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Exercise sheet 8

24. Do nothing by halves.

Let H+ = {x = (x1, . . . , xn) ∈ Rn | xn > 0} be the upper half-space and H0 = {x =

(x1, . . . , xn) ∈ Rn | xn = 0} the dividing hyperplane. We call R(x) = (x1, . . . , xn−1,−xn)

reflection in the plane H0. Similarly B+ = B(0, 1) ∩H+ and B0 = B(0, 1) ∩H0.

(a) A reflection principle for harmonic functions. Let u : B+ → Rn be a harmonic

function with u|B0 = 0. Show that the function v : B → R defined through reflection

v(x) =

u(x) for xn ≥ 0

−u(R(x)) for xn < 0

is harmonic. (4 Point(s))

(b) Green’s function for the upper half-space. Show that Green’s function for H+ is

G(x, y) = Φ(x− y)− Φ(R(x)− y).

(3 Point(s))

(c) Green’s function for the half-ball. Compute the Green’s function for B+.

Hint: Make use of both the Green’s function for the ball 3.20 and part (b).

(3 Point(s))

Solution.

(a) One could try to show directly that v is harmonic. Clearly it is when xn 6= 0, and it

is possible to compute the necessary derivatives when xn = 0. However, there is a more

general method using the uniqueness of the solution to the Dirichlet problem on the ball.

Let g = v|∂B be the restriction to this function on the sphere. This is continuous, in

particular when xn = 0. There is a unique solution ṽ to the Laplace equation ∆ṽ = 0 with

ṽ|∂B = g. We see that −ṽ ◦ R is also a solution to this equation, thus ṽ = −ṽ ◦ R. This

implies that ṽ vanishes on B0.

Now consider ṽ − u. This is also a harmonic function, and moreover it is identically zero

on ∂B+. The maximum principle says it has to be zero on all of B+. Thus ṽ = u on B+

and by reflection ṽ = v on B.

(b) Let Φ be the fundamental solution to the Laplace equation. Let G(x, y) be the Green’s

function for H+. The required properties are (1) that for any x ∈ H+ the function G(x, y)−
Φ(x−y) is a harmonic function of y and (2) that for any x ∈ H+ we have limy→H0 G(x, y) =

0. We saw for the unit ball that the Greens function was a difference of the fundamental

solution and its reflection across the boundary of the ball. That way, the two cancelled on

the boundary and gave the second property. So let use try

G(x, y) = Φ(x− y)− Φ(R(x)− y).
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The first property is satisfied because Φ(R(x) − y) is only not harmonic when y = R(x),

and for x ∈ H+ this only occurs when y ∈ H−. To show the second property, note that

Φ(z) is radially symmetric. Since ‖R(x)− y‖ = ‖x−R(y)‖, for any y ∈ H0 we have

G(x, y) = Φ(x− y)− Φ(x−R(y)) = Φ(x− y)− Φ(x− y) = 0.

Thus we have shown that G is the Greens function.

(c) To discuss the Greens function for the half-ball, we should introduce a symbol for inversion

in the sphere, ι(x) := |x|−2x. We know from lectures then

GB(x, y) = Φ(x− y)− Φ(|x|(ι(x)− y)).

Following the ideas of the previous question, we guess that the Greens function for the

half-ball is the reflection of this one

G(x, y) = Φ(x− y)− Φ(|x|(ι(x)− y))− Φ(R(x)− y) + Φ(|x|(ι(R(x))− y)).

If both x, y ∈ B+ then ι(x)− y, R(x)− y, and |x|(ι(R(x))− y) are never zero, so G(x, y)−
Φ(x, y) is harmonic. The boundary of B+ has two parts B0 and ∂B+∩H+. If y ∈ B0 then

G(x, y) = Φ(x− y)− Φ(|x|(ι(x)− y))− Φ(x−R(y)) + Φ(|x|(R(ι(x))− y))

= Φ(x− y)− Φ(|x|(ι(x)− y))− Φ(x− y) + Φ(|x|(ι(x)− y)) = 0.

On the other hand, if y ∈ ∂B+ ∩H+ is in the hemispherical part, then ‖|x|(ι(x) − y)‖ =

‖x− y‖ as in the lecture notes, but also ‖|x|(ι(R(x))− y)‖ = ‖R(x)− y‖, so

G(x, y) = [Φ(x− y)− Φ(|x|(ι(x)− y))]− [Φ(R(x)− y)− Φ(|x|(ι(R(x))− y))] = 0.

25. Teach a man to fish...

Using the Green’s function of H+ from the previous question, derive a formal integral represen-

tation for a solution of the Dirichlet problem

∆u = 0 in H+, u|H0 = g.

Here, ‘formal’ means that you do not need to prove that the integrals are finite/well-defined.

(5 Point(s))

Solution. Begin with Greens Representation formula

u(x) = −
∫
H+

GH+(x, y)∆yu(y) dy −
∫
H0

u(z)∇zGH+(x, z) ·N dσ(z).

