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Ross Ogilvie

Introduction to Partial Differential Equations

Exercise sheet 5

General Comment: Distributions are defined in Definition 2.6 as continuous linear maps. Recall

that a linear map is continuous if and only if it is a bounded linear operator (⇔ F (B(0, 1)) is compact).

But the topology is a little complicated to describe in this situation, so please just use the condition

given in the definition directly.

13. The Delta Quadrant.

(a) Show that

F : C∞0 (R)→ R, φ 7→
∫
R
x3 · φ′′(x) dx

is a distribution on R, and define a function f : R→ R with

F (φ) =

∫
R
f(x) · φ(x) dx for all φ ∈ C∞0 (R). (4 Point(s))

(b) Show that the Dirac-Distribution

δ : C∞0 (R)→ R, φ 7→ φ(0)

is indeed a distribution on R and prove that there does not exist a function g : R→ R with

δ(φ) =

∫
R
g(x) · φ(x) dx for all φ ∈ C∞0 (R).

(2+4 Point(s))

(c) Calculate the derivatives F ′ and δ′ of the distributions in parts (a) und (b) respectively.

(2+2 Point(s))

Solution.

(a) We need to show that F is a linear map F : C∞0 → R that is continuous with respect to

the semi-norms ‖ · ‖K,α. The main obstacle is that x3 6∈ L1(R), otherwise the continuity

is immediate. So choose any compact K. It contains a furthest point xm from the origin:

|xm| = R. Then for any φ ∈ C∞0 (K),

|f(φ)| ≤
∫
K
|x3||φ′′| dx ≤ R3

∫
K
|φ′′| dx ≤ R3

∫
K

sup
y∈K
|φ′′(y)| dx = R3µ(K)‖φ‖K,(2).

This shows that F is continuous. It is also linear; for constants a, b ∈ R

F (aφ+ bψ) =

∫
R
x3(aφ+ bψ)′′ dx =

∫
R
x3(aφ′′ + bψ′′) dx = aF (φ) + bF (ψ).

Not only is F a distribution, it is actually one of the special distributions that comes from

a function. To see this, apply integration by parts twice to an interval [a, b] ⊃ suppφ:∫
R
x3φ′′(x) dx = 0−

∫
R

3x2φ′(x) dx = −0 +

∫
R

6xφ(x) dx,

so the sought after f(x) is 6x.
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(b) The addition and scaling of functions is defined pointwise, so linearity of this functional

follows by definition. For continuity, choose any compact set K and consider test functions

φ ∈ C∞0 (K). We have

|δ(φ)| = |φ(0)| ≤ sup
x∈K
|φ(x)| = ‖φ‖K,(0).

It remains to show that this distribution is not induced by a function. To this end, consider

the standard bump function ψ(x) = A exp(|x|2 − 1)−1 for |x| < 1 and identically zero

otherwise. We choose the constant A so that the integral
∫
R ψ = 1. The associated

family of functions ψε = ε−1ψ(ε−1x) have the properties suppψε ⊆ [−ε, ε],
∫
R ψε = 1, and

ψε(0) = ε−1.

Suppose now that the distribution δ was induced by a function g. We compute

ε−1 = δ(ψε) =

∫ ε

−ε
g(x)ψε(x) dx ≤

∫ ε

−ε
( sup
y∈[−ε,ε]

g(y))ψε(x) dx = sup
y∈[−ε,ε]

g(y).

But the limit as ε → 0 of the right side is g(0) and the limit of the left side is ∞. Thus g

cannot be a function on R.

We can also see how the functional applies to ψε(x − x0) for x0 6= 0. For small enough ε,

δ(ψε(x−x0)) = 0 because 0 then lies outside its support. By the same caluclation as above

then 0 = supy∈[x0−ε,x0+ε] and in the limit as ε→ 0 this implies g(x0) = 0. Therefore we see

that g(x) = 0 almost everywhere. But then g does not have the same property as δ.

(c) The definition of the derivative of a distribution is F ′(φ) = −F (φ′). Therefore

F ′(φ) = −
∫
R
x3φ′′′(x) dx =

∫
R

6φ(x) dx.

This demonstrates that as F is induced by 6x, so too is F ′ induced by 6. In this sense the

derivative of distributions is a generalisation of the normal derivative.

