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Ross Ogilvie

Introduction to Partial Differential Equations

Exercise sheet 11

33. Scaling the heat kernel.

Find the heat kernel of

(a) R/cR with c > 0, (3 Point(s))

(b) [a, b] with −∞ < a < b <∞. (3 Point(s))

Solution.

(a) To begin, think about what functions there are between R/cZ and R/Z. The obvious one

is x 7→ x/c. How does the fundamental solution for n = 1 behave under scaling then?

Φ(cx, c2t) =
1√

4πc2t
exp

(
−(cx)2

4c2t

)
=

1

c
Φ(x, t).

So the fundamental solution on R/cZ is 1
c Φ̃(z/c, t/c2). From a previous exercise (30(i)),

this must be the heat kernel.

(b) In a similar way, one transformation from [a, b] to [0, 1] is x−a
b−a . We already know how the

fundamental solution behaves under scaling, but it does not simplify when shifted. How-

ever, remember that the shifting behaviour is built into the idea of the heat kernel/Greens

function, namely G(x, y) = φ(x− y). If we set H[a,b](x, y, t) = 1
b−aH[0,1]

(
x−a
b−a ,

y−1
b−a ,

t
(b−a)2

)
then clearly it vanishes at the boundaries x = a, b. Further

H[a,b](x, y, t)− Φ(x− y, t)

=
1

b− a

[
H[0,1]

(
x− a
b− a

,
y − a
b− a

,
t

(b− a)2

)
− Φ

(
x− y
b− a

,
t

(b− a)2

)]
=

1

b− a

[
H[0,1]

(
x− a
b− a

,
y − a
b− a

,
t

(b− a)2

)
− Φ

(
x− a
b− a

− y − a
b− a

,
t

(b− a)2

)]
=

1

b− a
[
H[0,1]

(
x′, y′, t′

)
− Φ

(
x′, y′, t′

)]
,

so this must solve the homogenous heat equation and vanish initially (t = 0 ⇔ t′ = 0).

Therefore it is the heat kernel.

34. Some like it hot.

Find the solution u : (0, π)× R+ → R of the initial and boundary value problem:
u̇− 7∂xxu = 0 for x ∈ (0, π), t > 0

u(0, t) = u(π, t) = 0 for t > 0

u(x, 0) = 3 sin(2x)− 6 sin(5x) for x ∈ (0, π).

(6 Point(s))
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Solution. Firstly, this isn’t quite the heat equation, but we can rescale time to absorb the

factor 7, namely s = 7t. We have just calculated the heat kernel for an interval, so let’s use it!

By Theorem 4.16

u(x, s) = 0− 0 +

∫
[0,π]

[3 sin(2y)− 6 sin(5y)]H[0,π](x, y, s) dy

= 0− 0 +

∫
[0,π]

[3 sin(2y)− 6 sin(5y)]
1

π
H[0,1]

(
x
π ,

y
π ,

s
π2

)
dy

=

∫ π

0
[3 sin(2y)− 6 sin(5y)]

1

π

∞∑
k=1

e−k
2s2 sin(kx) sin(ky) dy

=
2

π

∞∑
k=1

e−k
2s sin(kx)

[∫ π

0
3 sin(2y) sin(ky) dy −

∫ π

0
6 sin(5y) sin(ky) dy

]
.

Know it is relatively easy to see, by applying integration by parts twice, that
∫ π
0 sinmz sinnz is

zero if m 6= n and is π/2 if they are equal. Thus all but two terms of the sum are zero.

u(x, s) =
2

π
e−4s sin(2x) 3

π

2
− 2

π
e−25s sin(5x) 6

π

2

= 3e−4s sin(2x)− 6e−25s sin(5x)

u(x, t) = 3e−28t sin(2x)− 6e−175t sin(5x)

The temperature falls very quickly, so make sure you have a jacket. We can also check our

solution:

u̇(x, t) = −28 · 3e−28t sin(2x) + 175 · 6e−175t sin(5x)

∂xxu(x, t) = −4 · 3e−28t sin(2x) + 25 · 6e−175t sin(5x).

