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Exercise sheet 9

27. Solutions of the homogeneous heat equation.

Let u : Rn × (0∞)→ R be a solution of the homogeneous heat equation, i.e. u̇−∆u = 0.

(a) Show for every λ ∈ R that uλ(x, t) := u(λx, λ2t) is a solution to the heat equation.

(2 Point(s))

(b) Show that v(x, t) := x · ∇u+ 2t u̇ is also a solution. (3 Point(s))

(c) In the situation of n = 1, one spatial coordinate, let v : R→ R be a given smooth function

and u(x, t) := v(t−1x2). Show that v is a solution of the differential equation

4z v′′(z) + (2 + z) v′(z) = 0 for z > 0

exactly when u satisfies the heat equation. (3 Point(s))

Solution.

(a) This follows because ∂t(u(λx, λ2t)) = λ2u̇(λx, λ2t) and ∂2
j (u(λx, λ2t)) = λ2(∂2

j u)(λx, λ2t).

(b) The clever approach to this question is to observe that v = ∂λuλ|λ=1 must be a solution

because uλ is a solution for all λ.

A direct approach also works. The derivatives with respect to the space and time coordi-

nates are:

∂tv = x · ∇u̇+ 2u̇+ 2t ü ∂2
j v = 2∂2

j u+ x · ∇(∂2
j u) + 2t ∂2

j u̇,

so the Laplacian is ∆v = 2∆u+ x · ∇(∆u) + 2t∆u̇. Everything then cancels as required.

(c) Set z = t−1x2. By direct computation again

∂t = (∂tz)∂z = −t−2x2∂z = −t−1z∂z

∂x = (∂xz)∂z = 2t−1x∂z

∂2
x = 2t−1∂z + (2t−1x)2∂2

z = 2t−1∂z + 4t−1z∂2
z .

The result follows since (∂t − ∂2
x)u = 0 if and only if −t−1(zv′ + 2v′ + 4zv′′) = 0.

28. An alternative description of the solutions of the heat equation.

Suppose that we are given an open region Ω ⊂ R and an infinitely differentiable function f :

Ω→ R. Suppose moreover that there is a constant M > 0 with

|(∆kf)(x)| ≤Mk,

for all x ∈ Ω and k ≥ 0. Here ∆k is the Laplace operator applied k-times. For example,

∆2f = ∆(∆f). By convention, we set ∆0f = f .
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Show now that

u(x, t) := (et∆)f(x) :=
∞∑
k=0

1

k!
(∆kf)(x)tk

defines an infinitely differentiable function on Ω × R and further that it solves the initial value

problem

u̇−∆u = 0, u(x, 0) = f(x).

(5 Point(s))

Solution. By the assumption, the sum is absolutely convergent for all (x, t) ∈ Ω× R:

∞∑
k=0

∣∣∣∣ 1

k!
(∆kf)(x)tk

∣∣∣∣ ≤ ∞∑
k=0

1

k!
(Mt)k = eMt <∞

and thus u(x, t) is well-defined. One set of criteria that permits us to differentiate u term-wise

is that a series converges at a point and the sum of the derivatives converge uniformly. For the

term-wise t-derivatives we have
∞∑
k=0

∣∣∣∣k . . . (k − l + 1)

k!
(∆kf)(x)tk−l

∣∣∣∣ =

∞∑
k=0

∣∣∣∣ 1

k!
(∆k+lf)(x)tk

∣∣∣∣ ≤ ∞∑
k=0

1

k!
M l(Mt)k = M leMt <∞,

which demonstrates uniform convergence in t on compact time intervals, so we may indeed

calculate u̇ term-wise.

It it not so clear that the function is smooth in x however. One idea I had was to use the mean

value theorem for multi-variable functions, which gives

|∂if(b)− ∂if(a)| = |∂2
i f(c)||b− a|

for some c ∈ {ta + (1 − t)b | t ∈ (0, 1)} where a and b only differ in the ith coordinate. This

shows how you might try to bound the odd-order derivatives in terms of even-order derivatives.

But I don’t see how to bound this by the Laplacian of f . I’m offering a can of soft drink as a

prize to any student who can prove the smoothness result or provide a counterexample.

Even without this, it is still possible to show that it is a solution to heat equation however, be-

cause one can prove a version of the term-wise derivative formula directly for the linear operator:

g 7→ lim
h→0

n∑
i=0

g(x+ hei)− 2g(x) + g(x− hei)
h2

,

which is equal to the Laplacian when the Laplacian exists. Observe then that

∞∑
k=0

∣∣∣∣ 1

k!
(∆k+lf)tk

∣∣∣∣ ≤ ∞∑
k=0

1

k!
Mk+l|t|k = M leMt <∞

shows the term-wise ∆-derivative is uniformly convergent for x ∈ Ω. Hence we may freely pass

these derivatives through the sum:

u̇−∆u =

∞∑
k=0

k

k!
(∆kf)(x)tk−1 −

∞∑
k=0

1

k!
(∆k+1f)(x)tk = 0.

Further, u(x, 0) = 1
0!∆

0f(x) = f(x).
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29. An alternative estimate for Corollary 3.4.

