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Chapter 1

First Order PDEs

In this introductory chapter we first introduce partial differential equations and then
consider first order partial differential equations. We shall see that they are simpler
than higher order partial differential equations. In contrast to higher order partial
differential equations these first order partial differential equations are similar to ordi-
nary differential equations and can be solved by using the theory of ordinary differen-
tial equations. After this introductory chapter we shall focus on second order partial
differential equations. Before we consider the three main examples of second order
differential equations we introduce some general concepts in the next chapter. These
general concepts are partially motivated by observations contained in the first chapter.

A partial differential equation is an equation on the partial derivatives of a function
depending on at least two variables.

Definition 1.1. A possibly vector valued equation of the following form

F
(
Dku(x), Dk−1u(x), . . . , Du(x), u(x), x

)
= 0

is called partial differential equation of order k. Here F is a given function and u an
unknown function. The expressions Dku denotes the vector of all partial derivatives
of the function u of order k. The function u is called a solution of the differential
equation, if u is k times differentiable and obeys the partial differential equation.

On open subsets Ω ⊂ Rn we denote the partial derivatives of higher order by ∂γ =∏
i ∂

γi
i =

∏
i(

∂
∂xi

)γi with multiindices γ ∈ Nn
0 of length |γ| =

∑
i γi. The multiindices

are ordered by δ ≤ γ ⇐⇒ δi ≤ γi for i = 1, . . . , n. The partial derivative acts only
on the immediately following function; they only act on a product of functions if the
product is grouped together in brackets.

5



6 CHAPTER 1. FIRST ORDER PDES

Exercise 1.2. Show for all γ ∈ Nn
0 the generalised Leibniz rule

∂γ(uv) =
∑

0≤δ≤γ

(
γ

δ

)
∂δu∂γ−δv :=

γ1∑
δ1=0

(
γ1

δ1

)
. . .

γn∑
δn=0

(
γn
δn

)
∂δu∂γ−δv.

1.1 Homogeneous Transport Equation

One of the simplest partial differential equations is the transport equation:

u̇+ b · ∇u = 0.

Here u̇ denotes the partial derivative ∂u
∂t

of the unknown function u : Rn × R → R,
b ∈ Rn is a vector, and the product b · ∇u denotes the scalar product of the vector b
with the vector of the first partial derivatives of u with respect to x:

b · ∇u(x, t) = b1
∂u(x, t)

∂x1

+ . . .+ bn
∂u(x, t)

∂xn
.

Let us first assume that u(x, t) is a differentiable solution of the transport equation.
For all fixed (x, t) ∈ Rn × R the function

z(s) = u(x+ s · b, t+ s)

is a differentiable function on s ∈ R, whose first derivative vanishes:

z′(s) = b∇u(x+ s · b, t+ s) + u̇(x+ s · b, t+ s) = 0.

Therefore u is constant along all parallel straight lines in direction of (b, 1). Further-
more, u is completely determined by the values on all these parallel straight lines.

Initial Value Problem 1.3. We are looking for a solution u : Rn × R → R of
the transport equation with given b, which at t = 0 is equal to some given function
g : Rn → R.

All parallel straight lines in direction of (b, 1) intersect Rn × {0} exactly once:

(x+ sb, t+ s) ∈ Rn × {0} ⇐⇒ s = −t
Hence the solution has to be equal to u(x, t) = g(x − tb). If g is differentiable on Rn,
then this function indeed solves the transport equation. In this case the initial value
problem has a unique solution. Otherwise, if g is not differentiable on Rn, then the
initial value problem does not have a solution. As we have seen above, whenever the
initial value problem has a solution, then the function u(x, t) = g(x− bt) is the unique
solution. So it might be that this candidate is a solution in a more general sense. In fact
in the next chapter we shall see in Exercise 2.10 that in case of generalised differentiable
functions g which include all continuous functions, the function u(x, t) = g(x − bt) is
the unique solution.



1.2. INHOMOGENEOUS TRANSPORT EQUATION 7

1.2 Inhomogeneous Transport Equation

Now we consider the corresponding inhomogeneous transport equation:

u̇+ b · ∇u = f.

Again b ∈ Rn is a given vector, f : Rn×R→ R is a given function and u : Rn×R→ R
is the unknown function.

Initial Value Problem 1.4. Given a vector b ∈ R, a function f : Rn × R → R and
an initial value g : Rn → R, we are looking for a solution u : Rn × R → R of the
inhomogeneous transport equation which is at t = 0 equal to g.

We define for each (x, t) ∈ Rn ×R the function z(s) = u(x+ sb, t+ s) which solves

z′(s) = b · ∇u(x+ sb, t+ s) + u̇(x+ sb, t+ s) = f(x+ sb, t+ s).

This function obeys

u(x, t)− g(x− bt) = z(0)− z(−t) =

0∫
−t

z′(s)ds

=

0∫
−t

f(x+ sb, t+ s)ds =

t∫
0

f(x+ (s− t)b, s)ds.

Hence the solution u is equal to u(x, t) = g(x− bt) +

t∫
0

f(x+ (s− t)b, s)ds.

We observe that this formula is analogous to the formula for solutions of inhomogeneous
initial value problems of linear ODEs. The unique solution is the sum of the unique
solution of the corresponding homogeneous initial value problem and the integral over
solution of the homogeneous equation with the inhomogeneity as initial values. Again
one can show that the initial value problem has a unique solution in a generalised sense
if the initial value is a generalised differentiable function. We obtained these solutions
of the first order homogeneous and inhomogeneous transport equation by solving an
ODE. We shall generalise this method in Section 1.5 and solve more general first order
PDEs by solving an appropriate chosen system of first order ODEs.
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1.3 Scalar Conservation Laws

In this section we consider the non-linear first order differential equation

u̇(x, t) +
∂f(u(x, t))

∂x
= u̇(x, t) + f ′(u(x, t)) · ∂u(x, t)

∂x
= 0

with a smooth function f : R → R. Here u : R × R → R is the unknown function.
This equation is a non-linear first order PDE, and the method of characteristic applies.
We impose the initial condition u(x, 0) = u0(x) for all x ∈ R with some given function
u0 : R→ R. For any compact interval [a, b] we calculate

d

dt

b∫
a

u(x, t)dx =

b∫
a

u̇(x, t)dx = −
b∫

a

∂f(u(x, t))

∂x
dx = f(u(a, t))− f(u(b, t)).

This is the meaning of a conservation law: the change of the integral of u(·, t) over
[a, b] is equal to the ’flux’ of f(u(x, t)) through the ’boundary’ ∂[a, b] = {a, b}.

For any x ∈ R we solve the ordinary differential equation x′(s) = f ′(u(x(s), s)) with
initial value x(0) = x. Consequently the derivative of the function z(s) = u(x(s), s) is

z′(s) =
∂u(x(s), s)

∂x
x′(s) + u̇(x(s), s) =

∂u(x(s), s)

∂x
f ′(u(x(s), s)) + u̇(x(s), s) = 0.

Hence z is constant and equal to z(s) = u(x(0), 0) = u(x, 0) = u0(x) and therefore
the derivative of x(s) is constant equal to x′(s) = f ′(u(x, 0)) = f ′(u0(x)). The unique
solution of the corresponding initial value problem is x(s) = x + sf ′(u0(x)). This
implies

u(x+ tf ′(u0(x)), t) = u0(x) for all (x, t) ∈ R2.

The solutions for initial values x1, x2 ∈ Rn with u0(x1) 6= u0(x2) might intersect at t ∈
R+. In this case the method of characteristic implies u0(x1) = u(x1 + tf ′(u0(x1)), t) =
u(x2 + tf ′(u0(x2)), t) = u0(x2), which is impossible. This intersection of solutions of
the characteristic equations is called crossing characteristics. There is a crossing of
characteristics for f ′(u0(x2)) < f ′(u0(x1)) with x2 > x1.

Theorem 1.5. If f ∈ C2(R,R) and u0 ∈ C1(R,R) with f ′′(u0(x))u′0(x) > −α for all
x ∈ R and some α ≥ 0, then there is a unique C1-solution of the initial value problem

∂u(x, t)

∂t
+ f ′(u(x, t))

∂u(x, t)

∂x
= 0 with u(x, 0) = u0(x)

on (x, t) ∈ R× [0, α−1) for α > 0 and on (x, t) ∈ R× [0,∞) for α = 0.
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Proof. By the method of characteristic the solution u(x, t) is on the lines x+ tf ′(u0(x))
equal to u0(x). For all t ≥ 0 with 1 + tα > 0 the derivative of x 7→ x+ tf ′(u0(x)) obeys

1 + tf ′′(u0(x))u′0(x) ≥ 1 + tα > 0.

This implies limx→±∞ x+tf ′(u0(x)) = ±∞. So x 7→ x+tf ′(u0(x)) is C1-diffeomorphism
from R onto R. Therefore there exists for any y ∈ R a unique x with x+tf ′(u0(x)) = y.
Then u(y, t) = u0(x) solves the initial value problem. q.e.d.