Because this is just the 1-dimensional heat equation, there are a variety of other effective meth-

ods: separation of variables to reduce it to two ODES, or a Laplace transform to reduce it to an

inhomogeneous ODE are two that spring to mind.

Another approach to the above integrals would be to write the heat kernel in the form

Φ̂(n, t)e2πinx. Then again all but two of the integrals will be zero and we see the solution is the

sum of two Fourier transforms of the fundamental solution.

35. Out of the frying pan, into the fire.

Find the solution u : (0, π)× R+ → R of the initial and boundary value problem:
u̇− ∂xxu = 0 for x ∈ (0, π), t > 0

u(0, t) = u(π, t) = 0 for t > 0

u(x, 0) = x2(π − x) for x ∈ (0, π).

Further, show that your solution obeys

∫ π

0
u(x, t) dx = 8

∑
k odd

1

k4
e−k

2t. (8 Bonus Point(s))
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Solution. We will again you the heat kernel and the representation formula, except this the

solution will not be elementary:

u(x, t) = 0− 0 +

∫
[0,π]

y2(π − y)
1

π
H[0,1]

(
x
π ,

y
π ,

t
π2

)
dy

=
2

π

∞∑
k=1

e−k
2t sin(kx)

∫
[0,π]

y2(π − y) sin(ky) dy.

The integral can be computed by repeated integration by parts and is −2πk−3(1 + 2 cos kπ).

Hence

u(x, t) = −4
∞∑
k=1

k−3(1 + 2 cos kπ) e−k
2t sin(kx).

This is the solution. We can easily compute its value numerically because the series is so rapidly

convergent. But we see that it is quite difficult to understand the overall shape. For example,

what it the highest temperature of the rod at any given time? Despite the initial condition being

positive, it is even not immediately clear that the solution is even positive (though it is, this

follows because it is an alternating series and so is bounded between its partial sums). Let’s

split this into even and odd terms:

u(x, t) = 4
∞∑

k odd

k−3 e−k
2t sin(kx)− 12

∞∑
k even

k−3 e−k
2t sin(kx).

Because
∫ π
0 sin kx dx is zero if k is even and 2/k if k is odd, the result about the total heat

in the domain follows. Notice that the total amount of heat is not conserved in this situation,

because the ends of the rod are being kept at a constant temperature of zero and so heat is

escaping through these ends.

36. Do nothing by halves ... again.

Consider the following heat equation with initial and boundary conditions, on the set Ω = (0,∞):
u̇−∆u = 0 on Ω× (0,∞)

u(0, t) = 0 for t ≥ 0

u(x, 0) = h(x) for x ∈ Ω,

where h is a bounded continuous function on Ω with h(0) = 0. We are seeking a solution which is

C2(Ω×(0,∞)) and extends continuously to Ω× [0,∞). Note, Ck(A) for a non-open set A means

that all derivatives up to an including order k (which are only defined on intA) are continuous

and also extend continuously to A.

(a) Suppose that we had such a solution u(x, t). Extend both u and h to functions ũ : R ×
(0,∞) → R and h̃ : R → R that are odd in x, ie ũ(x, t) = −ũ(−x, t) and h̃(x) = −h̃(−x).

What regularity must ũ have? (2 Point(s))
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(b) Suppose now that ũ has sufficient regularity. Show that it solves the following Cauchy

problem: v̇ −∆v = 0 on R× (0,∞)

v(x, 0) = h̃(x) for x ∈ R.

(2 Point(s))

(c) Show that when u is a bounded solution of the PDE on the half-line, that |u| is bounded

by the supremum of |h|. Explain why it follows that a bounded solution is unique.