We apply the same definition to δ:

δ′(φ) = −δ(φ′) = −φ′(0).

14. An induced distribution.

Let F ∈ D′(Rn × Rm) and ψ ∈ C∞0 (Rm). Define

G : C∞0 (Rn)→ R,

ϕ 7→ F (ϕ× ψ).

Show that G is a Distribution on C∞0 (Rn), i.e. G ∈ D′(Rn).

(Caution: Don’t forget to show, that G is well-defined.) (5 Point(s))

Solution. For ψ ∈ C∞0 (Rm) and ϕ ∈ C∞0 (Rn), note that ψϕ is again a smooth function, and

its support it contain in the Cartesian product of the supports of ψ and ϕ. So we can indeed
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apply F to the product. As to continuity of G, let L = suppψ ⊂ Rm and choose a compact set

K ⊂ Rn. For any function ϕ ∈ C∞0 (K), the norm estimate for F gives

|G(ϕ)| = |F (ϕψ)| ≤ C1‖ϕψ‖K×L,α1 + · · ·+ CM‖ϕψ‖K×L,αM
.

We can also decompose the norms like so

‖ϕψ‖K×L,α = sup
(x,y)∈K×L

|∂α(ϕ(x)ψ(y))|

= sup
(x,y)∈K×L

∣∣∣∂α′
ϕ(x)∂α

′′
ψ(y))

∣∣∣
≤ sup

x∈K
|∂α′

ϕ(x)| sup
y∈L
|∂α′′

ψ(y))|

= ‖ϕ‖K,α′ ‖ψ‖L,α′′ ,

where α = (α′, α′′) ∈ Nn+m0 = Nn0 × Nm0 is a decomposition of the multiindex. In this situation,

the norms of ψ are fixed constants, so this is a linear combination of the norms of φ on K.

Substitution of these estimates into the prior bound of |G(ϕ)| gives a bound of the required form.

15. The Crucial Kernel.

When a the partial derivative of a function is zero, it is constant in that direction. In this

question we investigate what it means when a distribution has a derivative that is zero. Let

F ∈ D′(Rn × R) and let (x, t) with x ∈ Rn and t ∈ R denote the elements in Rn × R.

We want to show that: ∂tF = 0 if and only if there is a distribution G ∈ D′(Rn) such that

F (ϕ) = G

(∫
R
ϕ(−, t)dt

)
.

From a certain point of view then, F does not depend on the t coordinate. In order to show the

statement prove the following steps. First, define

I : D(Rn × R)→ D(Rn),

ϕ 7→
(
x 7→

∫ ∞
−∞

ϕ(x, t) dt

)
.

(a) (Optional) Show, that I is continuous and linear. (3 Point(s))

(b) Show that a function ϕ ∈ D(Rn × R) belongs to the kernel of I if and only if it is the

t-derivative of another such function. (3 Point(s))

(c) Show that for F ∈ D′(Rn × R), ∂tF = 0 if and only if F ≡ 0 on the kernel of I.

(2 Point(s))

(d) Finally show the statement by showing that ∂tF = 0 if and only if there exists a G ∈ D′(Rn)

with F (ϕ) = G(I(ϕ)). (2 Point(s))

Solution.
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(a) Linearity follows from linearity of the integral, but perhaps it is good to establish notations:

I(aϕ+ bψ)(x) = a

∫ ∞
−∞

ϕ(x, t) dt+ b

∫ ∞
−∞

ψ(x, t) dt = aI(ϕ)(x) + bI(ψ)(x).

The function I(ϕ) is also smooth, because we may pass derivatives through the integral

sign.

The question of continuity depends on which norms are being used, and is more subtle.

Recall that a linear function is continuous if and only if it is a bounded operator. This

explains Definition 2.6. It is enough therefore to bound I(ϕ) with respect to all of the semi-

norms on D(Rn). Fix any compact sets K ⊂ Rn and L ⊆ Rn × R, and choose ϕ ∈ C∞0 (L).

‖I(ϕ)‖K,α = sup
x∈K

∣∣∣∣∂α ∫ ∞
−∞

ϕ(x, t) dt

∣∣∣∣ ≤ sup
x∈K

∫ ∞
−∞
|∂αϕ(x, t)| dt.

