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Exercise sheet 12

37. 1D Waves.

(a) Show that the a smooth function u = u(ζ, η) : R×R→ R is a solution to ∂ζηu = 0 exactly

when it is of the form u(ζ, η) = F (ζ) +G(η), for smooth functions F,G : R→ R.

(2 Point(s))

(b) Under the parameterisation ζ = x + t, η = x − t, show that u obeys the one dimensional

wave equation (∂tt − ∂xx)u = 0 exactly when it solves the PDE in (a). (2 Point(s))

(c) From parts (a) and (b), derive D’Alembert’s formula. (2 Point(s))

Solution.

(a) Suppose u is a solution. Integrating once, we see that ∂ηu = g(η), because for each value of

η, ∂ηu must be constant in ζ. Integrating again gives u = F (ζ) +
∫
g(η) dη =: F (ζ) +G(η).

The converse is immediate.

(b) Using the chain rule we compute the operator under the change of variables. Note x =
1
2(ζ + η) and y = 1

2(ζ − η).
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We see then that the operator ∂tt − ∂xx is just a rescaling of ∂ζη.

(c) We are asked to solve the problem of Theorem 5.1:
∂ttu− ∂xxu = 0

u(x, 0) = g(x)

∂tu(x, 0) = h(x),

where g is twice continuously differentiable and f is only once continuously differentiable.

From (a), we know that the equation is simpler in the (ζ, η) coordinates, where u(ζ, η) =

F (ζ) + G(η) solves the wave equation. The functions F and G are only defined up to a

constant between them (ie u = (F −C)+(G+C) also), so without loss of generality choose

G(0) = 0.

When t = 0 that corresponds to x = ζ = η. So the initial conditions say F (ζ)+G(ζ) = g(ζ)

and ∂tu|t=0 = (∂ζ − ∂η)u|ζ=η = F ′(ζ)−G′(ζ) = h(ζ). Integrating the latter gives∫ ζ

0
h(y) dy =

∫ ζ

0
F ′(y)−G′(y) dy = F (ζ)−G(ζ)− (F (0)−G(0)) = F (ζ)−G(ζ)− g(0).

Now we have two linear equations for F and G, so solving gives

F (ζ) =
1

2

[
g(ζ) + g(0) +

∫ ζ

0
h(y) dy

]
, G(ζ) =

1

2

[
g(ζ)− g(0)−

∫ ζ

0
h(y) dy

]
.
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Changing the variable in G back to η and summing gives:

u = F (ζ) +G(η)

=
1

2

[
g(ζ) +

∫ ζ

0
h(y) dy

]
+

1

2

[
g(η)−

∫ η

0
h(y) dy

]
=

1

2
[g(ζ) + g(η)] +

1

2

∫ ζ

η
h(y) dy.

Finally, changing back to (x, t) coordinates gives the desired formula.

38. Faster!

How should you modify D’Alembert’s formula for this situation?
∂ttu− a2∂xxu = 0

u(x, 0) = g(x)

∂tu(x, 0) = h(x),

Solve this for the initial data a = 2, g(x) = sin(x) and h(x) = 1. (2+2 Point(s))

Solution. One can rescale one of the coordinates to compensate for the factor of a2. Namely,

let τ = at. Because t = 0 when τ = 0, the first initial condition is unchanged. The second initial

condition however reads a∂τu(x, 0) = h(x). Using the formula for the solution to this new initial

value problem for the waver equation, but then further making the substitution τ = at, gives

u(x, t) =
1

2
[g(x+ at) + g(x− at)] +

1

2

∫ x+at

x−at

1

a
h(y) dy.

With the given initial data

u(x, t) =
1

2
[sin(x+ 2t) + sin(x− 2t)] +

1

4

∫ x+2t

x−2t
1 dy

=
1

2
[sin(x+ 2t) + sin(x− 2t)] + t.

39. Weak waves.

Let U be an open set in Rn and Ω = U × (0, T ) be a cylinder in Rn+1. A continuous function u

is called a weak solution of the wave equation on Ω if∫
Ω

(∂ttϕ−∆ϕ)u dx dt = 0

for every test function ϕ ∈ C∞0 (Ω). Solutions to the wave equation in the ordinary sense are

called classical or strong in this context.
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(a) Show that u ∈ C2(Ω) is a weak solution if and only if it is a classical solution. (3 Point(s))

(b) Suppose that (uk)k∈N is a sequence of weak solutions that converges to u with local uniform

continuity on Ω. Show that u is also a weak solution. (4 Point(s))

Solution.