Example 1.6. For n = 1 and f(u) = 1
2
u2 we obtain Burgers equation:

u̇(x, t) + u(x, t)
∂u(x, t)

∂x
= 0.

The solutions of the corresponding characteristic equations are x(t) = x0 + u0(x0)t.
Therefore the solutions of the corresponding initial value problem obey

u(x+ tu0(x), t) = u0(x).

If u0 is continuously differentiable and monotonic increasing, then for all t ∈ [0,∞)
the map x 7→ x+ tu0(x) is a C1-diffeomorphism from R onto R and there is a unique
C1-solution on R× [0,∞). More generally, if u′0(x) > −α with α ≥ 0, then there is a
unique C1-solution on R× [0, α−1) for α > 0 and (x, t) ∈ R× [0,∞) for α = 0.

1.4 Weak Solutions

In this section we look for more general notions of solutions which allow us to extend
solutions across the crossing characteristics. For this purpose we use the conserved
integrals. Since we will restrict ourselves to the one-dimensional situation for the
moment, the natural domains are intervals Ω = [a, b] with a < b ∈ R. In this case the
conservation law implies

d

dt

b∫
a

u(x, t)dx = f(u(a, t))− f(u(b, t)).

Now we look for functions u with discontinuities along the graph {(x, t) | x = y(t)} of
a C1–function y. In the case that y(t) belongs to [a, b], we split the integral over [a, b]
into the integrals over [a, b] = [a, y(t)] ∪ [y(t), b]. In such a case let us calculate the
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derivative of the integral over [a, b]:

d

dt

b∫
a

(u(x, t)dx =
d

dt

y(t)∫
a

u(x, t)dx+
d

dt

b∫
y(t)

u(x, t)dx =

= ẏ(t) lim
x↑y(t)

u(x, t) +

y(t)∫
a

u̇(x, t)dx− ẏ(t) lim
x↓y(t)

u(x, t) +

b∫
y(t)

u̇(x, t)dx.

We abbreviate limx↑y(t) u(x, t) as ul(y(t), t) and limx↓y(t) u(x, t) as ur(y(t), t) and as-
sume that on both sides of the graph of y the function u is a classical solution of the
conservation law:

d

dt

b∫
a

(u(x, t)dx = ẏ(t)(ul(y(t), t)−ur(y(t), t))−
y(t)∫
a

d

dx
f(u(x, t))dx−

b∫
y(t)

d

dx
f(u(x, t))dx

= ẏ(t)(ul(y(t), t)− ur(y(t), t)) + f(u(a, t))− f(u(b, t)) + f(ur(y(t), t)− f(ul(y(t), t).

Hence the integrated version of the conservation law still holds, if the following Rankine-
Hugonoit condition is fulfilled:

ẏ(t) =
f(ur(y, t))− f(ul(y, t)

ur(y, t)− ul(y, t)
.

Example 1.7. We consider Burgers equation u̇(x, t) + u(x, t)∂u
∂x

(x, t) = 0 for (x, t) ∈
R× R+ with the following continuous initial values u(x, 0) = u0(x) and

u0(x) =


1 for x ≤ 0,

1− x for 0 ≤ x < 1

0 for 1 ≤ x.

The first crossing of characteristics happens for t = 1:

x+ tu0(x) =


x+ t for x ≤ 0,

x+ t(1− x) for 0 < x < 1,

x for 1 ≤ x.

For t < 1 the evaluation at t is a homeomorphism from R onto itself with inverse

x 7→


x− t for x ≤ t,
x−t
1−t for t < x < 1,

x for 1 ≤ x.
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Therefore the solution is for 0 < t < 1 equal to

u(x, t) =


1 for x < t,
x−1
t−1

for t < x < 1,

0 for 1 ≤ x.

At t = 1 the solutions of the characteristic equations starting at x ∈ [0, 1] all meet
at x = 1. For t > 1 there exists a unique discontinuous solution satisfying the
Rankine-Hugonoit condition. For small x this solution is 1 and for large x it is 0.
The corresponding regions has to be separated by a path with velocity 1

2
which starts at

(x, t) = (1, 1). For t ≥ 1 this discontinuous solution is equal to

u(x, t) =

{
1 for x < 1 + t−1

2
,

0 for 1 + t−1
2
< x.

The second initial value problem is not continuous but monotonic increasing. For
continuous monotonic increasing functions u0 the evaluation at t of the solutions of the
characteristic equation would be a homeomorphism for all t > 0. Therefore in such
cases there exists a unique continuous solution for all t > 0. But for non-continuous
initial values this is not the case.

Example 1.8. We again consider Burgers equation u̇(x, t) + u(x, t)∂u
∂x

(x, t) = 0 for
(x, t) ∈ R× R+ with the following non-continuous initial values u(x, 0) = u0(x) and

u0(x) =

{
0 for x < 0,

1 for 0 < x.

Again there is a unique discontinuous solution which is for small x equal to 0 and for
large x equal to 1. By the Rankine-Hugonoit condition both regions are separated by a
path with velocity 1

2
. This solution is equal to

u(x, t) =

{
0 for x < t

2
,

1 for 1
2
< x.

But there exists another continuous solution, which clearly also satisfies the Rankine-
Hugonoit condition:

u(x, t) =


0 for x ≤ 0,
x
t

for 0 < x < t,

1 for 1 ≤ x.
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These solutions are constant along the lines x = ct for c ∈ [0, 1]. These lines all
intersect in the discontinuity at (x, t) = (0, 0). Besides these two extreme cases there
exists infinitely many other solutions with several regions of discontinuity, which all
satisfy the Rankine-Hugonoit condition.

These examples show that such weak solutions exists for all t ≥ 0 but are not
unique. Therefore we want to restrict the space of weak solutions such that they have
a unique solutions for all t ≥ 0. Since we want to maximise the regularity we only
accept discontinuities if there are no continuous solutions. In the last example we
prefer the continuous solution. So for Burgers equation this means we only accept
discontinuous solutions, which take larger values for smaller x and smaller values for
larger x.

Definition 1.9 (Lax Entropy condition). A discontinuity of a weak solution along a
C1–path t 7→ y(t) satisfies the Lax entropy condition, if along the path the following
inequality is fulfilled:

f ′(ul(y, t), t) > ẏ(t) > f ′(ur(y, t)).

A weak solutions with discontinuities along C1–paths is called an admissible solution,
if along the path both the Rankine–Hugonoit condition and the Lax Entropy condition
are satisfied.

For continuous u0 there is a crossing of characteristics if f ′(u0(x1)) > f ′(u0(x2)) for
x1 < x2. So this condition ensures that discontinuities can only show up if we cannot
avoid a crossing of characteristics.

Theorem 1.10. Let f ∈ C1(R,R) be convex and u and v two admissible solutions of

u̇(x, t) + f ′(u(x, t))
∂u

∂x
(x, t) = 0.

in L1(R). Then t 7→ ‖u(·, t)− v(·, t)‖L1(R) is monotonically decreasing.

Proof. We divide R into maximal intervals I = [a(t), b(t)] with the property that either
u(x, t) > v(x, t) or v(x, t) > u(x, t) for all x ∈ (a(t), b(t)). This means that either
x 7→ u(x, t)− v(x, t) vanishes at the boundary, or is discontinuous and changes sign at
the boundary. We claim that the boundaries a(t) and b(t) of these maximal intervals
are differentiable. We prove this only for a(t). For b(t) the proof is analogous. If either
u(·, t) or v(·, t) is discontinuous at a(t), then by definition of an admissible solution the
locus of the discontinuity a(t) is differentiable with respect to t. If u(·, t) and v(·, t) are
both continuously differentiable at a(t) with u(a(t), t) = v(a(t), t), then by the method
of characteristic for sufficiently small ε > 0 all x ∈ (a(t)−ε, a(t)+ε) with u(x, t) = v(x, t)
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preserve this property along characteristic lines x+tf ′(u(x(t), t) = x+tf ′(v((x(t), t). So
along these lines also the properties u(x, t) 6= v(x, t) and u(x, t) > v(x, t) are preserved.
This implies that a(t) is differentiable with ȧ(t) = f(u(a(t), t)) = f(v(a(t), t)). Let us
only consider intervals on whose interior u(·, t) − v(·, t) is positive. For the other
intervals we apply the same arguments with interchanged u and v. Now we calculate

d

dt

b(t)∫
a(t)

(u(x, t)− v(x, t))dx =

b(t)∫
a(t)

(u̇(x, t)− v̇(x, t))dx+

+ ḃ(t)(u(b(t), t)− v(b(t), t))− ȧ(t)(u((a(t), t)− v(a(t), t))

=

b(t)∫
a(t)

d

dx
(f(v(x, t)− f(u(x, t))dx

+ ḃ(t)(u(b(t), t)− v(b(t), t))− ȧ(t)(u((a(t), t)− v(a(t), t))

= f(v(b(t), t)− f(u(b(t), t) + ḃ(t)(u(b(t), t)− v(b(t), t))

+ f(u(a(t), t)− f(v(a(t), t) + ȧ(t)(v(a(t), t)− u(a(t), t)).