Now, we don’t need to integrate from −∞ to ∞ because ϕ has compact support. By

projecting L to R, we see that there is a bound T ∈ R such that if |t| > T then ϕ(x, t) = 0

for all x ∈ Rn.

sup
x∈K

∫ ∞
−∞
|∂αϕ(x, t)| dt = sup

x∈K

∫ T

−T
|∂αϕ(x, t)| dt ≤ 2T sup

x∈K
sup

t∈[−T,T ]
|∂αϕ(x, t)| ≤ 2T‖ϕ‖L,α.

This shows that I is a bounded linear operator and therefore is continuous.

(b) Firstly, what does it mean for ϕ to be in the kernel of I? It means for all x ∈ Rn∫ ∞
−∞

ϕ(x, t) dt = 0.

Suppose then that ϕ is in the kernel of I. We must show that there exists ψ ∈ D(Rn × R)

such that ϕ = ∂tψ. Define

ψ(x, t) =

∫ t

−∞
ϕ(x, t) dt.

This is a smooth function and its derivative is ϕ, so it remains to show that it has compact

support. As we saw in the previous part, there exists a bound T such that for all |t| > T

the function ϕ(x, t) = 0 for any x ∈ Rn. Thus ψ(x, t) = 0 for t < −T and ψ(x, t) is a

constant for t > T . However, the assumption that ϕ is in the kernel of I tells us that this

constant is zero. Thus ψ also has compact support.

Conversely, take any ψ ∈ D(Rn × R). Note that∫ ∞
−∞

∂tψ dt = ψ
∣∣∣t=∞
t=−∞

= 0,

so that ∂tψ is in the kernel of I.

(c) F is a distribution and ∂tF means the distributional derivative, ie ∂tF (ϕ) = −F (∂tϕ).

Suppose that ∂tF = 0 and that ϕ is in the kernel of I. From part (b), we know that

ϕ = ∂tψ for some ψ ∈ D(Rn × R). Therefore we apply ∂tF to ψ to conclude

0 = ∂tF (ψ) = −F (ϕ).
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This shows that F vanishes on the kernel of I.

In the other direction, suppose that F vanishes on the kernel of I and take any ψ ∈
D(Rn × R). Again by part (b), we know that ∂tψ is in the kernel of I. Therefore

∂tF (ψ) = −F (∂tψ) = 0.

(d) Before we address F , note that I is surjective. Explicitly, if ω : R → R is a function with

compact support and
∫
R ω(t) dt = 1, and g is any function in D(Rn) then I(g(x)ω(t)) = g.

Therefore, as topological vector spaces, D(Rn × R)/ ker I and D(Rn) are isomorphic.

If ∂tF = 0, from the part (c) we know that F vanishes on ker I and so this isomorphism in-

duces a well defined map G ∈ D′(Rn) such that F (ϕ) = G(I(ϕ)). The reverse is immediate:

if F (ϕ) = G(I(ϕ)) then F vanishes on the kernel of I and so must have ∂tF = 0.

16. You can now write “Transport-Distribution Expert” on your résumé.

In this exercise we show that there is a one-to-one correspondence between distributions solving

the linear transport equation and distributions describing the corresponding initial values g.

(a) Show that for any distribution F ∈ D′(Rn × R) which solves the transport equation (∂t +

b∇)F = 0, the following distribution solves the equation ∂tF̃ = 0:

F̃ ∈ D′(Rn × R) with F̃ (φ) = F (φ̃) and φ̃(y, t) = φ(y − bt, t) for all (y, t)∈ Rn × R.

(2 Point(s))

(b) Show that for any mollifier (λε)ε>0 on R and any φ ∈ C∞0 (Rn) the functions

φ× λε : Rn × R→ R with (x, t) 7→ φ(x)λε(t)

belong to C∞0 (Rn × R). (1 Point(s))

(c) Recall I from the The Crucial Kernel. Let F̃ ∈ D(Rn×R) solve the equation ∂tF̃ = 0. We

have already proved that there exists a distribution G ∈ D(Rn), such that F̃ (φ) = G(I(φ)).

Argue therefore that F̃ (φ× λε) does not depend on ε > 0. (1 Point(s))

(d) Show that for any G ∈ D(Rn) the following F ∈ D(Rn × R) solves (∂t + b∇)F = 0:

F : C∞0 (Rn × R)→ R, φ 7→ G

(∫
R

T−tbφ(·, t) dt

)
,

where T−tb is a translation operator. (3 Point(s))

(e) Show that G→ F is bijective onto {F ∈ D(Rn × R) | (∂t + b∇)F = 0}. (3 Point(s))

Solution.
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(a) The core of this question is how does the chain rule of differentiation look for distributions?

