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37. 1D Waves.

(a) Show that the a smooth function v = «({,n) : R x R — R is a solution to dspu = 0 exactly
when it is of the form u((,n) = F(¢) + G(n), for smooth functions F,G : R — R.
(2 Point(s))

(b) Under the parameterisation ( = x + ¢, = x — t, show that u obeys the one dimensional

wave equation (Oy — Ozz)u = 0 exactly when it solves the PDE in (a). (2 Point(s))
(c) From parts (a) and (b), derive D’Alembert’s formula. (2 Point(s))
Solution.

(a) Suppose u is a solution. Integrating once, we see that d,u = g(n), because for each value of
1, Opu must be constant in (. Integrating again gives u = F(¢)+ [ g(n) dn =: F(¢) +G(n).

The converse is immediate.

(b) Using the chain rule we compute the operator under the change of variables. Note z =
3(¢+m) and y = (¢ —n).
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Doy = %(ax — 9t) (0, + Ot) = i(am Dt + Bh — D) = i(am — ott).

We see then that the operator 0y — Oy, is just a rescaling of .
(c) We are asked to solve the problem of Theorem 5.1:

Bttu — amu =0

u(z,0) = g(x)
Ou(z,0) = h(zx),

where ¢ is twice continuously differentiable and f is only once continuously differentiable.
From (a), we know that the equation is simpler in the ({,7n) coordinates, where u({,n) =
F(¢) + G(n) solves the wave equation. The functions F' and G are only defined up to a
constant between them (ie u = (F'—C)+ (G + C) also), so without loss of generality choose
G(0) = 0.

When t = 0 that corresponds to = { = 7. So the initial conditions say F'(¢)+G(¢) = g(¢)
and Oyuli—o = (O¢ — Oy)ulc=y = F'(¢) — G'(¢) = h(¢). Integrating the latter gives

¢ ¢
/0 h(y) dy = /0 F'(y) = G'(y) dy = F(¢) — G(¢) — (F(0) = G(0)) = F(¢) — G(¢) — 9(0).
Now we have two linear equations for F' and G, so solving gives
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Changing the variable in G back to n and summing gives:

u=F(¢)+ G(n)

00+ [ as] + 3 [oon - ["n @

1

=3
¢

= 39O o+ 3 [ b dy

Finally, changing back to (z,t) coordinates gives the desired formula.

Faster!

How should you modify D’Alembert’s formula for this situation?

Ot — a20ppu = 0
u(z,0) = g(z)
8tU($,0) = h(%),

Solve this for the initial data a = 2, g(x) = sin(z) and h(z) = 1. (2+2 Point(s))

Solution. One can rescale one of the coordinates to compensate for the factor of . Namely,
let 7 = at. Because t = 0 when 7 = 0, the first initial condition is unchanged. The second initial
condition however reads ad;u(x,0) = h(z). Using the formula for the solution to this new initial

value problem for the waver equation, but then further making the substitution 7 = at, gives

x+at
u(z,t) = % lg(x +at) + g(x — at)] + 3 /_ t éh(y) dy.

With the given initial data

1 1 42t
u(z,t) = 3 [sin(x + 2t) + sin(x — 2t)] + 4/ ” 1dy
.

1
=3 [sin(x + 2t) 4 sin(z — 2t)] + t.

Weak waves.

Let U be an open set in R” and Q = U x (0,T) be a cylinder in R**. A continuous function u

is called a weak solution of the wave equation on 2 if

/(8%,0 —Ap)udrdt=0
Q

for every test function ¢ € C§°(£2). Solutions to the wave equation in the ordinary sense are

called classical or strong in this context.



(a)
(b)

Show that u € C2(Q) is a weak solution if and only if it is a classical solution. (3 Point(s))

Suppose that (ug)ren is a sequence of weak solutions that converges to u with local uniform

continuity on 2. Show that u is also a weak solution. (4 Point(s))

Solution.

()

(b)

When u is differentiable, that allows us to apply the divergence theorem/integration by

parts. Let’s split the integral into two terms:

T T
/(@tgp—A(p)udmdt:// attgaudtdm—/ /Agpud:ﬂdt.
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We apply integration by parts twice to the first part:

T T T
/ &gt«pu dt = — / Otcp &gu dt = / cp@ttu dt,
0 0 0

because Oy and ¢ belong to C§°(2) and ¢ = 0,7 lie in the boundary of €. The second
Green’s theorem shows that [, Apu dx = fU w Au dx:

/Agpu—goAudm:/ (uVyp — pVu) - N do = 0.
U 12104

Together this shows

/ (O — Ap)u dr dt = / ©(Opu — Au) dx dt.
Q Q

Clearly this is zero if u is a classical solution. Conversely, if this is zero for all test functions
, then by the fundamental lemma of the calculus of variations it follows that u is a classical

solution.

In general, the adjective ‘local’ means that the property holds for a neighbourhood of every
point. So in this case, for every point p € ) there exists a neighbourhood p € Q, C Q

where

sup |u(y) — ur(y)] — 0
yeQp

as k — oo.

We know that uniform continuity of a sequence of functions preserves continuity in the
limit. Hence u € C(£2). Now take any test function ¢. The support of ¢ is clearly covered
by the collection {2, | p € supp ¢}. And because the support is compact, there is a finite
subcover {2, }. We then compute

/ (Onp — Ap)udedt — lim | (Oup — Ap) ug dx dt
Q k—o0 J

< lim / |0k — Al |u — ug| da dt
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T k—oo

< Z (lim sup |u — uk|> / |0 — Ap| dx dt
i Pi
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< lim Z/Q |0 — Al |lu — ug| do dt
i Pi
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This shows that when the uy are weak solutions (and so the corresponding integrals are all

zero) then w is also a weak solution.

40. 1D Waves in the weak sense.

(a) Show that for given continuous functions F, G on R, the function u(x,t) = F(x+t)+G(z—t)

is a weak solution of the one dimensional wave equation.

[Hint. Mollify F' and G] (4 Point(s))
(b) Show that the Fourier series

oo

u(x,t) = Z(ak cos kt + by sin kt) sin kz,
k=1

where ay and by are real sequences with ) |ag| + |bx| < 00, is a weak solution of the one

dimensional wave equation. (3 Point(s))

Solution.

(a) Firstly note that the function w is continuous on the cylinder. The difficulty is that we
expect that w is a solution based on its form, but we don’t know that it has enough
regularity to actually differentiate. One trick to increase regularity is to use a mollifier ¢,
and set F, = F x ¢, Gc * ¢, and u, = F(x + t) + Ge(x — t). The functions u, are now
smooth and strong solutions to the wave equation. From 39(a) we know that u. is a weak
solution if it is a strong solution. Finally taking ¢ — 0 and using 39(b) shows that u is a

weak solution, since mollifications converge locally uniformly.

(b) Consider the terms individually:
1 1
(ay cos kt+by sin kt) sin kx = 5k (sin k(z+t)+sin k‘(:n—t))—l—ibk(— cos k(z+t)+cos k(x—t)).

This shows each term, and therefore the partial sums, are strong solutions. Hence also
weak solutions. The estimate

o0

o) o0
Z(ak cos kt + by sin kt) sin kx| < Z(|ak cos kt| + |by sin kt|) | sin kx| < Z lag| + |bk]
k=1 k=1 k=1

show that the sum is uniformly convergent. Hence u is a weak solution.

Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to
r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand
and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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