If u(·, t) and v(·, t) are both differentiable at a(t), then they take the same values at a(t)
and the last line vanishes. Analogously, if u(·, t) and v(·, t) are both differentiable at
b(t), then the second last line vanishes. For convex f the derivative f ′ is monotonically
increasing and the Lax-Entropy condition implies

ul(y, t) > ur(y, t), vl(y, t) > vr(y, t)

at all discontinuities y of u(·, t) and v(·, t), respectively. If one of the two solutions u
and v is at the boundary of I continuous and the other is non-continuous, then the
value of the continuous solution has to lie in between the limits of the non-continuous
solution, because at the boundary either u − v becomes zero or changes sign. Since
u > v on (a(t), b(t)) either u(·, t) is continuous and differentiable at a(t) and v(·, t) is
discontinuous at a(t) or u is discontinuous at b(t) and v is continuous and differentiable
at b(t). In the first case we use the Rankine Hugonoit condition to determine ȧ(t) and
ḃ(t). To simplify notation we write a and b instead of a(t) and b(t). The corresponding
contribution to the derivative of ‖u(·, t)− v(·, t)‖1 is

f(u(a, t))− f(vr(a, t)) + ȧ(t) (vr(a, t)− u(a, t)) =

= f(u(a, t))− f(vr(a, t)) +
f(vr(a, t))− f(vl(a, t))

vr(a, t)− vl(a, t)
(vr(a, t)− u(a, t))

= f(u(a, t))−
(
f(vr(a, t))

vl(a, t)− u(a, t)

vl(a, t)− vr(a, t)
+ f(vl(a, t))

u(a, t)− vr(a, t)
vl(a, t)− vr(a, t)

)
.
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Since f is convex the secant lies above the graph of f . Hence due to u(a, t) ∈
[vr(a, t), vl(a, t)] this expression is non-positive. In the second case the contribution
to the derivative of ‖u(·, t)− v(·, t)‖1 is

f(v(b, t))− f(ul(b, t)) + ḃ(t)
(
ul(b, t)− v(b, t)

)
=

= f(v(b, t))− f(ul(b, t)) +
f(ur(b, t))− f(ul(b, t))

ur(b, t)− ul(b, t)
(
ul(b, t)− v(b, t)

)
= f(v(b, t))−

(
f(ur(b, t))

ul(b, t)− v(b, t)

ul(b, t)− ur(b, t)
+ f(ul(b, t))

v(b, t)− ur(b, t)
ul(b, t)− ur(b, t)

)
.

Again due to v(b, t) ∈ [ur(b, t), ul(b, t)] this expression is non-positive.
If finally both solutions are discontinuous at a(t) or b(t). Since u(·, t) − v(·, t)

is positive on I, the Lax Entropy condition implies ur(a, t) ∈ [vr(a, t), vl(a, t)] and
vl(b, t) ∈ [ur(b, t), ul(b, t)], respectively. The corresponding contributions to the deriva-
tive of ‖u(·, t)− v(·, t)‖1 are again non-positive:

f(ur(a, t))− f(vr(a, t)) + ȧ(t) (vr(a, t)− ur(a, t)) =

= f(ur(a, t))− f(vr(a, t)) +
f(vr(a, t))− f(vl(a, t))

vr(a, t)− vl(a, t)
(vr(a, t)− ur(a, t))

= f(ur(a, t))−
(
f(vr(a, t))

vl(a, t)− ur(a, t)
vl(a, t)− vr(a, t)

+ f(vl(a, t))
ur(a, t)− vr(a, t)
vl(a, t)− vr(a, t)

)
.

f(vl(b, t))− f(ul(b, t)) + ḃ(t)
(
ul(b, t)− vl(b, t)

)
=

= f(vl(b, t))− f(ul(b, t)) +
f(ur(b, t))− f(ul(b, t))

ur(b, t)− ul(b, t)
(
ul(b, t)− vl(b, t)

)
= f(vl(b, t))−

(
f(ur(b, t))

ul(b, t)− vl(b, t)
ul(b, t)− ur(b, t)

+ f(ul(b, t))
vl(b, t)− ur(b, t)
ul(b, t)− ur(b, t)

)
.

Hence the contributions to d
dt
‖u(·, t)− v(·, t)‖1 of all intervals are non-positive. q.e.d.

This implies that admissible solutions are unique, if they exist. By utilising an
explicit formula for admissible solutions one can also prove the existence of admissible
solutions. The following theorem is Theorem 10.3 in the lecture notes “Hyperbolic
Partial Differential Equations” by Peter Lax, Courant Lecture Notes in Mathematics
14, American Mathematical Society (2006), which also supplies a proof.

Theorem 1.11. For f ∈ C2(R,R) is strictly convex and u0 ∈ L1(R) ∩ L∞(R) there
exists an unique admissible solution u(x, t) of

u̇(x, t) + f ′(u(x, t))
∂u

∂x
(x, t) = 0 and u(x, 0) = u0(x) for all x ∈ R.
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1.5 Method of Characteristics

In this section we shall solve the following first order PDE:

F (∇u(x), u(x), x) = 0.

Here u is a real unknown function on an open domain Ω ⊂ Rn and F is a real function
on an open subset of W ⊂ Rn × R × Rn. We try to obtain the solution by solving
an appropriate system of first order ODEs for the values of the function u along some
integral curves along some vector fields. So let x(s) be such such an integral curve and
p(s) = ∇u(x(s)) the gradient of the unknown function along this curve. We want to
determine the curve s 7→ x(s) in such a way, that the triple s 7→ (p(s), z(s), x(s)) with
z(s) = u(x(s)) solves an ODE. For this purpose we differentiate

dpi(s)

ds
=

d

ds

∂u(x(s))

∂xi
=

n∑
j=1

∂2u(x(s))

∂xj∂xi

dxj(s)

ds
.

The total derivative of F (∇u(x), u(x), x) = 0 with respect to xi gives

0 =
dF (∇u(x), u(x), x)

dxi
=

=
n∑
j=1

∂F (∇u(x), u(x), x)

∂pj

∂2u(x)

∂xi∂xj
+
∂F (∇u(x), u(x), x)

∂z

∂u(x)

∂xi
+
∂F (∇u(x), u(x), x)

∂xi
.

Due to the commutativity ∂i∂ju = ∂j∂iu of the second partial derivatives we obtain

n∑
j=1

∂F (p(s), z(s), x(s))

∂pj

∂2u(x(s))

∂xj∂xi
+
∂F (p(s), z(s), x(s))

∂z
pi(s)+

∂F (p(s), z(s), x(s))

∂xi
= 0.

Now we choose the vector field for the integral curves s 7→ x(s) as

dxj
ds

=
∂F (p(s), z(s), x(s))

∂pj
.

This choice allows us to rewrite the differential equation

dpi(s)

ds
=

n∑
j=1

∂2u(x(s))

∂xj∂xi

dxj
ds

(s)
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as

dpi(s)

ds
=

n∑
j=1

∂2u(x(s))

∂xj∂xi

∂F (p(s), z(s), x(s))

∂pj
=

= −∂F (p(s), z(s), x(s))

∂xi
− ∂F (p(s), z(s), x(s))

∂z
pi(s).

Finally we differentiate

dz(s)

ds
=
du(x(s))

ds
=

n∑
j=1

∂u

∂xj
(x(s))

dxj(s)

ds
=

h∑
j=1

pj(s)
∂F (p(s), z(s), x(s))

∂pj
.

In this way we indeed obtain the following system of first order ODEs:

x′i(s) =
∂F (p(s), z(s), x(s))

∂pi

p′i(s) = −∂F (p(s), z(s), x(s))

∂xi
− ∂F (p(s), z(s), x(s))

∂z
pi(s)

z′(s) =
n∑
j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s).

This is a system of first order ODEs with 2n + 1 unknown real functions. Let us
summarise these calculations in the following theorem:

Theorem 1.12. Let F be a real differentiable function on an open subset W ⊂ Rn ×
R×Rn and u : Ω→ R a twice differentiable solution on an open subset Ω ⊂ Rn of the
first order PDE F (∇u(x), u(x), x) = 0. For every solution s 7→ x(s) of the ODE

x′i(s) =
∂F

∂pi
(∇u(x(s)), u(x(s)), x(s))

the functions p(s) = ∇u(x(s)) and z(s) = u(x(s)) solve the ODEs

p′i(s) = −∂F (p(s), z(s), x(s))

∂xi
− ∂F (p(s), z(s), x(s))

∂z
pi(s) and

z′(s) =
n∑
j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s). q.e.d.

