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8. Around and around

Consider the unit circle C = {x2 + y2 = 1} ⊂ R2. In this question we will evaluate the integral∫
C
x dσ

in two different ways, so demonstrate that it does not depend on the choice of parametrisation.

(a) In Definition 2.3 why (or under what conditions) is it enough to cover K except for a finite

number of points without changing the value of the integral? (1 point(s))

(b) Consider the parametrisation of the circle t 7→ (cos t, sin t). Compute the integral in this

parametrisation. (2 point(s))

(c) Consider upper and lower halves of the circle: U1 = {(x, y) ∈ C | y > 0} and U2 = {(x, y) ∈
C | y < 0}. There are obvious parametrisations Φi : (−1, 1) → Ui given by Φ1(x) =

(x,+
√

1− x2) and Φ2.(x) = (x,−
√

1− x2). Compute the integral in this parametrisation.

(2 point(s))

(d) (Optional) Construct a non-trivial partition of unity for the circle and compute the integral.

[Hint. The easiest way is to use two parametrisations similar to part (b)] (2 point(s))

(e) Compute this integral using the divergence theorem. (3 point(s))

9. In Colour.

Let Ω be a region in Rn and N the outer unit normal vector field on ∂Ω. Let u, v be two C2

real-valued functions on Ω.

(a) Prove the first Green formula∫
Ω
v4u dx = −

∫
Ω
∇u · ∇v dx+

∫
∂Ω
v∇u ·N dσ.

(3 points)

(b) Using the first Green formula, prove the second Green formula∫
Ω

(v4u− u4v) dx =

∫
∂Ω

(v∇u− u∇v) ·N dσ.

(1 points)

10. The Black Spot.

Consider the plane R2, a disc Br = {x2 + y2 ≤ r2} and the function g(x, y) = ln(x2 + y2).

(a) Show that the value of the integral ∫
∂Br

∇g ·N dσ

does not depend on the radius r, where N is the outward pointing normal. (3 points)
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(b) What property of g explains this fact? In your proof, be careful to note that g is singular

at (0, 0). (3 points)

(c) Prove for any compact region Ω ⊂ R2 whose boundary is a manifold, that

∫
∂Ω
∇g ·N dσ =

4π if (0, 0) lies in the interior of Ω

0 if (0, 0) lies in the exterior of Ω

(2 points)

(d) Comment on the flux of ∇g. (1 points)

11. Convoluted.

The convolution of two functions f, g : Rn → R is defined by

(f ∗ g)(x) :=

∫
Rn

f(y)g(x− y) dy.

(a) Let f(x) = 1 for −1 ≤ x ≤ 1 and 0 otherwise. Compute f ∗ f . (2 Points)

(b) Show that the convolution of C∞
0 -functions on Rn is a bilinear, commutative, and associative

operation. (2+3+4 Points)

12. Go with the flow.

(Optional extra question)

In this question we generalise the conservation law to the form usually encountered in physics.

Let ρ(x, t) : Rn × R → R be the density of a substance. We have seen in an earlier question

that the flux density is simply the density multiplied by the velocity ρv, for a velocity field

v(x, t) : R3 × R→ R3. The flux across a (n− 1)-dimensional submanifold S is the integral∫
S
ρv ·N dσ,

where N is the normal of S.

(a) Argue that the conservation of substance is equivalent to

∂ρ

∂t
+∇ · (ρv) = 0.

This is the usual form of the conservation law in physics.

(b) How does this relate to the form of the conservation law derived in the lectures?

(c) For liquids a common property is incompressibility. For example, water is well-modelled

as an incompressible liquid (at the bottom of the ocean, it is compressed by just 2%).

Normally this would imply that ρ is constant. However, slightly more general model says

that ρ is not globally constant, but if we follow a point x(t) along the velocity field v then

ρ(x(t), t) is constant. An example would be oil and water mixed together.

Use this description of incompressible flow to show that ∇ · v = 0.
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Solutions are due on Tuesday 12 noon, the day before the tutorial. Please email to

r.ogilvie@math.uni-mannheim.de. One possibility is to write your solutions neatly by hand

and then scan them with your phone to make a pdf. There are many apps that do this; two

examples on Android are ‘Tiny Scanner’ and ‘Simple Scanner’.
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