(a) When u is differentiable, that allows us to apply the divergence theorem/integration by

parts. Let’s split the integral into two terms:∫
Ω

(∂ttϕ−∆ϕ)u dx dt =

∫
U

∫ T

0
∂ttϕu dt dx−

∫ T

0

∫
U

∆ϕu dx dt.

We apply integration by parts twice to the first part:∫ T

0
∂ttϕu dt = −

∫ T

0
∂tϕ∂tu dt =

∫ T

0
ϕ∂ttu dt,

because ∂tϕ and ϕ belong to C∞0 (Ω) and t = 0, T lie in the boundary of Ω. The second

Green’s theorem shows that
∫
U ∆ϕu dx =

∫
U ϕ∆u dx:∫

U
∆ϕu− ϕ∆u dx =

∫
∂U

(u∇ϕ− ϕ∇u) ·N dσ = 0.

Together this shows ∫
Ω

(∂ttϕ−∆ϕ)u dx dt =

∫
Ω
ϕ(∂ttu−∆u) dx dt.

Clearly this is zero if u is a classical solution. Conversely, if this is zero for all test functions

ϕ, then by the fundamental lemma of the calculus of variations it follows that u is a classical

solution.

(b) In general, the adjective ‘local’ means that the property holds for a neighbourhood of every

point. So in this case, for every point p ∈ Ω there exists a neighbourhood p ∈ Ωp ⊂ Ω

where

sup
y∈Ωp

|u(y)− uk(y)| → 0

as k →∞.

We know that uniform continuity of a sequence of functions preserves continuity in the

limit. Hence u ∈ C(Ω). Now take any test function ϕ. The support of ϕ is clearly covered

by the collection {Ωp | p ∈ suppϕ}. And because the support is compact, there is a finite

subcover {Ωpi}. We then compute∣∣∣∣∣
∫

Ω
(∂ttϕ−∆ϕ)u dx dt− lim

k→∞

∫
Ω

(∂ttϕ−∆ϕ)uk dx dt

∣∣∣∣∣
≤ lim

k→∞

∫
Ω
|∂ttϕ−∆ϕ| |u− uk| dx dt

≤ lim
k→∞

∑
i

∫
Ωpi

|∂ttϕ−∆ϕ| |u− uk| dx dt

≤
∑
i

(
lim
k→∞

sup
y∈Ωp

|u− uk|

)∫
Ωpi

|∂ttϕ−∆ϕ| dx dt

→ 0.
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This shows that when the uk are weak solutions (and so the corresponding integrals are all

zero) then u is also a weak solution.

40. 1D Waves in the weak sense.

(a) Show that for given continuous functions F,G on R, the function u(x, t) = F (x+t)+G(x−t)
is a weak solution of the one dimensional wave equation.

[Hint. Mollify F and G.] (4 Point(s))

(b) Show that the Fourier series

u(x, t) =

∞∑
k=1

(ak cos kt+ bk sin kt) sin kx,

where ak and bk are real sequences with
∑
|ak| + |bk| < ∞, is a weak solution of the one

dimensional wave equation. (3 Point(s))

Solution.

(a) Firstly note that the function u is continuous on the cylinder. The difficulty is that we

expect that u is a solution based on its form, but we don’t know that it has enough

regularity to actually differentiate. One trick to increase regularity is to use a mollifier φε

and set Fε = F ∗ φε, Gε ∗ φε, and uε = Fε(x + t) + Gε(x − t). The functions uε are now

smooth and strong solutions to the wave equation. From 39(a) we know that uε is a weak

solution if it is a strong solution. Finally taking ε → 0 and using 39(b) shows that u is a

weak solution, since mollifications converge locally uniformly.

(b) Consider the terms individually:

(ak cos kt+bk sin kt) sin kx =
1

2
ak(sin k(x+t)+sin k(x−t))+1

2
bk(− cos k(x+t)+cos k(x−t)).

This shows each term, and therefore the partial sums, are strong solutions. Hence also

weak solutions. The estimate∣∣∣∣∣
∞∑
k=1

(ak cos kt+ bk sin kt) sin kx

∣∣∣∣∣ ≤
∞∑
k=1

(|ak cos kt|+ |bk sin kt|) | sin kx| ≤
∞∑
k=1

|ak|+ |bk|

show that the sum is uniformly convergent. Hence u is a weak solution.

Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to

r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand

and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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