The order of operations is a a little subtle, so to be clear let us write the translation

operator T (φ) = φ(y − bt, t) explicitly. In other words, F̃ (φ) = F (Tφ). First observe that

T commutes with the spatial derivatives:

∂kφ̃ = ∂k(Tφ) = ∂k(φ(x− bt, t)) = T (∂kφ).

On the other hand, T does not commute with the time derivative. By the chain rule,

∂tφ̃ = ∂t(Tφ) = T (∇̃φ) · ∂tT =

(
T (∇φ)

T (∂tφ)

)
·

(
−b
1

)
= −b · T (∇φ) + T (∂tφ),

where ∇̃ is the gradient with respect to Rn × R and ∇ is the gradient with respect to Rn.

Together this says that

T (∂tφ) = ∂t(Tφ) + b · T (∇φ) = ∂t(Tφ) + b · ∇(Tφ).

Now we are in a position where we can address the question. In the following we use the

definition of the derivative of a distribution and the definition of F̃ and pay close attention

to the order of operators:

∂tF̃ (φ) = −F̃ (∂tφ) = −F (T (∂tφ)) = −F (∂t(Tφ) + b · ∇(Tφ))

= −F (∂t(Tφ))− F (b · ∇(Tφ)) = ∂tF (Tφ) + b · ∇F (Tφ)

= (∂t + b · ∇)F (Tφ) = 0.

(b) The product of two smooth functions is smooth. So it only remains to show that the

product has compact support. Let K is the support of φ and the support of λε is I. If

(x, t) 6∈ K × I then either φ(x) = 0 or λε(t) = 0 (or both). In both cases the product is

zero. This shows that the support of the product is contained in K× I, which is a bounded

set, and thus the support of the product must be compact.

(c) We compute

I(φ× λε)(x) =

∫ ∞
−∞

φ(x)λε(t) dt = φ(x)

∫ ∞
−∞

λε(t) dt = φ(x),

because the integral of a mollifier is always 1. In other words, I(φ× λε) = φ. As explained

the question, the condition that ∂tF̃ = 0 means that it is of the form F̃ (ψ) = G(I(ψ)) for

some distribution G. Therefore F̃ (φ× λε) = G(I(φ× λε)) = G(φ) is independent of ε.

(d) Again, the order of operators in this question is somewhat subtle. Let us introduce a

translation S(φ) = φ(x+ bt, t). This is similar to T from part (a), in fact they are inverses,

and we have that S commutes with ∇ but

S(∂tφ) = ∂t(Sφ)− b · S(∇φ).

One could also write the integral part of this formula using the operator I, but we don’t

have to interchange its position, so we will leave it as an integral so as not to be more
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abstract than necessary. Perhaps it would be a good exercise to rewrite the following proof

using I.

In this notation we have that

F (φ) := G

(
x 7→

∫
R
Sφ dt

)
.

Let us compute the t-derivative of this F : for any test function φ,

∂tF (φ) = −F (∂tφ) = −G
(
x 7→

∫
R
S(∂tφ) dt

)
= −G

(
x 7→

∫
R
∂t(Sφ)− b · S(∇φ) dt

)
= −G

(
x 7→ 0−

∫
R
b · S(∇φ) dt

)
=

n∑
k=1

bkG

(
x 7→

∫
R
S(∂kφ) dt

)

=
n∑
k=1

bkF (∂kφ) = −b · ∇F (φ).

This shows that it solves the transport equation.

(e) Part (d) shows that the mapping G 7→ F is well-defined. Suppose then that we had a

solution F of the transport equation. Part (a) shows there is an associated distribution

F̃ with the property that ∂tF̃ = 0. Using part (c) we have F̃ (φ) = G(I(φ)) for some

G ∈ D′(Rn). This gives a mapping F 7→ G.

It remains to show that these mappings are inverse to one another, but observe

F (φ) = F (TSφ) = F̃ (Sφ) = G(I(Sφ)),

which crucially relies on T and S being inverse translations. The mapping is therefore

bijective.

Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to

r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand

and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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