The function u is harmonic, so the first integral vanishes. For the second term, ∇zGH+(x, z) =

−∇zΦ(x−z)+∇zΦ(R(x)−z) and we already computed the gradient of the fundamental solution
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in Theorem 3.2: ∇Φ(y) = − 1
nωn

y
|y|n . The normal is also easy to describe, it points in the negative

xn+1 direction: N = (0, . . . , 0,−1). Therefore

u(x) = −
∫
H0

u(z)
1

nωn

[
x− z
|x− z|n

− R(x)− z
|R(x)− z|n

]
· (0, . . . , 0,−1) dσ(z)

=
1

nωn

∫
H0

u(z)

[
xn − zn
|x− z|n

− −xn − zn
|x− z|n

]
dσ(z)

=
2xn
nωn

∫
H0

u(z)

|x− z|n
dσ(z).

26. An alternative estimate for Corollary 3.4.

(a) Show the following estimate for all x 6= 0 and multiindices α:

|∂α |x|−n| ≤ A(n, |α|) |x|−n−|α|,

where A(n, |α|) is a constant depending only on n and order |α|. (4 Point(s))

(b) Hence give an alternative proof of Corollary 3.4 (you do not have to give a particular form

for the constant).

Hint: Start from Poisson’s representational formula. (4 Point(s))

Solution.

(a) We know (in a heuristic sense) that harmonic functions are limited in how fast they can

grow. So we develop a bounds for the reciprocal of powers of the absolute value. Observe

the first derivative:

∂k|x|−n = −n
2
· 2xk(x21 + · · ·+ x2n)−n/2−1 = −nxk |x|−n−2.

We hypothesise then that the α-derivative has the form Pα |x|−n−2|α|. Indeed

∂k(Pα|x|−n−2|α|) = Pα · −(n+ 2|α|)xk |x|−n−2|α|−2 + ∂kPα|x|−n−2|α|

=
(
−(n+ 2|α|)Pαxk + ∂kPα|x|2

)
|x|−n−2|α+ek|.

So we see that the form is preserved with the recurrence relation Pα+ek = −(n+2|α|)Pαxk+

∂kPα|x|2. Together with Pek = −nxk this shows that the Pα are all polynomials. Moreover,

these polynomials are homogeneous, since both terms of the recurrence relation increase

the degree by 1. So the homogeneous degree of Pα is |α|.
It is reasonable, and necessary for the question, to bound this by |Pα(x)| ≤ Ã(n, α)|x||α|.
Since |xk| ≤ |x|, this follows immediately from the triangle inequality and homogeneity,

with Ã(n, α) being the sum of the absolute values of the coefficients of Pα. Putting this all

together

|∂α|x|−n| = |Pα| |x|−n−2|α| ≤ Ã(n, α)|x||α||x|−n−2|α| = Ã(n, α)|x|−n−|α|.

Letting A(n, k) be the maximum of Ã(n, α) for |α| = k gives a constant that only depends

the order of the derivative.
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(b) For harmonic functions, Poisson’s representational formula reads

u(x) =
r2 − |x− a|2

nrωn

∫
∂B(a,r)

u(y)

|x− y|n
dσ(y)

where we have assumed, without loss of generality, that the ball is centred at 0. Applying

∂α to this requires Leibniz’s rule, but the first factor has at most two derivatives. Therefore

we have the following unusual form

|∂αu(x)| ≤ |r
2 − |x− a|2|
nrωn

∫
∂B(a,r)

∣∣∣∣∂α u(y)

|x− y|n

∣∣∣∣ dσ(y)

+
∑

k : αk≥1

| − 2(xk − ak)|
nrωn

∫
∂B(a,r)

∣∣∣∣∂α−ek u(y)

|x− y|n

∣∣∣∣ dσ(y)

+
∑

k : αk≥2

| − 2|
nrωn

∫
∂B(a,r)

∣∣∣∣∂α−2ek u(y)

|x− y|n

∣∣∣∣ dσ(y)

≤

[
|r2 − |x− a|2|

nrωn
A(n, |α|)

∫
∂B(a,r)

|x− y|−n−|α| dσ(y)

+
∑
k

2|x− a|
nrωn

A(n, |α| − 1)

∫
∂B(a,r)

|x− y|−n−|α|+1 dσ(y)

+
∑
k

2

nrωn
A(n, |α| − 2)

∫
∂B(a,r)

|x− y|−n−|α|+2 dσ(y)

]
‖u‖L∞ .

This bound holds for any value of a, so choose it to be the point where we are trying to

estimate the derivative, namely a = x. The main consequences are that |x − y| becomes

the constant value r for y ∈ ∂B(x, r) and the middle set of terms vanishes. Hence

|∂αu(x)| ≤

[
r

nωn
A(n, |α|)

∫
∂B(x,r)

r−n−|α| dσ(y)

+
∑
k

2

nrωn
A(n, |α| − 2)

∫
∂B(a,r)

r−n−|α|+2 dσ(y)

]
‖u‖L∞

=

[
1

nωn
A(n, |α|)r−n−|α|+1nωnr

n−1 +
∑
k

2

nωn
A(n, |α| − 2)r−n−|α|+1nωnr

n−1

]
‖u‖L∞

=

[
A(n, |α|) +

∑
k

2A(n, |α| − 2)

]
r−|α|‖u‖L∞ .

This proves the bound.

Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to

r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand

and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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