(a) Choose any compact set K ⊂ R. Since it is bounded, there exists R > 0 with K ⊆ [−R,R].

Now choose any test function φ ∈ C∞0 (R) with compact support in K. Since it is continuous,

supx∈K |φ(x)| is finite. Prove the following inequality∣∣∣∣∫ ∞
0

φ(x) dx

∣∣∣∣ ≤ 2R sup
x∈K
|φ(x)|

(2 Points)

(b) Show directly from Definition 2.6 that the Heaviside distribution

H : C∞0 (R)→ R, φ 7→
∫ ∞
0

φ(x) dx

is a distribution on R. (2 Points)

(c) Calculate and describe the first and second derivatives of the Heaviside distribution.

(3 Points)

(d) Consider the differentiable function f(x) = sinx ∈ L1
loc(R). Recall the definition of the

distribution Ff given prior to Lemma 2.9. Show that (Ff )′ = Ff ′ for this example.

(2 Points)

(e) Consider the line L = {y = 1} ⊂ R2. Show that

G(ϕ) :=

∫
L
ϕ dσ

defines a distribution in D′(R2). Note that the dσ indicates this is an integration over the

submanifold L. Does there exist a locally integrable function g : R2 → R with

G(ϕ) =

∫
R2

g ϕ dx

for all ϕ ∈ C∞0 (R)? (Hint. Use Lemma 2.9) (2 Points + 2 Bonus Points)

18. Transport and Distribution.

We have seen that every distribution is differentiable. In this question we show that every distri-

bution is also integrable. We use this to give a solution to the inhomogeneous transport equation

for distributions. Throughout this question we consider test functions ϕ(x, t) in C∞0 (Rn×R) and

distributions in D′(Rn × R) unless stated otherwise. First we prepare some results about test

functions. Some parts of this question are difficult, so try your best and don’t be discouraged.

(a) Show that

(Iϕ)(x) :=

∫
R
ϕ(x, t) dt

belongs to C∞0 (Rn). (2 Points)
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(b) Show for any distribution H ∈ D′(Rn) that F : ϕ 7→ H(Iϕ) is a distribution in D′(Rn×R).

(2 Points)

(c) Define the subset Z = ker I = {ϕ ∈ C∞0 (Rn × R) | Iϕ ≡ 0} and the operator

(Pϕ)(x, t) :=

∫ t

−∞
ϕ(x, s) ds.

Show that Pϕ is a test function if and only if ϕ ∈ Z. Moreover, show that if ϕ ∈ Z then

Pϕ is the unique test function ψ with ∂tψ = ϕ. (3 Points)

(d) Let χ0 be a test function that does not depend on x with
∫
R χ0(t) dt = 1. For any test

function ϕ, define

ϕ̃(x, t) := ϕ(x, t)− (Iϕ)(x)χ0(t).

Show that ϕ̃ ∈ Z. (1 Point)

Part (d) gives a decomposition of any test function into a derivative of a test function and

the product of test functions that are constant in t and x. Now we are ready to show that

distributions can be ‘integrated’ with respect to t.

(e) Suppose that U and F are two distributions such that ∂tU = F . Why must U(∂tϕ) =

−F (ϕ) for any test function ϕ? (1 Point)

(f) Suppose we are given a distribution F . Prove that, for any G ∈ D′(Rn), the following

formula defines a distribution such that ∂tU = F : (1 Point + 2 Bonus Points)

U(ϕ) := −F (Pϕ̃) +G (Iϕ) .

Thus we see that every distribution F has many t-antiderivatives. The distribution G plays the

role of the integration constant, in the same way that for ordinary functions ∂t(f(x, t) + g(x)) =

∂tf . It turns out that the converse is also true, every t-antiderivative of F has this form. This

is essentially proved in Exercise 2.10(3) from the lecture script.

Finally, we show that the inhomogeneous transport equation for distributions ∂tU + b · ∇U = F

is always solvable.

(g) Let (Tbϕ)(x, t) := ϕ(x− bt, t) be the translation operator. For any distribution U define a

distribution Ũ : ϕ 7→ U(Tbϕ). Notice that although Ũ(ϕ) = U(Tbϕ) for any test function

ϕ, their derivatives are subtly distinct in a way that can be hard to express in notation,

namely

∂iU(Tbϕ) = −U(∂i(Tbϕ)), ∂iŨ(ϕ) = −Ũ(∂iϕ) = −U(Tb(∂iϕ)).

Prove that ∂tŨ(ϕ) = ∂tU(Tbϕ) + b · ∇U(Tbϕ). (2 Points)

(h) Finally, let F be any distribution. Use parts (f) and (g) to give a solution to the inhomo-

geneous transport equation. (2 Bonus Points)
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We have not addressed the question of uniqueness; this is ultimate aim of Exercise 2.10 in the

lecture script, which finds every solution to the homogeneous equation. Since the difference of

two solutions to the inhomogeneous equation is a solution to the homogeneous equation, this

suffices.

Neither this question or 2.10 really shows you what it means to specify the ‘initial value’ of a

distributional PDE, though it is hinted at by the G above and 2.10(4). I leave this as a challenge

to you. But if we contrast the solutions we have found here to the results of Section 1 (there

is a solution for every differentiable function g), we see that distributions allows us to have

non-differentiable solutions to PDEs in a rigorous way.

19. Preparing the Mean Value Theorem.

Let f : Rn → R be a continuous function, x0 ∈ Rn, and ∂B(x0, r) := {x ∈ Rn | ‖x − x0‖ = r}
for r > 0. Show that the function

F (r) :=
1

σ(∂B(x0, r))

∫
∂B(x0,r)

f(x) dσ(x)

converges to f(x0) as r → 0. (4 Points)
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