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17. Preparing the Mean Value Theorem.

Let f : Rn → R be a continuous function, x0 ∈ Rn, and ∂B(x0, r) := {x ∈ Rn | ‖x − x0‖ = r}
for r > 0. Show that the function

F (r) :=
1

σ(∂B(x0, r))

∫
∂B(x0,r)

f(x) dσ(x)

converges to f(x0) as r → 0. (4 Point(s))

Solution. F (r) is a single variable function and so the limit is just in the ordinary sense:

|F (r)− f(x0)| =

∣∣∣∣∣ 1

σ(∂B(x0, r))

∫
∂B(x0,r)

f(x) dσ(x)− f(x0)

∣∣∣∣∣
=

∣∣∣∣∣ 1

σ(∂B(x0, r))

∫
∂B(x0,r)

f(x) dσ(x)− f(x0)×
1

σ(∂B(x0, r))

∫
∂B(x0,r)

dσ(x)

∣∣∣∣∣
=

∣∣∣∣∣ 1

σ(∂B(x0, r))

∫
∂B(x0,r)

f(x)− f(x0) dσ(x)

∣∣∣∣∣
≤ 1

σ(∂B(x0, r))

∫
∂B(x0,r)

|f(x)− f(x0)| dσ(x)

≤ 1

σ(∂B(x0, r))

∫
∂B(x0,r)

sup
x∈∂B(0,r)

|f(x)− f(x0)| dσ(x)

= sup
x∈∂B(0,r)

|f(x)− f(x0)| .

This upper bound is also a function of r and by the continuity of f it converges to 0 as r → 0.

Therefore F (r) converges to f(x0) as required.

18. Harmonic Functions on B(0, 1) ⊂ R2.

Let B be the open unit disc in R2.

(a) Let u ∈ C2(B) be a harmonic function which is given in polar coordinates u = u(r, ϕ), with

0 ≤ r ≤ 1 and −π < ϕ ≤ π. Show that in this coordinates∫
∂B

∂u

∂r
dσ = 0.

(2 Point(s))

(b) “Guess” a solution u ∈ C2(B) for each of the following Neumann Problems or show that

there is no solution

(i) ∆u = 0 on B with ∂u
∂r = sinϕ on ∂B.

(ii) ∆u = 0 on B with ∂u
∂r = sin2 ϕ on ∂B.

(4 Point(s))
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Solution.

(a) First, let’s compute the Laplacian in polar coordinates, for later use. The change of variables

is x = r cosϕ, y = r sinϕ and the chain rule states

∂

∂x
=
∂r

∂x

∂

∂r
+
∂ϕ

∂x

∂

∂ϕ
= cosϕ

∂

∂r
− 1

r
sinϕ

∂

∂ϕ

∂

∂y
= sinϕ

∂

∂r
+

1

r
cosϕ

∂

∂ϕ

∆ =
∂2

(∂r)2
+

1

r

∂

∂r
+

1

r2
∂2

(∂ϕ)2
=

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

(∂ϕ)2
.

Note that in polar coordinate the outward pointing normal of the ball is simply (1, 0)

because it is radial and length 1. Therefore we see that the integral is already in the form

of the divergence theorem:∫
∂B

∂u

∂r
dσ =

∫
∂B
∇u ·N dσ =

∫
B

∆u dσ = 0.

(b) (i) For this question we guess that the solution is of the form u(r, ϕ) = f(r) sinϕ. Laplace’s

equation then reads(
f ′′ +

1

r
f ′
)

sinϕ− 1

r2
f sinϕ = 0⇒ r2f ′′ + rf ′ − f = 0⇒ f(r) = Ar−1 +Br.

Since we want the solution to be defined on the disc, we must choose A = 0. The

boundary condition ∂ru|∂B = sinϕ then requires that f ′(1) = B = 1. Hence the

solution is u(r, ϕ) = r sinϕ.

Writing this in Cartesian coordinates make it trivial to see why this is harmonic:

u(x, y) = y.

(ii) There can be no such function in this case because it would not obey the property

established in part (a).

19. Inside Out.

(Optional) Let f : Rn → R be a smooth function and g : Rn \ {0} → R be defined by

g(x) :=
1

|x|n−2
f

(
x

|x|2

)
.

Express ∆g in terms of ∆f , and thereby conclude that if f is a harmonic function then so too

is g.

Solution. It helps to first have the xk-partial derivative of |x|:

∂k|x|2 = ∂k(x21 + · · ·+ x2n) = 2xk ⇒ ∂k|x| = |x|−1xk.

2



And then I guess you have to differentiate twice and everything cancels nicely. But I haven’t

done this.

