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41. Plane Waves.

Suppose that u : Rn × R→ R is a solution to the following modified wave equation:

∂2u

∂t2
−

n∑
j=1

c2j
∂2u

∂x2j
= 0 , (∗)

where c1, . . . , cn > 0 are constants.

(a) Let α ∈ Rn be a unit vector ‖α‖ = 1, µ ∈ R and F : R → R a twice continuously

differentiable function. Show that

u(x, t) := F (α · x− µt)

is a solution of (∗) exactly when

µ2 =

n∑
j=1

α2
jc

2
j

or F is linear. Solutions of (∗) with this form are called plane waves. (2 Point(s))

(b) For the solutions in (a), examine whether the following property holds for all x ∈ Rn and

t ∈ R:

u(x, t) = u(x− µtα, 0).

Interpret this equation in terms of direction and speed. (3 Point(s))

Solution.

(a) We apply the chain rule to differentiate F :

∂2u

∂t2
−

n∑
j=1

c2j
∂2u

∂x2j
= (−µ)2F ′′ −

n∑
j=1

c2j (αj)
2F ′′ =

µ2 − n∑
j=1

c2jα
2
j

F ′′.

Clearly this is zero only if the relation between µ and α holds or if F ′′ = 0.

(b) This property does hold, because of the normalistion condition |α| = α · α = 1:

u(x, t) = F (α · x− µt) = F (α · (x− µtα)) = F (α · (x− µtα)− µ0) = u(x− µtα, 0).

This shows that plane waves are constant along the planes x · α = const.. If we consider a

line parallel, then the problem is reduced to the one dimensional wave equation with speed

µ. Hence we say the wave is moving in the direction α.

There are other sorts basic waves; spherical waves and standing waves are two important ex-

amples. In three dimensions, if a solution only depends on r = |x| then the wave equation

becomes

0 = ∂2t u− ∂2ru−
2

r
∂ru =

1

r
(∂2t − ∂2r )(ru).

1



This is again a one dimensional wave equation, solved by u(r, t) = r−1F (r − t) + r−1G(r + t).

The interpretation here is that there are inward and outward moving spheres, but the amplitude

is diminished/concentrated as the radius is changed.

A standing wave is one whose peaks do not move in space, it only oscillates in time. Simple

standing waves separate into the form u(x, t) = ũ(x) sin(ωt). The profile of the wave (the ũ

part) is governed by the equation

0 = (∂tt −∆)u = (−ω2ũ−∆ũ) sin(ωt).

Alternatively, this arises from taking the Fourier transformation in t, namely û(x, ω) =∫
u(x, t)e−iωt dt, and considering solutions with a constant frequency ω.

42. Electromagnetic Waves.

In physics, electrical and magnetic fields are modelled as time-dependent vector fields, which

mathematically are smooth functions E,B : R3 × R → R3. Through a series of experiments

in the 18th and 19th centuries, the existence and properties of these fields were discovered.

Importantly, it was discovered that the two phenomena were connected (both magnets and

static electricity had been known since antiquity). In 1861 James Clerk Maxwell published

a series of papers summarising electromagnetic theory, including a collection of 20 differential

equations. Over time these were further reduced to the following four (by Heaviside 1884 using

vector notation), called Maxwell’s Equations:

∇ · E =
1

ε0
ρ ∇× E = −∂B

∂t

∇ ·B = 0 ∇×B = µ0J + ε0µ0
∂E

∂t
.

As is usual, the∇ operator acts on the spatial coordinates x, and the × denotes the cross product

of R3. The constants ε0, the electrical permittivity, and µ0, the magnetic permeability, are

approximately ε0 ≈ 8, 854 ·10−12 A·s
V·m and µ0 ≈ 1, 257 ·10−6 V·s

A·m (V=Volt, s=Seconds, A=Ampere

and m=Metre) in a vacuum. Electrical charges are included via the charge density ρ and electric

currents are the movements of charges, J := vρ for a velocity field v.