(2 Point(s))

(d) Show that

u(x, t) =

∫ ∞
0

1√
4πt

(
1− e−

xy
t

)
exp

(
−|x− y|

2

4t

)
h(y) dy

is the unique bounded solution. (3 Point(s))

(e) Prove the estimate

|u(x, t)| ≤ x√
4π t3/2

∫ ∞
0

exp

(
−|x− y|

2

4t

)
y |h(y)| dy.

Hint: The exponential function is convex, so bounded by its tangent line.

(3 Point(s))

Solution.

(a) The reflected functions have the same regularity away from the origin, so we only need to

investigate the regularity at x = 0. Both u and h are zero for x = 0, so their odd extensions

are continuous

lim
x→0−

h̃(x) = lim
x→0−

−h(−x) = lim
x→0+

−h(x) = 0 = lim
x→0+

h̃(x).

In general we only assume h(x) is continuous, so let us focus on u.

Suppose u ∈ C2(Ω× (0,∞)) and that it extends continuously to Ω× [0,∞). Observe that

by the definition of partial derivatives

u̇(0, t) = lim
h→0

u(0, t+ h)− u(0, t)

h
= lim

h→0

0− 0

h
= 0.

Next, u̇ ∈ C1(Ω × (0,∞)), which means that the limit of u̇ as x → 0 exists and (from

above) is zero. Hence its odd extension is continuous. The same reasoning shows that ∂ttũ

is continuous.

For the x derivatives, the first derivative always extends to x = 0 continuously because

lim
x→0−

∂ũ

∂x
(x, t) = lim

x→0−

∂

∂x
(−u(−x, t)) = lim

x→0−

∂u

∂x
(−x, t) = lim

x→0+

∂u

∂x
(x, t).

Since it follows that ∂xu(0, t) = 0, we apply the same argument as above to see that ∂xtũ

is continuous on R× (0,∞). Finally, we also know that ∆u = ∂xxu ∈ C(Ω× (0,∞)). From

the PDE then, the limit as x→ 0 of ∆u is the same that of u̇ and hence is zero.

In summary ũ ∈ C2(R× (0,∞)).
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(b) It clearly solves the problem for all x 6= 0. We already saw in the previous question

that both u̇ and ∂xxu are zero on x = 0, so their equality is somewhat boring. Likewise

ũ(0, 0) = 0 = h̃(0).

(c) This follows from applying the maximum principle to the reflected function (Theorem 4.11):

|u| ≤ |ũ| ≤
∑

(x,t)∈R×(0,∞)

|ũ(x, t)| ≤
∑
x∈R
|h̃(x)| =

∑
x∈R
|h(x)|.

If there were two bounded solutions, their difference would also be a bounded solution with

initial condition h ≡ 0. But then it follows that the difference must be zero everywhere.

(d) We know the solution for ũ: this is Theorem 4.12,

√
4πt u(x, t) =

√
4πt ũ(x, t)

=

∫ ∞
−∞

h̃(y) exp

(
−(x− y)2

4t

)
dy

=

∫ ∞
0

h(y) exp

(
−(x− y)2

4t

)
dy −

∫ 0

−∞
h(−y) exp

(
−(x− y)2

4t

)
dy

=

∫ ∞
0

h(y) exp

(
−(x− y)2

4t

)
dy −

∫ ∞
0

h(y) exp

(
−(x+ y)2

4t

)
dy

=

∫ ∞
0

h(y)

[
exp

(
−(x− y)2

4t

)
− exp

(
−(x+ y)2

4t

)]
dy

=

∫ ∞
0

h(y)

[
exp

(
−(x− y)2

4t

)
− exp

(
−(x− y)2 + 4xy

4t

)]
dy

=

∫ ∞
0

h(y)
[
1− exp

(
−xy
t

)]
exp

(
−(x− y)2

4t

)
dy

(e) Following the hint, the tangent line of w = 1 − e−z at z = 0 is just w = z and it bounds

the function from above. It follows from the last part that

√
4πt |u(x, t)| ≤

∫ ∞
0
|h(y)|

[xy
t

]
exp

(
−(x− y)2

4t

)
dy

Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to

r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand

and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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