20. Subharmonic Functions

Let Ω ⊂ Rn be an open and connected region. A twice continuously differentiable function

v : Ω→ R is called subharmonic if −∆v ≤ 0 in Ω.

(a) Let v : Ω→ R be subharmonic. Show that for all x ∈ Ω and r > 0 with B(x, r) ⊂ Ω:

v(x) ≤ 1

nωnrn−1

∫
∂B(x,r)

v(y) dσ(y).

Hint: Show the function from Question 17 is monotonic. (3 Point(s))

(b) Conclude therefore the maximum principle: If the maximum of v can be found inside Ω

then v is constant. (2 Point(s))

(c) Now let u : Ω→ R be a harmonic function.

(i) Show that ‖∇u‖2 is subharmonic. (2 Point(s))

(ii) Show that f ◦ u is subharmonic for any smooth convex function f : R→ R. (2

Point(s))

Solution.

(a) Fix a point x0 ∈ Ω. Let ωn be the n-volume of the unit n-ball. It is well known, and follows

by a simple calculus argument that the surface (n − 1)-measure of the unit n-ball is nωn.

Following the hint, we first consider the averaging function

V (r) :=
1

nωnrn−1

∫
∂B(x0,r)

v(x) dσ(x) =
1

nωn

∫
∂B(0,1)

v(x0 + ry) dσ(y).

Its derivative is therefore

V ′(r) =
1

nωn

∫
∂B(0,1)

∂rv(x0 + ry) dσ(y) =
1

nωn

∫
B(0,1)

∆v(x0 + ry) dy,

similar to the question Harmonic Functions on B(0, 1). Because the Laplacian of v is

nonnegative, so too is this integral. This show that V (r) is an (non-strictly) increasing

function. On the other hand, we know that v(x0) is the limit of V (r) as r → 0. It must

therefore be that v(x0) ≤ V (r) for r > 0 and B(x0, r) ⊂ Ω.

(b) Suppose that v does indeed obtain a maximum at some x0 ∈ Ω and that B(x0, R) ⊂ Ω. By

the previous part we have that

0 ≥ v(x0)−
1

nωnrn−1

∫
∂B(x0,r)

v(x) dσ(x) =
1

nωnrn−1

∫
∂B(x0,r)

v(x0)− v(x) dσ(x).
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By assumption this integrand is always nonnegative. We will show that if there is a some

0 < r < R and a point x1 ∈ B(x0, r) such that v(x1) < v(x0) then the right hand side

above is strictly positive. This is a contradiction, and so it follows that v(x) = v(x0) for all

points x ∈ B(x0, R).

If there is such a point x1, then there is an open neighbourhood U 3 x1 such that for all

x ∈ U it holds that v(x) ≤ 1
2(v(x0) + v(x1)). Then

1

nωnrn−1

∫
∂B(x0,r)

v(x0)− v(x) dσ(x) ≥ 1

nωnrn−1

∫
∂B(x0,r)∩U

v(x0)− v(x) dσ(x)

≥ 1

nωnrn−1

∫
∂B(x0,r)∩U

1

2
(v(x0)− v(x1)) dσ(x)

≥ σ(∂B(x0, r) ∩ U)

nωnrn−1
1

2
(v(x0)− v(x1))

> 0,

because ∂B(x0, r) ∩ U is an open subset of the sphere and therefore has nonzero measure.

To summarise, we have now shown that v is constant and equal to the maximum value

v(x0) on the largest ball B(x0, R) that is contained in Ω. Repeating this argument we

can show that v is also the same constant on any ball that overlaps B(x0, R), and so on.

Because Ω is connected, this shows that v(x) = v(x0) on all of Ω.

(c) (i) This follows by direct computation

∆‖∇u‖2 =

n∑
j,k=1

∂2j
[
(∂ku)2

]
=

n∑
j,k=1

∂j [2∂ku ∂j∂ku] = 2

n∑
j,k=1

∂j∂ku ∂j∂ku+ ∂ku ∂
2
j ∂ku

= 2

n∑
j,k=1

(∂j∂ku)2 + 2

n∑
k=1

∂ku ∂k∆u ≥ 0.

(ii) A smooth convex function has the property that f ′′ ≥ 0. By the chain rule then

∆(f ◦ u) =

n∑
j=1

∂j∂j(f ◦ u) =

n∑
j=1

∂j(f
′ ◦ u)∂ju =

n∑
j=1

(f ′′ ◦ u)(∂ju)2 + (f ′ ◦ u)∂2j u

= (f ′′ ◦ u)‖∇u‖2 + (f ′ ◦ u)∆u ≥ 0

Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to

r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand

and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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