Now we want to introduce a boundary value problem of the following form:

u(y) = g(y) for all y ∈ Ω ∩H with H = {y ∈ Rn | y · en = x0 · en}.
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Here en = (0, . . . , 0, 1) denotes the n–th element of the canonical basis and H the
unique hyperplane through x0 ∈ Ω orthogonal to en. By the implicit function theorem
general continuously differentiable hyper surfaces may be brought into this form by a
continuously differentiable coordinate transformation with continuously differentiable
inverse: Let Φ : Ω→ Ω′ be a continuously differentiable homeomorphism with contin-
uously differentiable inverse Φ−1. Then by the chain rule the composition u = v ◦Φ of
a function v : Ω′ → R with Φ obeys for y = Φ(x) i.e. x = Φ−1(y)

∇u(x) = ∇v(Φ(x)) · Φ′(x) = ∇v(y) · Φ′
(
Φ−1(y)

)
.

Here ∇v and ∇u are row vectors and Φ′(x) the Jacobi matrix. Hence u solves the PDE

F (∇u(x), u(x), x) = 0

if and only if v solves the PDE

F
(
∇v(y) · Φ′

(
Φ−1(y)

)
, v(y),Φ−1(y)

)
= 0.

Therefore the PDE for the function v is the zero set of the function

G(∇v(y), v(y), y) = F
(
∇v(y) · Φ′

(
Φ−1(y)

)
, v(y),Φ−1(y)

)
In the sequel we assume that the hyperplane H has the following form:

H = {y ∈ Rn | y · en = x0 · en}.

If the hyper surface H ′ ⊂ Ω′ is the zero set of a continuously differentiable function
Λ : Ω′ → R whose gradient ∇Λ does not vanish on H ′, then the implicit function
theorem shows that in a neighbourhood of y0 ∈ H ′ there exists such a Φ. Furthermore,
Φ is as often differentiable as Λ. In the foregoing theorem the functions u and v
has to be twice differentiable. We assume that Φ and Φ−1 are twice differentiable.
Consequently Λ should be twice differentiable. On Ω ∩H there must hold

F (∇u(y), u(y), y) = 0.

On order to define initial conditions at y ∈ Ω ∩H

z(0) = g(y), p(0) = q(y) and x(0) = y

we have to find a solution q : Ω ∩H → Rn, y 7→ q(y) of the following equation:

F (q(y), g(y), y) = 0 and
∂g(y)

∂yi
= qi(y) for i = 1, . . . , n− 1.
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The second equations uniquely determine q1(y), . . . , qn−1(y) as

q1(y) = ∂g(y)
∂y1

, . . . , qn−1(y) = ∂g(y)
∂yn−1

.

It remains to determine the component qn(y) in such a way, that

F (q(y), g(y), y) = 0

holds for all y ∈ Ω ∩H. Now the implicit function theorem implies that this equation
implicitly defines a continuously differentiable function y 7→ qn(y), if

∂F (p0, z0, x0)

∂pn
6= 0.

This proves the following lemma:

Lemma 1.13. Let F : W → R and g : H → R be continuously differentiable, x0 ∈
Ω ∩H, z0 = g(x0) and p0,1 = ∂g(x0)

y1
, . . . , p0,n−1 = ∂g(x0)

yn
. If there exists p0,n with

(p0, z0, x0) ∈ W, F (p0, z0, x0) = 0 and ∂F (p0,z0,x0)
∂pn

6= 0,

then on an open neighbourhood of x0 ∈ Ω ∩H there exists a unique solution q of

F (q(y), g(y), y) = 0, qi(y) = ∂g(y)
∂yi

for i = 1, . . . , n− 1 and q(y0) = p0. q.e.d.

Theorem 1.14. Let F : X → R and g : Ω ∩ H → R be three times differentiable
functions on open subsets. Furthermore, let (p0, z0, x0) ∈ W and g satisfy

F (p0, z0, x0) = 0, g(x0) = z0, p0,1 = ∂g(x0)
y1

, . . . , p0,n−1 = ∂g(x0)
yn

, ∂F
∂pn

(p0, z0, x0) 6= 0.

Then there exists on a neighbourhood Ω of x0 a solution of the boundary value problem

F (∇u(x), u(x), x) = 0 for x ∈ Ω and u(y) = g(y) for y ∈ Ω ∩H.

Proof. By the foregoing Lemma there exists a solution q on an open neighbourhood of
x0 in H of the following equations

F (q(y), g(y), y) = 0, qi(y) = ∂g(y)
∂yi

for i = 1, . . . , n− 1 and q(y0) = p0.

If F is twice and g are three times differentiable then the implicit function theorem
yields a twice differentiable solution. The theorem of Picard Lidenlöff shows that the
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following initial value problem has for all y in the intersection of an open neighbourhood
of x0 with H a unique solution:

x′i(s) =
∂F

∂pi
(p(s), z(s), x(s)) with x(0) = y

p′i(s) = −∂F
∂xi

(p(s), z(s), x(s))− ∂F

∂z
(p(s), z(s), x(s))pi(s) with p(0) = q(y)

z′(s) =
n∑
j=1

∂F

∂pj
(p(s), z(s), x(s))pj(s) with z(0) = g(y).

We denote the family of solutions by (x(y, s), p(y, s), z(y, s)). For small Ω 3 x0 there
exists an ε > 0 such that these solutions are uniquely defined on (y, s) ∈ (Ω ∩ H) ×
(−ε, ε). Since F and g are three times differentiable all coefficients and initial values
are twice differentiable. The theorem on the dependence of solutions of ODEs on the
initial values gives that (y, s) 7→ (x(y, s), p(y, s), z(y, s)) is on (Ω ∩H) × (−ε, ε) twice
differentiable. Due to the choice of the initial values at s = 0, the function

(Ω ∩H)× (−ε, ε)→ Ω, (y, s) 7→ x(y, s)

has at (y, s) = (x0, 0) the Jacobi matrix
1 0 . . . 0 ∂F (p0,z0,x0)

∂p1
...

...

0 0 . . . 1 ∂F (p0,z0,x0)
∂pn−1

0 0 . . . 0 ∂F (p0,z0,x0)
∂pn

 .

Since ∂F (p0,z0,x0)
∂pn

6= 0 this matrix is invertible, and the inverse function theorem implies
that on an possibly diminished neighbourhood Ω of x0 and an appropriately chosen
ε > 0 this map is a twice differentiable homeomorphism with twice differentiable inverse
mapping. Now we define the function u : Ω→ R by

u(x(y, s)) = z(y, s) for all (y, s) ∈ (Ω ∩H)× (−ε, ε).

Our next task is to show that this function solves the PDE F (∇u(x), u(x), x) = 0.
In a first step we observe that the ODE implies

∂

∂s
F (p(y, s), z(y, s), x(y, s)) = 0.

Since F (q(y), g(y), y) vanishes for all y ∈ Ω ∩H we conclude

F (p(y, s), z(y, s), x(y, s)) = 0 for all (y, s) ∈ (Ω ∩H)× (−ε, ε).
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Hence it suffices to show p(y, s) = ∇u(x(y, s)) for all (y, s) ∈ (Ω ∩H)× (−ε, ε).
In a second step we show

∂z(y, s)

∂s
=

n∑
j=1

pj(y, s)
∂xj(y, s)

∂s
and

∂z(y, s)

∂yi
=

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi

for all (y, s) ∈ (Ω ∩ H) × (−ε, ε) and all i = 1, . . . , n − 1. The first equation follows
from the ODE for x(y, s) and z(y, s). For s = 0 the second equation follows from the
initial conditions for z(y, s), p(y, s) and x(y, s). The derivative of the first equation
with respect to yi yields

∂2z(y, s)

∂yi∂s
=

n∑
j=1

(
∂pj(y, s)

∂yi

∂xj(y, s)

∂s
+ pj(y, s)

∂2xj(y, s)

∂yi∂s

)
.

By the commutativity of the second partial derivatives we obtain

∂

∂s

(
∂z(y, s)

∂yi
−

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi

)
=

=
∂2z(y, s)

∂s∂yi
−

n∑
j=1

∂pj(y, s)

∂s

∂xj(y, s)

∂yi
−

n∑
j=1

pj(y, s)
∂2xj(y, s)

∂s∂yi

=
n∑
j=1

(
∂pj(y, s)

∂yi

∂xj(y, s)

∂s
− ∂pj(y, s)

∂s

∂xj(y, s)

∂yi

)
=

=
n∑
j=1

∂pj(y, s)

∂yi

∂F (p(y, s), z(y, s), x(y, s))

∂pj
+

+
n∑
j=1

(
∂F (p(y, s), z(y, s), x(y, s))

∂xj
+
∂F (p(y, s), z(y, s), x(y, s))pj(y, s)

∂z

)
∂xj(y, s)

∂yi

=
∂

∂yi
F (p(y, s), z(y, s), x(y, s))−

− ∂F (p(y, s), z(y, s), x(y, s))

∂z

(
∂z(y, s)

∂yi
−

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi

)
.



1.5. METHOD OF CHARACTERISTICS 21

We insert the result F (p(y, s), z(y, s), x(y, s)) = 0 of the first step and obtain

∂

∂s

(
∂z

∂yi
(y, s)−

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi

)
=

= −∂F (p(y, s), z(y, s), x(y, s))

∂z

(
∂z

∂yi
(y, s)−

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi

)
.