The two equations with divergence were formulated by Gauss, the curl of the electric field is

due to Faraday, and the curl of the magnetic field is due to Ampère. The last term in Ampère’s

law that has the time-derivative of the electrical field was an addition of Maxwell. With this

correction, he was able to derive the equations for electromagnetic waves, as you will now do.

(a) Let E und B be solutions to Maxwell’s equations in the absence of electric charges, ρ =

0, J = 0. Show that they each satisfy a modified wave equation (Question 41). You may use

without proof the identity ∇× (∇× f) = ∇(∇· f)−4f for smooth functions f : R3 → R3.

(3 Point(s))

(b) Predict the speed of these waves. (2 Point(s))
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(c) Argue that Ampère’s law in its original form ∇ × B = µ0J violates the conservation of

charge ρ under some conditions. Refer to Question 12 for the definition of a conservation

law. Thereby derive Maxwell’s additional term. (4 Point(s))

Solution.

(a) Suppose we have solutions E,B. As suggested by the hint, we take the curl of the curl

equations. Because curl is a linear operator (and derivatives commute) we may write

∇×∇× E = − ∂

∂t
∇×B = − ∂

∂t
ε0µ0

∂E

∂t
= −ε0µ0

∂2E

∂t2
.

On the other hand, we know the twice curl of E is ∇(∇ · E) − ∆E = ∇(0) − ∆E, using

Gauss’ law of electric fields. Rearranging we get a modified wave equation:

∂2E

∂t2
=

1

ε0µ0

and likewise for B.

(b) We expect that the speed is given by µ as in Question 41(b), and this can be calculated

from the coefficients cj and the direction α. In this case, the coefficients are the same in

each coordinate direction, so factor out:

µ =
√∑

a2jc
2 = c|α| = c =

1
√
ε0µ0

≈ 299 800 000ms−1.

This is the speed of light. The speed of light had first been calculated nearly 200 years

earlier by Romer using astronomical observations of Jupiter and its moons, and would in

1862 measured with less than 1% error. The electrical constant had been determined only

5 years earlier with experiments with capacitors by Weber and Kohlrausch. The magnetic

constant is fixed by the definition to be 4π · 10−7. The measurements were good enough in

Maxwell’s day to see that these were close, and on this basis Maxwell hypothesised light

was an electromagnetic wave.

(c) We saw in Question 12 that a quantity, be it mass or in this case electrical charge, is

conserved when the change of density is equal to the negative of the divergence of the

flow (using the divergence theorem, the divergence of the flow is the amount of substance

leaving a small ball around that point). Symbolically, ∂tρ = −∇(vρ) = ∇J . If we take the

divergence of Ampère’s version we have

0 = ∇ · (∇×B) = µ0∇ · J.

This is only true when the charge density ρ is constant. As Ampère’s experiment used two

wires with constant currents, this was true in his experiment.

But in general we should add another term ∇ × B = µ0J + G. Applying the divergence

now, we see that

∇ ·G = −µ0∇ · J = µ0
∂

∂t
ρ = µ0ε0

∂

∂t
∇ · E.

Hence we conclude that G = µ0ε0∂tE+∇× g. Taking the simplest possibility, g = 0, gives

Maxwell’s correction.
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Note that we shows that each component of the electric and magnetic fields solve the wave

equation, but this is a necessary condition. Faraday’s law show that there is a dependence

between the two fields. And both fields must have zero divergence, which creates a dependence

directly between the components. For example, consider if all of Ei are plane waves travelling in

the x3 direction, so E depends only on x3. Then ∇·E = 0 implies E3 = 0. The relations between

the components is polarization. For example, a solution such as E1 = E1(x3 − ct), E2 = E3 = 0

is a wave travelling in the x3 direction, but polarized in the x1 direction.