First let Ω′ ⊂ Rn × R be an open and connected region. A function v : Ω′ → R is called a

sub-solution of the heat equation if v̇ −∆v ≤ 0.

(a) Mean value estimate for sub-solutions Take any point (x, t) ∈ Ω′ and a small radius r > 0

so that E(x, t, r) ∈ Ω′ (refer to Definition 4.6). Modify the proof the mean value property

of the heat equation to show that

v(x, t) ≤ 1

4rn

∫
E(x,t,r)

v(y, s)
|x− y|2

|t− s|2
dny ds

holds for all sub-solutions. (4 Point(s))

Now let Ω ⊂ Rn be an open, bounded, and path connected region. We denote the parabolic

cylinder of Ω by ΩT := Ω× (0, T ] as in Section 4.4. Suppose that v : ΩT → R is a sub-solution

that extends continuously to ΩT .

(b) Maximum principle for sub-solutions Following on from (a), establish that if v takes the

value supΩT
v on ΩT , then it is constant. (4 Point(s))

(c) A monotonicity property For j ∈ {1, 2} let fj : Ω × (0, T ) → R, hj : Ω → R, and gj :

∂Ω× [0, T ] be smooth functions, and likewise let uj : Ω× (0, T ) be smooth functions with

continuous extensions to the boundary that satisfy
u̇j −∆uj = fj on Ω× (0, T )

uj(x, 0) = hj(x) on Ω

uj = gj on ∂Ω× [0, T ].

Suppose further that f1 ≤ f2, g1 ≤ g2, and h1 ≤ h2. Show in this case that u1 ≤ u2 as well.

(4 Point(s))

Solution.

(a) This question is a combination of the idea behind sub-harmonic functions and the mean-

value property for solutions of the heat equation. The proof of this part closely follows the

proof of Theorem 4.7 in the lecture script. We give the proof only at the point (x, t) = (0, 0);

it follows at other points by translation of the integral. Define

φ(r) =
1

rn

∫
E(0,0,r)

v(y, s)
|y|2

s2
dy ds

to be weighted average of v on E(0, 0, r), viewed as a function of r. Its derivative is shown

to be

φ′(r) =
1

rn+1

∫
E(0,0,r)

−4nv̇ψ + 4

(
− n

2s
− |y|

2

4s2

)
y · ∇v dy ds.

At this step we use the assumption that v̇ ≤ ∆v. This then shows that φ′(r) ≥ 0, so φ is

an increasing function of r. The script also contains a proof that limr→0 φ(r) = 4v(0, 0).

Finally then v(0, 0) = 1
4φ(0) ≤ 1

4φ(r) completes this question.
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(b) Suppose that M = v(x0, t0) is the maximum of v on ΩT . For any r such that E(x0, t0, r) is

contained in ΩT , the mean value property implies

M ≤ 1

4rn

∫
E(x,t,r)

v(y, s)
|x− y|2

|t− s|2
dny ds ≤M.

By an argument that we’ve seen before, if there were any point of E(x0, t0, r) where v 6= M

then (because of the continuity of v) we could take a small ball B ⊂ E around this point

where v < M − δ for some δ > 0. It would then follow that

M =
1

4rn

∫
E(0,0,r)

v(y, s)
|y|2

s2
dy ds

=
1

4rn

 ∫
E\B

+

∫
B

 v(y, s)
|y|2

s2
dy ds

≤ 1

4rn

∫
E\B

M
|y|2

s2
dy ds+

1

4rn

∫
B

(M − δ) |y|
2

s2
dy ds

= M
1

4rn

∫
E

|y|2

s2
dy ds− δ 1

4rn

∫
B

|y|2

s2
dy ds

= M − δ 1

4rn

∫
B

|y|2

s2
dy ds < M,

which is a contradiction. Thus it must be that v is constant on E(x0, t0, r). This can be

extended to any other points in ΩT by taking a path between the maximum and any point,

covering the path by (finitely many) sets of the form E(x, t, r) and applying the argument

on each set.

There is a small detail here that we should note, namely that (x0, t0) is on the boundary

of E(x0, t0, r). In particular every other point lies in the past: if (y, s) ∈ E(x0, t0, r) and

s ≥ t0 then (y, s) = (x0, t0). Therefore this argument also applies to points in Ω × {T},
which is part of the boundary of ΩT . This is different than for sub-harmonic functions and

motivates the definition of ΩT which includes the points (x, T ). The argument does not

apply to other points of the boundary, because there is no r such that E(x, t, r) is contained

in the domain.

(c) This is also very familiar. Set v = u1 − u2. Because (∂t − ∆)v = f1 − f2 ≤ 0, we know

that v is a sub-solution. From the boundary data, we also know that v is non-positive on

Ω and ∂Ω × [0, T ]. We know that if maximum of v occurs on ΩT , then v is constant and

so evalutation at a known boundary point shows that it is a non-positive constant. If it is

non-constant, then the maximum of v on ΩT occurs on Ω or ∂Ω× [0, T ] by part (b). Hence

the function is bounded from above by a non-positive number.
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Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to

r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand

and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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