This is a linear homogeneous ODE with initial value 0 at s = 0. The unique solution
vanishes identically. This implies the second equation and finishes the second step:

∂z(y, s)

∂yi
=

n∑
j=1

pj(y, s)
∂xj(y, s)

∂yi
.

Finally in a third step we show p(y, s) = ∇u(x(y, s)) for all (y, s) ∈ (Ω ∩H)× (−ε, ε).
Locally the derivative of the map (y, s) 7→ x is invertible. Altogether we obtain

∂u

∂xj
=
∂z

∂s

∂s

∂xj
+

n−1∑
i=1

∂z

∂yi

∂yi
∂xj

=

(
n∑
k=1

pk
∂xk
∂s

)
∂s

∂xj
+

n−1∑
i=1

(
n∑
k=1

pk
∂xk
∂yi

)
∂yi
∂xj

=
n∑
k=1

pk

(
∂xk
∂s

∂s

∂xj
+

n−1∑
i=1

∂xk
∂yi

∂yi
∂xj

)
=

n∑
k=1

pk
∂xk
∂xj

= pj.

Due to the initial values z(y, 0) we have u(y) = g(y) for all y ∈ Ω∩H. The uniqueness
of the solution follows from the Theorem 1.12 and the theorem of Picard-Lindelöf.
q.e.d.

We solved the boundary value problem by solving a family of ODEs. As in the case
of the inhomogeneous transport equation, we combine the coordinates x and t to one
coordinate (x, t). Consequently we write

F (p, z, (x, t)) = F̃ (p, x, t) = b1p1 + . . .+ bnpn + pn+1 − f(x, t).

We use the equation F (p, z, (x, t)) = 0 and rewrite the ODE for z. Then the ODE
becomes independent of p and we can solve x(s), t(s) and z(s) separately:

x′ = b t′ = 1 p′ = (∇f(x, t), ḟ(x, t)) z′ = F̃ (p, x, t) + f(x, t) = f(x, t).

Whenever the function F is a first order polynomial with respect to p, then the functions

∂F (p(s), z(s), x(s))

∂pi
for i = 1, . . . , n and

F (p(s), z(s), x(s))−
n∑
j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s)
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do not depend on p. Therefore the ODE system becomes independent of p(s), and the
components x(s) and z(s) can be solved independently of p(s). This situation describes
the transport equation with vector b depending on z, x and t. For the solution of this
equation we do not need to introduce the function p(s) = ∇u(x(s)). Another example
is the scalar conservation law in the general form for unknown function u : Rn×R→ R:

u̇(x, t) +∇f(u(x, t)) = u̇(x, t) + f ′(u(x, t)) · ∇u(x, t) = 0

with a continuously differentiable function f : R → Rn. Again we impose the initial
values u(x, 0) = u0(x) for all x ∈ Rn and some given function u0 : Rn → R. If xn+1 = t
then the corresponding function F is indeed linear in p:

F (p, z, (x, t) = f ′(z) · (p1, . . . , pm) + pn+1.

So the corresponding ODE is independent of p

ẋ = f ′(u(x(s), t(s) ṫ = 1 ż = F (p, z, (x, t)) = 0.

For any x ∈ Rn the unique solution is x(s) = x+sf ′(u0(x)), t(s) = s and z(s) = u0(x).
So we recover in this more general situation the implicit equation from Section 1.3:

u(x+ tf ′(u0(x)), t) = u0(x) for all (x, t) ∈ Rn × R.



Chapter 2

General Concepts

In this chapter we prepare for our investigation of the three main examples of linear
second order partial differential equations in the subsequent three chapters.

2.1 Divergence Theorem

In this section we present the divergence theorem, which is a generalisation of the
fundamental theorem of calculus to higher dimensions. This will have many important
consequences, but let us just mention two of them here: First we can generalise partial
integration to higher dimensions. Second it allows us to understand the sense in which
the higher dimensional scalar conservation law describes a conserved quantity. In order
to state the theorem we have to describe how to integrate over sub manifolds of Rn.
We start with a definition of such sub manifolds.

Definition 2.1. A subset A ⊂ Rn is called a k-dimensional sub manifold if A is covered
by the images O of homeomorphisms Φ : U → O from open subsets U ⊂ Rk onto open
subset of A, such that Φ considered as maps into Rn are continuously differentiable and
have on U a Jacobean of full rank k.

The Jacobean of Φ is a n × k matrix, whose rank cannot be greater than n, so
1 ≤ k ≤ n. If Φ : U → O has the properties in the definition, then choose for any x ∈ O
a k-dimensional linear subspace V ⊂ Rn, such that the composition PV ◦ Φ′(Φ−1(x))
with the orthogonal projection PV onto V is bijective onto V . By the inverse function
theorem we may diminish U and O such that PV ◦ Φ is a C1-diffeomorphism from
U onto an open subset W of V . The image O of Φ is the zero set of the function
W × V ⊥ → V ⊥, (y, z) 7→ z − (1− PV ) ◦ Φ ◦ (PV ◦ Φ)−1(y), which has rank n− k. We
considerW×V ⊥ ⊂ V×V ⊥ ' Rn as an open subset of Rn which containsO. So the setA
satisfies for any x ∈ A the following condition: There exists on an open neighbourhood

23
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of x in Rn a continuously differentiable function to Rn−k whose Jacobean has at x rank
n − k, such that the intersection of A with this neighbourhood is the level set of this
function through x. Conversely, by the implicit function theorem, a subset A ⊂ Rn

which satisfies the latter condition for all x ∈ A is a k-dimensional submanifold. So we
may alternatively characterise submanifolds by this latter condition.

The definition of an integral over submanifolds uses so called partitions of unity.

Definition 2.2. (Partition of Unity) For a given family (Uα)α∈A of open subsets of
Rn with union

⋃
α∈A Uα = Ω ⊂ Rn a smooth partition of unity is a countable family

(hl)l∈N of smooth functions hl : Ω→ [0, 1] with the following properties:

(i) Each x ∈ Ω has a neighbourhood where all but finitely hl vanish identically.

(ii) For all x ∈ Ω we have
∑∞

l=1 hl(x) = 1.

(iii) Each hl vanishes outside a compact subset of Uα for some α ∈ A.

For every family of open subsets of Rn there exists a smooth partition of unity. A
proof you can find in many textbooks and in my script of the lecture Analysis II.

Definition 2.3. Let A ⊂ Rd be a k-dimensional submanifold of Rn and let f ∈ C(A,R)
vanish outside of a compact subset K ⊂ A. We cover K by finitely many open subsets
O ⊂ Rd with A∩O = Φ[U ] for a map Φ as in Definition 2.1 and choose a corresponding
partition of unity (hl)l∈N. The integral of f over A is defined as∫

A

fdσ =
∑

l∈N

∫
U

(hlf) ◦ Φ
√

det((Φ′)TΦ′)dµ.

Note that the volume of the k-dimensional parallelotope spanned by the column
vectors of a n × k matrix A is equal to

√
det(ATA). Here ATA is the matrix of all

scalar products between the column vectors of A.

Lemma 2.4. The integral
∫
A
fdσ neither depends on the choice of the parametrizations

Φ : U → O in definition 2.1 nor on the choice of the partition of unity.

Proof. Due to condition (i) on the partition of unity the sum in the definition of
∫
A
fdσ

is finite. For two covers of K by sets of the form Φ[U ] and Ψ[V ] as in Definition 2.1
with corresponding partitions of unity, the intersections of two such sets (one from
each cover) and the products of two functions (one from each partition of unity) build
another cover of K with a corresponding partition of unity. The linearity of the in-
tegral and condition (ii) on the partition of unities together ensure that it suffices to
consider the subcase that K is contained the images Φ[U ] and Ψ[V ] of two continuously
differentiable homeomorphisms as described in Definition 2.1. The restrictions of Φ to
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Φ−1[Φ[U ] ∩ Ψ[V ]] and of Ψ to Ψ−1[Φ[U ] ∩ Ψ[V ]] are both homeomorphisms onto the
open subset Φ[U ] ∩ Ψ[V ] of A. The composition of the second with the inverse of the
first yields a homeomorphism Υ : Ψ−1[Φ[U ] ∩ Ψ[V ]] → Φ−1[Φ[U ] ∩ Ψ[V ]], such that
Ψ(x) = Φ(Υ(x)) holds for all x ∈ Ψ−1[Φ[U ] ∩Ψ[V ]].

