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6. Linear Partial Differential Equations

(a) Let b : Rn → Rn and c : Rn → R be continuously differentiable functions. Then, let

x : I → Rn be a solution of the ordinary differential equation

ẋ(s) = b(x(s))

and u : Rn → R be a solution of the homogeneous, linear partial differential equation

b(x) · ∇u(x) + c(x)u(x) = 0.

Show that the function z(s) := u(x(s)) is a solution of the ordinary differential equation

ż(s) = −c(x(s))z(s).

(2 point(s))

(b) Consider a PDE of the form F (∇u(x), u(x), x) = 0. Suppose that F is linear in the

derivatives and has continuously differentiable coefficients. That is, it can be written in the

form

F (p, z, x) = b(z, x) · p + c(z, x)

with b and c continuously differentiable. Show that the characteristic curves (x(s), z(s)) for

z(s) := u(x(s)) can be described by ODEs that are independent of p(s) := ∇u(x(s)).

. (4 point(s))

(c) With the help of the previous part, re-derive the solution of the inhomogeneous transport

equation. (2 point(s))

Solution.

(a) By computation

d

ds
z(s) = ∇u(x(s)) · ẋ(s) = ∇u(x(s)) · b(x(s)) = −c(x(s))u(x(s)) = −c(x(s))z(s).

(b) We follow the working at the beginning of Section 1.5 of the lecture script, specialising the

argument to this particular case. As there, we have

dp

ds
= Hess(u)ẋ =

∑
j

∂i∂ju ẋj

 ,

where Hess(u) is the matrix of second derivatives of u. The total derivative of F with

respect to x is

0 = ∂pF · ∂ip + ∂zF∂iz + ∂iF

= b · ∂ip + ∂zF pi + ∂iF

0 = Hess(u)b + ∂zF p +∇F.
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If we suppose that the characteristic has the property that ẋ = b(z, x), then

ṗ = −∂zF p−∇F.

So p(s) is described by an ODE and the assumption about ẋ does not involve p. Finally,

ż = ∇u · ẋ = p · ẋ = p · b = −c(z, x)

since by assumption F (p(s), z(s), x(s)) = 0. This also does not depend on p. Hence we

have the ODE for the characteristics, and the ẋ and ż equations do not depend on p.

(c) The inhomogeneous transport equation is defined by

F (p, z, x) = b̃ · p− f(x̃)

where x̃ = (x, t) and b̃ = (b, 1) in Rn+1. From the equations we have just derived, we see

that ˙̃x(s) = (b, 1) tells us that the characteristic lines are straight lines x̃(s) = (bs + x0, s).

Or in non-parametric form x = bt+ x0. The next ODE is ż(s) = f(x(s), s) = f(x0 + bs, s).

This too can be directly integrated now

z(t)− z(0) =

∫ t

0
ż(s) ds =

∫ t

0
f(x0 + bs, s) ds =

∫ t

0
f(x− bt + bs, s) ds.

Together with the initial condition z(0) = u(x(0), 0) = u(x0, 0) = g(x − bt) this is exactly

the solution that we found previously.

7. Solving PDEs Solve the initial value problems of the following PDEs using the method of

characteristics. You may assume that g is continuously differentiable on the corresponding

domain.

(a) x1∂1u + x2∂2u = 2u on the domain x1 ∈ R, x2 > 0, with initial condition u(x1, 1) = g(x1).

(4 point(s))

(b) x1∂2u− x2∂1u = u on the domain x1, x2 > 0, with initial condition u(x1, 0) = g(x1).

(4 point(s))

(c) x1∂1u + 2x2∂2u + ∂3u = 3u on x1, x2 ∈ R, x3 > 0, with initial condition u(x1, x2, 0) =

g(x1, x2).

(4 point(s))

(d) u∂1u + ∂2u = 1 on the domain x1, x2 > 0, with initial condition u(x1, x1) = 1
2x1.

(5 point(s))

Solution. These PDEs are all of the linear type of the previous question, so we can use the

ODEs for the characteristics that we have already derived.
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(a) Write the PDE as (x1, x2) · p − 2z = 0. The the ODE for ẋ is ẋi(s) = xi, which is solved

by the exponential x(s) = es(a, 1). These are the characteristics. Likewise ż = 2z gives

z(s) = e2sz(0) = e2su(a, 1), which tells us the value of u on those lines. Now we must

apply the initial condition. Given a point (x1, x2) it must lie on the same characteristic as

(x1/x2, 1), which is easy to see if you rescale the parameter r = es > 0. Then

u(es(a, 1)) = u(x(s)) = z(s) = e2su(a, 1)

u(x1, x2) = u(x2(x1/x2, 1)) = (x2)
2u(x1/x2, 1) = x22g(x1/x2).

(b) This PDE is (−x2, x1) · p− z = 0. The system of ODEs therefore reads in part

ẋ1 = −x2, ẋ2 = x1,

which is the well know system solved by the sinusoidal functions. From the boundary (x1, 0)

we see that x2 = 0 when s = 0. Therefore x2 = r sin s and x1 = r cos s for a constant r.

The ODE describing the values of u is ż = z, so u(x(s)) = esu(x(0)) = esu(r, 0) = esg(r).

Solving for the parameters r, s in terms of the point x gives

u(x) = earctan(x2/x1)g(|x|).

(c) This is quite similar to part (a), albeit with more variables. From F = (x1, 2x2, 1) · p− 3z

it follows that

x(s) = (x10e
s, x20e

2s, x30 + s) = (aes, be2s, s).

Already we can determine the appropriate parameter values for any point: s = x3, a =

x1e
−x3 , and b = x2e

−2x3 . The the equation for the values is z = z(0)e3s, so

u(x) = e3su(a, b, 0) = e3x3g
(
x1e

−x3 , x2e
−2x3

)
.

(d) This PDE, F = (z, 1) · p − 1 is a little different to the others, because of the z in the

coefficients of p. This creates a linkage in the system of ODEs:

ẋ1 = z, ẋ2 = 1, ż = 1.

Fortunately, we can solve for z first this time quite easily: z(s) = s + z(0). Then x(s) =

(12s
2 + sz(0) + a, s+ a), using the fact that the initial boundary is (a, a). Hence we can say

that z(0) = u(x(0)) = u(a, a) = 1
2a and a = x2 − s, which allows us to solve for s:

x1 =
1

2
s2 + s

1

2
(x2 − s) + x2 − s

x1 − x2 =
1

2
x2s− s

s =
2x1 − 2x2
x2 − 2

.

Finally, what we are interested in is the value of the solution u on these curves, and

u(x(s)) = z(s) = s + z(0) = s + 1
2(x2 − s), ie

u(x) =
1

2
x2 +

1

2

2x1 − 2x2
x2 − 2

.
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Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to

r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand

and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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