- 1. Multiindices and the Generalised Leibniz rule. In this question we introduce multiindex notation. A multiindex of n variables is a vector $\gamma \in \mathbb{N}_0^n$.
 - (a) Let $x = (x_1, x_2, x_3)$ be coordinates on \mathbb{R}^3 . Write out the full expression for the derivative $\partial^{(0,2,1)}$.
 - (b) Why do we need to assume that partial derivatives commute for multiindex notation to be useful?
 - (c) Which multiindices satisfy $|\gamma| \leq 2$ and which satisfy $\gamma \leq (0, 2, 1)$?
 - (d) The generalised binomial coefficient for multiindices is defined to be

$$\binom{\gamma}{\delta} = \binom{\gamma_1}{\delta_1} \binom{\gamma_2}{\delta_2} \dots \binom{\gamma_n}{\delta_n}.$$

One justification for calling these binomial coefficients is the following property. Let $e_j = (0, \ldots, 1, \ldots, 0)$ be the multiindex with 1 is the *j*-th position and 0 in all other positions. Then for any *j*

$$\binom{\gamma}{\delta} = \binom{\gamma - e_j}{\delta - e_j} + \binom{\gamma - e_j}{\delta}.$$

Prove this property.

(e) Let $u, v : \Omega \to \mathbb{R}$ be smooth enough functions on an open subset $\Omega \subset \mathbb{R}^n$. Show for all multiindices $\gamma \in \mathbb{N}_0^n$ the following product rule:

$$\partial^{\gamma}(uv) = \sum_{0 \le \delta \le \gamma} \binom{\gamma}{\delta} \partial^{\delta} u \, \partial^{\gamma-\delta} v$$

2. Chain rule in multiple variables. Recall the chain rule for functions of multivariable variables (Satz 10.4(iii) in Schmidt's Analysis II script): Let $f: U \subset X \to Y$ be differentiable at $x_0 \in U$ and $g: V \subset Y \to Z$ be differentiable at $f(x_0) \in f[U] \subset V$. Then $g \circ f$ is differentiable at x_0 and

$$(g \circ f)'(x_0) = g'(f(x_0)) \circ f'(x_0).$$

(a) Why does this chain rule above use function composition, when the chain rule for functions of a single variable uses multiplication? i.e.

$$\frac{d}{dx}(x^2+1)^3 = 3(x^2+1)^2 \cdot 2x. = 6x(x^2+1)^2.$$

(b) Suppose that $u : \mathbb{R}^n \to \mathbb{R}$ and $x : \mathbb{R} \to \mathbb{R}^n$. Express the chain rule with partial derivatives to show that

$$\frac{d}{dt}u(x(t)) = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \frac{dx_i}{dt}.$$

- (c) Write the above formula in terms of gradients and dot products.
- (d) Consider the function $u(x, y) = x^2 + 2y$ and the polar coordinates $x = r \cos \theta, y = r \sin \theta$. Compute the radial and angular derivatives of u.

(e) Consider a scalar function $F : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ of 2n + 1 variables and a function $u : \mathbb{R}^n \to \mathbb{R}$. Write an expression for the derivative of $F(\nabla u(x), u(x), x)$ with respect to x_1 .