Now we claim that Υ is continuously differentiable. For any x ∈ Ψ−1[Φ[U ] ∩
Ψ[V ]] there exists a k-dimensional linear subspace of Rn such that the composition
P ◦Φ′(Υ(x)) with the orthogonal projection P onto this subspace is bijective onto this
subspace. By the inverse function theorem an open neighbourhood of Υ(x) is mapped
by P ◦ Φ homeomorphically onto an open neighbourhood of P (Ψ(x)). The inverse
mapping is together with P ◦ Φ continuously differentiable. The map Υ is on this
neighbourhood of x equal to the composition of P ◦Ψ with the inverse map of P ◦ Φ,
since P ◦Ψ and P ◦Φ ◦Υ coincide there. This shows that Υ is on this neighbourhood
continuously differentiable. Because this is true for all x ∈ Ψ−1[Φ[U ]∩Ψ[V ]] the claim
follows. We conclude∫

Ψ−1[Φ[U ]∩Ψ[V ]]

f ◦Ψ
√

det((Ψ′)TΨ′)dσ =

∫
Ψ−1[Φ[U ]∩Ψ[V ]]

f ◦ Φ ◦Υ
√

det(((Φ ◦Υ)′)T (Φ ◦Υ)′dσ =

=

∫
Ψ−1[Φ[U ]∩Ψ[V ]]

(
f ◦ Φ

√
det((Φ′)TΦ′)

)
◦Υ| det Υ′|dσ =

∫
Φ−1[Φ[U ]∩Ψ[V ]]

f ◦ Φ
√

det((Φ′)TΦ′)dσ.

In the last step we applied the transformation formula of Jacobi. q.e.d.

In the divergence theorem we consider open subsets Ω ⊂ Rn whose boundary are
n−1-dimensional submanifolds. After the Definition 2.1 we explained how the implicit
function theorem applies to these submanifolds. Since any n− 1-dimensional subspace
is the image of Rn−1 ' Rn−1 × {0} ⊂ Rn with respect to some linear rotation O of Rn

these arguments show that the homoemorphisms in Definition 2.1 are of the form

Φ : U ⊂ Rn−1 → Rn, y 7→ O(x, g(x)) for some C1-function g : U → (a, b) ⊂ R,

with det((Φ′(x))TΦ′(x)) = det

((
1l ∇g(x)

)
OTO

(
1l

∇Tg(x)

))
= 1 + (∇g(x))2.

The plane tangent to ∂Ω in O(x, g(x)) is image of the kernel of the derivative of
U × (a, b)→ R, (x, z) 7→ z − g(x) with respect to O. So

N(x, g(x)) =
OT (−∇Tg(x), 1)√

1 + (∇g(x))2

is up to sign unique normalised vector orthogonal the tangent plane which is called
normal. Since the last component is positive this normal points outwards of O[{(y, z) ∈
U × (a, b) | z < g(y)}], which for an appropriate O is equal to Ω ∩ O[U × (a, b)].
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Theorem 2.5. (Divergence Theorem) Let Ω ⊆ Rn be bounded and open with ∂Ω
being a (n − 1)-dimensional submanifold of Rn. Let f : Ω̄ → Rn be continuous and
differentiable on Ω such that ∇f continuously extends to ∂Ω. Then we have∫

Ω

∇ · f dµ =

∫
∂Ω

f ·N dσ

Here N is the outward-pointing normal and N dσ the corresponding measure on ∂Ω.

Proof. We cover Ω̄ by open subsets U × (a, b) ⊂ Rn as described above and Ω. We
choose an compatible partition of unity. Due to the compactness of Ω̄ and due to
condition (iii) on the partition of unity this partition has only finitely many members.
By linearity it suffices to show the statement for any term individually.

First we consider a continuously differentiable function f : Ω → Rn with compact
support in Ω. By setting it zero outside of Ω it extends continuously differentiable to
Rn. Choose a Cartesian product of finite intervals which contains Ω. The continued
function vanishes on the boundary of this box. By Fubini we may integrate the i-th
term of ∇·f = ∂1f1 + . . . ,+∂nfn first dxi. Due to the fundamental theorem of calculus
this integral is the difference of the values of f at two boundary points and vanishes.
This shows that in this case both sides of the divergence theorem vanish.

Now we consider a function f on Ω ∩ O[U × (a, b)] = {O(x, z) | z ≤ g(x)} which
vanishes outside a compact subset. We replace x by Ox, x 7→ f(x) by x 7→ OTf(Ox),
x 7→ N(x) by x 7→ OTN(Ox) and Ω 3 Ox ⇔ O−1[Ω] 3 x. Consequently OTO = 1l,
detO = ±1 and ∇·OTf(Ox) = trace(OT ◦f ◦O)′(x) = trace(OOTf ′(Ox) = ∇·f(Ox).
By Jacobi’s transformation formula both sides of the divergence theorem do not change,
and we may omit O. Again we extend f to Rd−1 × (a, b) by setting it zero outside of
U × (a, b). For any (x, y) ∈ Rd−1 × (a, b), 1 ≤ i < n we have∫ y

a

∫ 0

−∞

∂

∂xi
f(x+ tei, z)dtdz =

∫ y

a

f(x, z)dz

By Fubini this function is continuously differentiable with

∂

∂xi

∫ y

a

f(x, z)dz =

∫ y

a

∂f(x, z)

∂xi
dz for 1 ≤ i < d,

∂

∂y

∫ y

a

f(x, z)dz = f(x, y).

The following function vanishes outside a compact subset of U :

x 7→
∫ g(x)

a

f(x, z)dz with
∂

∂xi

∫ g(x)

a

f(x, z)dz =

∫ g(x)

a

∂f(x, z)

∂xi
dz+

∂g(x)

∂xi
f(x, g(x)).
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So the arguments of the first case apply and show that the integral over U on the right
hand side vanishes. This proves for 1 ≤ i < n the divergence theorem:∫
U

∫ g(x)

a

∂fi(x, z)

∂xi
dzdd−1x = −

∫
U

fi(x, g(x))
∂g(x)

∂xi
dd−1x =

∫
U

fi(x, g(x))Ni(x, g(x))dσ.

The fundamental theorem of calculus finishes the proof, since f vanishes on U × {a}:∫
U

∫ g(x)

a

∂fn(x, z)

∂xn
dzdd−1x =

∫
U

fn(x, g(x))dd−1x =

∫
U

fn(x, g(x))Nn(x, g(x))dσ. q.e.d.

The divergence theorem implies for all i = 1, . . . , n∫
Ω

∂if dµ =

∫
∂Ω

fNi dσ

For two functions f and g whose product vanishes on the boundary ∂Ω and satisfies
the corresponding assumptions of the divergence theorem we obtain by the Leibniz rule∫

Ω

f∂ig dµ = −
∫

Ω

g∂if dσ for all i = 1, . . . , n.

This is called integration by parts. Inductively we get for any multiindex γ∫
Ω

f∂γg dµ = (−1)|γ|
∫

Ω

g∂γf dσ.

As a second application of the divergence theorem we present conserved quantities for
any continuously differentiable function f : R→ Rn and any solution u : Rn × R→ R
of the general scalar conservation law introduced in the last chapter

u̇(x, t) +∇f(u(x, t)) = u̇(x, t) + f ′(u(x, t)) · ∇u(x, t) = 0.

For open Ω ⊂ Rn with ∂Ω being a n− 1-dimensional submanifolds of Rn we obtain

d

dt

∫
Ω

u(x, t)dnx =

∫
Ω

u̇(x, t)dnx = −
∫

Ω

∇f(u(x, t))dnx = −
∫
∂Ω

f(u(x, t)) ·N(x)dσ(x).

This is the meaning of a conservation law: the change of the integral of u(·, t) over
Ω ⊂ Rn is equal to the integral of the flux −f(u(·, t)) ·N through the boundary ∂Ω.
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2.2 Classification of Second order PDEs

For PDEs of order greater then one, there does not exists a general theory. We shall
present in Section 2.3 an example of a PDE with smooth coefficients, which has in
a neighbourhood of some point no solutions at all. Over the time there have been
discovered different methods to solve several PDEs, in particular those PDEs which
show up in physics. Afterwards these methods were extended to larger and larger
classes of PDEs. It turned out that the successful methods of solving PDEs differ from
each other substantially. As a result there does not exists one unified theory of PDEs,
but there exist several islands of well understood families of PDEs inside the large set
of all PDEs. It was Jacobi who formulated in his lectures on Dynamics in the years
1842-43 the following general recipe:

“The main obstacle for the integration of a given differential equations lies in the
definition of adapted variables, for which there is no general rule. For this reason we
should reverse the direction of our investigation and should endeavour to find, for a
successful substitution, other problems which might be solved by the same.”

The strategy is to determine for any successful method all PDEs which can be
solved by this method. We already presented for the first order PDEs a more or less
general method. Now we investigate the second order PDEs. In this lecture we consider
only second order linear PDEs. A general second order linear PDE has the following
form

Lu(x) =
∑n

i,j=1
aij(x)∂i∂ju+

∑n

i=1
bi(x)∂iu(x) + c(x)u(x) = 0.

By Schwarz’s Theorem for twice differentiable u this expression does not change if we
replace aij by 1

2
(aij +aji). So we may assume that aij is symmetric and diagonalizable.

Elliptic PDEs. If the matrix aij is the unity matrix and b = 0 = c, then this is the

Laplace equation. 4u :=
∂2u

∂x2
1

+ . . .+
∂2u

∂x2
n

= 0.