43. The energy of solutions of the wave equation. Note to the next tutor: I changed the order

of this question from what Sebastian had written, and it breaks the proof. Finite energy isn’t

enough to justify interchanging
∫

and ∂t. You should go back to the order c,a,b.

Let g, h : R → R be smooth functions and u : R × R≥0 → R be a solution to the initial value

problem
∂2u

∂t2
− ∂2u

∂x2
= 0, u(·, 0) = g, and

∂u

∂t
(·, 0) = h.

We define k(t) and p(t), called respectively the kinetic energy and the potential energy of the

solution at time t, by the formulae

k(t) := 1
2

∫ ∞
−∞

(
∂u

∂t
(x, t)

)2

dx and p(t) := 1
2

∫ ∞
−∞

(
∂u

∂x
(x, t)

)2

dx.

(a) (Conversation of energy.) Suppose the total energy E(t) = k(t) + p(t) is finite. Show that

it is constant over time. (3 Point(s))

(b) Prove that solutions with finite energy to this initial value problem are unique (if they

exist). (3 Point(s))

We now suppose that the initial conditions g, h have compact support.

(c) Show that u(·, t) has compact support for every t > 0. Hence the total energy is finite.

(2 Point(s))

(d) Show that for sufficiently large t, the functions k(t) and p(t) are each constant.

(2 Point(s))

Solution.

(a) Because the integrals are finite, they are dominated on bounded time intervals, and so we

may differentiate under the integral sign. This gives

∂tE =

∫ ∞
−∞

∂tu ∂ttu+ ∂xu ∂xtu dx

=

∫ ∞
−∞

∂tu ∂xxu+ ∂xu ∂xtu dx

=

∫ ∞
−∞

∂x

(
∂tu ∂xu

)
dx

= ∂tu ∂xu
∣∣∣∞
−∞

= 0.
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(b) Suppose that there were two such solutions with finite energy. Then the difference would

also obey the wave equation with initial conditions g = h = 0. Hence the total energy

is initially zero. From part (a), the total energy is constant, so we conclude that both

first partial derivatives are zero. Hence the difference of the two solutions is everywhere

constant. Evaluating at the initial conditions shows the solutions are equal.

(c) We have seen and derived D’Alembert’s formula last week. It says

u(x, t) =
1

2
[g(x+ t) + g(x− t)] +

1

2

∫ x+t

x−t
h(y) dy.

The terms with g(x + t) and g(x − t) clearly have compact support because they are just

shifts of g, which itself has compact support. Let the support of h(y) be contained in

[−R,R]. Then for x > R+ t or x < −R− t the entire interval [x− t, x+ t] lies outside the

support of h. Hence the integral term is zero for large |x|.
The derivatives of a function with compact support also have compact support, hence the

comment that the energies are finite.

(d) Suppose that both g and h are supported on [−R,R]. We calculate using D’Alembert’s

formula:

8k(t) =

∫ ∞
−∞

[
g′(x+ t)− g′(x− t) + h(x+ t) + h(x− t)

]2
dx

=

∫ ∞
−∞

[
(g′(x+ t) + h(x+ t)) + (−g′(x− t) + h(x− t))

]2
dx

=

∫ ∞
−∞

(g′(x+ t) + h(x+ t))2 + 0 + (−g′(x− t) + h(x− t))2 dx,

for t > R because then the supports of g′(x+ t) +h(x+ t) and (−g′(x− t) +h(x− t) cannot

overlap. Continuing:

8k(t) =

∫ ∞
−∞

(g′(x+ t) + h(x+ t))2 dx+

∫ ∞
−∞

(−g′(x− t) + h(x− t))2 dx

=

∫ ∞
−∞

(g′(y) + h(y))2 dy +

∫ ∞
−∞

(−g′(z) + h(z))2 dz

shows that the kinetic energy is independent of t.

The proof for the potential energy is similar.

Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to

r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand

and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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