Solutions of the Laplace equation are called harmonic functions. In Chapter 3 we
present several tools which establish many properties of these harmonic functions.
It turns out that many properties of the harmonic functions also apply to general
solutions of Lu = 0, if the matrix aij is positive (or negative) definite. These are the
main examples of the so called elliptic PDEs. There has been done a lot of work to
extend these tools to larger and larger classes of elliptic PDEs. One of the results is
that the influence of the higher order derivatives on the properties of solutions is much
more important than the influence of the lower order derivatives. An important tool
are so called a priori estimates. Such estimates show that the lower order derivatives
can be estimated in terms of the second order derivatives. We offer another lecture
which presents many of these tools for such elliptic second order PDEs.
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Beside the linear elliptic PDEs there are also non-linear PDEs, to which these
methods of elliptic PDEs apply. An important example whose investigation played a
major role in the development of the elliptic theory is the

Minimal surface equation. ∇ · ∇u√
1 + |∇u|2

= 0, u : Ω→ R, Ω ⊂ Rn open.

The graphs of solutions describe so called minimal surfaces. The area of such hyper-
surfaces in Rn+1 does not change with respect to infinitesimal variations. Soap bubbles
are examples of such minimal surfaces. The boundary value problem of the minimal
surface equation is called Plateau’s problem. For the first proof of the existence of
solutions of this Plateau problem in the 1930s, Jesse Douglas received the first Field’s
Medal. In this non-linear second order PDE the coefficients of the second derivatives
also depend on the solution. A lot of work has been done to extend the tools of el-
liptic theory to elliptic PDEs whose coefficients belong to larger and larger functions
spaces. This development induced the introduction of many new function spaces. In
Section 2.4 we shall introduce the so called space of distributions. Many of the more
advanced functions spaces are build on the base of these spaces.

Parabolic PDEs. For these linear PDEs the matrix aij considered as a symmetric
bilinear form is only semi-definite and they belong to the boundary of the class of elliptic
PDEs. Most of the methods of elliptic PDEs have an extension to this limiting case. So
these limiting cases together with the class of elliptic PDEs form some extended class
of elliptic PDEs. Of particular importance is the subclass of linear PDEs with semi-
definite matrices aij which have a one-dimensional kernel. Since symmetric matrices
are always diagonalizable this means that one eigenvalue of aij vanishes and all other
eigenvalues have the same sign. In spite of the deep relationship to the elliptic PDEs
these equations have their own label: parabolic PDEs. The simplest example is the

Heat equation. u̇−4u = 0.

These parabolic PDEs describe diffusion processes. These are processes which level
inhomogeneities of some quantity by some flow along the negative gradient of the
quantity. A typical example for this quantity is the temperature from which the name
for the heat equation originates. Many stochastic processes have this property. So the
theory of parabolic PDEs has a deep relationship to the theory of stochastic processes.
In this lecture we present in Chapter 4 this simplest example of linear parabolic PDE.
We shall see how the tools for the Laplace equation can be applied in modified form
to this heat equation. In case of the parabolic PDEs there too exists a non-linear
example from the geometric analysis, whose investigation played a major role for the
development of the elliptic theory (the tensor fields g and R are defined below):

Ricci Flow. ġij = −2Rij.

This PDE describes a diffusion-like process on Riemannian manifolds. It levels the
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inhomogeneities of the metric, namely the Riemannian metric g. In the long run the
corresponding Riemannian manifolds converge to metric spaces with large symmetry
groups. Richard Hamilton proposed (in the 1970s) a program that aims to prove the
geometrization conjecture of Thurston with the help of these PDEs. It states that
every three-dimensional manifold can be split into parts, which can be endowed with
an Riemannian metric such that the isometry group acts transitively. This conjecture
implies the Poincare conjecture, which states that every simply connected compact
manifold is the 3-sphere. Hamilton tries to control the long time limit of the Ricci flow
on a general 3-dimensional Riemannian manifold. In 2003 the Russian mathematician
Grisha Perelman published on the internet three articles which overcome the last ob-
stacle of this program. This lead to the first proof of one of the Millennium Problems
of the American Mathematical Society and was a great success of geometric analysis.
Hyperbolic PDEs. Besides the elliptic PDEs (including the limiting cases) the second
important class of linear PDEs are called hyperbolic. In this case the matrix aij has
one eigenvalue of opposite sign than all other eigenvalues. The simplest example is the

Wave equation.
∂2u

∂t2
−4u = 0.

In Chapter 5 we present the methods how to solve this equation. We shall see that it
describes the propagation of waves with constant finite speed. The solutions of general
hyperbolic equations are similar to the solutions of this case, and many tools can be
generalised to all hyperbolic PDEs. The investigation of these PDEs depend on the
understanding of all trajectories, which propagate by the given speed. It was motivated
by theory of the electrodynamic fields, whose main system of PDEs are the

Maxwell equations.
Ė −∇×B = −4πj Ḃ +∇× E = 0

∇ · E = 4πρ ∇ ·B = 0.

In this theory there is given a distribution of charges ρ and currents j on space time
R×R3. The unknown functions are the electric magnetic fields E and B, which describe
the electrodynamic forces induced by the given distributions of charges and currents
ρ and j. The conservation of charge is formulated in the same way as in the scalar
conservation law. So the change of the total charge contained in a spatial domain
is described by the flux of the current through the boundary of the domain. By the
divergence theorem this means that distributions of charge ρ and currents j obey

ρ̇+∇ · j = 0.

Again there exists a non-linear version which stimulated the development of the theory:

Einsteins field equations of general relativity. Rij −
1

2
gijR = κTij.

Here for a given distribution of masses the energy stress tensor and the space time
metric gij are the unknown functions. This metric is a symmetric bilinear form with
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one positive and three negative eigenvalues on the tangent space of space time. The
corresponding Ricci curvature is denoted by Rij and the scalar curvature by R:

Γkij :=
1

2

∑3

l=0
gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
,
(
gij
)

:= (gij)
−1 inverse metric

Rij :=
∑3

k=0
gkl

(
∂Γkij
∂xk
− ∂Γkik

∂xj
+
∑3

l=0

(
ΓklkΓ

l
ij − ΓkljΓ

l
ik

))
, R :=

∑3

i,j=0
gijRij.

Integrable Systems with Lax operators. Finally I want to mention a smaller class
of PDEs, which are the main objects of my research. They are non-linear PDEs which
describe an evolution with respect to time which is very stable. This means that the
solutions have in a specific sense a maximal number of conserved quantities. The theory
of integrable systems belongs to the field of Hamiltonian mechanics, which originated
from Newtons description of the motion of the planets. The Scottish Lord John Scott
Russell got very excited in 1934 about the observation of an solitary wave in a Scottish
channel and published a “Report on Waves”. This report was quite influential. The
two Dutch mathematicians Korteweg and De Vries translated his observation into a
PDE describing the profile of water waves travelling along the channel:

Korteweg-de-Vries equation. 4u̇− 6u
∂u

∂x
− ∂3u

∂x3
= 0.

First by numerical experiments in the 1950s with the first computers and latter in
the 1970s by mathematical theory, the solutions of this PDE were shown to have
exactly the properties which made Lord Russell so exited: they describe waves which
propagate through each other without changing their shape. This lead to the discovery
of an hidden relation of the theory of integrable systems with the theory of Riemann
surfaces, which is another field with a long history. A major step towards the discovery
of this relation was the observation of Peter Lax that this equation can be written as

L̇ = [A,L] with L :=
∂2

∂x2
+ u A :=

∂3

∂x3
+

3u

2

∂

∂x
+

3

4

∂u

∂x
.

2.3 Existence of Solutions

In order to demonstrate the difference between ODEs and PDEs we shall present an
example of a partial differential equation with smooth coefficients without solutions.
This example is a simplification by Nirenberg of an example of H. Levy.

For a given complex-valued function f on a domain (x, y) ∈ R2 we look for a
complex valued solution u on the same domain of the following differential equations:

∂u

∂x
+ ıx

∂u

∂y
= f(x, y).

We impose the following two conditions on the smooth function f :
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(i) f(−x, y) = f(x, y)

(ii) there exists a sequence of positive numbers %n ↓ 0 converging to zero, such that f
vanishes on a neighbourhood of the circles ∂B(0, %n) in contrast to non-vanishing
integrals

∫
B(0,%n)

f(x, y) dx dy 6= 0.

If h : R→ [0,∞) is a smooth periodic function vanishing on an interval but not on R,
then f(x) := exp(−1/|x|)h(1/|x|) has these two properties.

Now we shall prove by contradiction that there exists no continuously differentiable
solution u in a neighbourhood of (0, 0) ∈ R2.
Step 1: If the function u(x, y) is a solution, then due to (i) −u(−x, y) is also a solution.
Hence we may replace u(x, y) by 1

2
(u(x, y)−u(−x, y)) and assume u(−x, y) = −u(x, y).

Step 2: We claim that every solution u vanishes on the circles ∂B(0, %n). In fact, we
transform small annuli A onto domains Ã in R2:

A→ Ã, (x, y) 7→

{
(x2/2, y) for x ≥ 0

(−x2/2, y) for x < 0.

These transformations are homeomorphisms from A onto Ã. On the sub domains

Ã+ =
{

(s, y) ∈ Ã | s > 0
}

the function ũ(s, y) = u(x2/2, y) is holomorphic:

2∂̄ũ =
∂ũ(s, y)

∂s
+ ı
ũ(s, y)

∂y
=
dx

ds

∂u(x, y)

∂x
+ ı
∂u(x, y)

∂y
=

1

x

(
∂u(x, y)

∂x
+ ıx

∂u(x, y)

∂y

)
= 0.

Due to step 1. the function ũ vanishes on the line s = 0. This implies that ũ together
with the Taylor series vanishes identically on Ã+ and due to step 1 on Ã.
Step 3: The Divergence Theorem yields a contradiction to the assumption (ii):∫

B(0,%n)

f dx dy =

∫
B(0,%n)

(
∂u

∂x
+ ıx

∂u

∂y

)
dx dy =

∫
B(0,%n)

∇ ·
(
u
ıxu

)
dx dy

=

∫
∂B(0,%n)

(
u
ıxu

)
·N(x, y) dσ(x, y) = 0,

Therefore the given differential equation has no continuously differentiable solution.
This example also implies that the following partial differential equation with

smooth real coefficients has no four times differentiable real solution:(
∂

∂x
+ ıx

∂

∂y

)(
∂

∂x
− ıx ∂

∂y

)2(
∂

∂x
+ ıx

∂

∂y

)
ũ =

((
∂2

∂x2
+ x2 ∂

2

∂y2

)2

+
∂2

∂y2

)
ũ = f.

Here f is a real smooth function with the properties (i) and (ii). For any real solution
ũ, the following complex function would be a solution of the complex PDE:

u =

(
∂

∂x
− ıx ∂

∂y

)2(
∂

∂x
+ ıx

∂

∂y

)
ũ.
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2.4 Distributions

Our investigation of partial differential equations aims to find as many solutions as
possible and, in addition, conditions which uniquely determines the solutions. The
existence and uniqueness of solutions depends on the notion of solution we use. Clearly
all partial derivatives of a solution which occur in the partial differential equation
have to exist. We might use several possible generalisations of derivatives in order
to define such solutions. In this section we introduce generalised functions which can
always be differentiated infinitely many times. For this achievement we have to pay a
price: these generalised functions cannot be multiplied with each other. Linear partial
differential equations extend to well defined equations on such generalised functions.
Generalised functions solving the linear partial differential equations are called weak
solutions or solutions in the sense of distributions. There exist other notions of weak
solutions which also apply to non-linear partial differential equations. An example
of more general functions with finitely many derivatives are so called Sobolev spaces.
These Sobolev spaces are introduced in more advanced lectures on partial differential
equations. The elements of the Sobolev spaces are distributions. So the distributions
which we introduce now are the most general functions with derivatives.

The support supp f of a function f is the closure of {x | f(x) 6= 0}. On an open set
Ω ⊆ Rn let C∞0 (Ω) denote the algebra of smooth functions whose support is a compact
subset of Ω. We say such functions have compact support in Ω and we use the notation
supp f b Ω. Each f ∈ L1(Ω) defines a linear map

F : C∞0 (Ω)→ R, φ 7→
∫

Ω

fφ dµ.

Generalised functions on Ω are such linear forms F on C∞0 (Ω). When considering the
elements of C∞0 (Ω) as the domain of the linear form F , we call them test functions. If
f has a derivative, then by integration by parts we obtain∫

Ω

∂ifφ dnx = −
∫

Ω

f∂iφ dnx.

For any linear form F on C∞0 (Ω) we define the partial derivatives as

∂iF : C∞0 (Ω)→ R, φ 7→ −F (∂iφ).

Therefore such generalised functions have infinitely many derivatives. The vector space
of test functions is infinite dimensional. In order to avoid abstract nonsense we should
impose some continuity on the linear forms F . The derivative of a continuous functional
F is again continuous, if the derivatives are linear continuous maps on the space C∞0 (Ω).
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For f ∈ L1(Ω)) the corresponding linear functionals F are continuous with respect to
the supremum norm on compact subsets of Ω. We define for any compact subset K ⊂ Ω
and every multiindex α the following semi-norm:

‖ · ‖K,α : C∞0 (Ω)→ R, φ 7→ ‖φ‖K,α := sup
x∈K
|∂αφ(x)| .

Definition 2.6. On an open subset Ω ⊆ Rn the space of distributions D′(Ω) is defined
as the vector space space of all linear maps F : C∞0 (Ω)→ R which are continuous with
respect to the semi norms ‖·‖K,α; i.e. for each compact K ⊂ Ω there exist finitely many
multi indices α1, . . . , αM and constants C1 > 0, . . . , CM > 0 such that the following
inequality holds for all test functions φ ∈ C∞0 (Ω) with compact support in K:

|F (φ)| ≤ C1‖φ‖K,α1 + . . .+ CM‖φ‖K,αM .

The support suppF of a distribution F ∈ D′(Ω) is defined as the complement of
the union of all open subsets O ⊂ Ω, such that F vanishes on all test functions φ whose
support is contained in O. We denote the Euclidean length of x ∈ Rn by |x|. The test
function

φ(x) :=

{
exp

(
1

|x|2−1

)
for |x| < 1

0 for |x| ≥ 1

has support B(0, 1) and is non-negative. By rescaling of x and φ and by translations we
obtain for each ball B(x0, ε) a non-negative test function φB(x0,ε) with suppφB(x0,ε) =

B(x0, ε) with
∫
φB(x0,ε) dµ = 1. In particular, there exists for every open subset O ⊂ Ω

a non-negative test function with support contained O. Every continuous function f on
Ω which does not vanish identically takes values in (−∞, ε) or (ε,∞) for some ε > 0 on
some properly chosen open ball. Therefore there exists φ ∈ C∞0 (Ω) with

∫
Ω
fφ dµ 6= 0.

The following distribution does not correspond to a usual function:

δ : C∞0 (Ω)→ R φ 7→ φ(0).

A corresponding function would vanish on Rn \ {0} and would have a total integral
one. Since {0} has measure zero such a function does not exist. This generalised
function is called Dirac’s δ-function. We shall see that the family of distributions which
corresponds to the functions φB(0,ε) converge in the limit ε ↓ 0 to this distribution. The
support of all derivatives of this distribution contains only the point 0 ∈ Ω.

The product of a distribution with a function g ∈ C∞(Ω) is defined as

gF : C∞0 (Ω)→ R, φ 7→ F (gφ).
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This product makes the embedding C∞(Ω) ↪→ D′(Ω) to a homomorphism of modules
over the algebra C∞(Ω). However, even the product of a distribution with a continuous
non-smooth functions is not defined. The convolution is another product on C∞0 (Rn):

(g ∗ f)(x) :=

∫
Rn
g(x− y)f(y) dny =

∫
Rn
g(y)f(x− y) dny.

This product is commutative and associative (Exercise). In order to extend this product
to a product between a smooth function and a distribution we calculate:∫

Rn

φ(g ∗ f) dnx =

∫
Rn

∫
Rn

φ(x)g(x− y)f(y) dny dnx =

∫
Rn

φ(x)

∫
Rn

(TxPg)(y)f(y) dny dnx

=

∫
Rn

∫
Rn
φ(x)g(x− y)f(y) dnx dny =

∫
Rn

(φ ∗ Pg)f dny

with Tx : C∞0 (Ω)→ C∞0 (x+ Ω), φ 7→ Txφ, and (Txφ)(y) = φ(y − x)

and P : C∞0 (Ω)→ C∞0 (−Ω), φ 7→ Pφ, with (Pφ)(y) = φ(−y).

Therefore we define for g ∈ C∞0 (Rn) and F ∈ D′(Rn)

g ∗ F : Rn→ R, x 7→ F (TxPg) or equivalently g ∗ F : C∞0 (Rn)→ R, φ 7→ F (φ ∗ Pg).

Lemma 2.7. The convolutions of a distribution F with a test function g ∈ C∞0 (Ω) is
a distribution which corresponds to a smooth function. The support of this distribution
is contained in the point-wise sum of the supports of the functions and the distribution.

Proof. For each F ∈ D′(Ω) the linearity and continuity imply

g ∗ F (φ) = F (Pg ∗ φ) =

∫
Rn
F (TxPg)φ(x) dnx.

Due to the continuity of F with respect to the semi norms ‖ · ‖K,0 the functions x 7→
F (TxPg) are continuous. Furthermore, these functions are smooth since

Ty+εh−Ty
ε

φ =

Ty
Tεh−1l
ε
φ converges for all φ ∈ C∞(Rn) in the limit ε → 0 on the space C∞(Rn) with

respect to the topology induced by the semi norms ‖ · ‖K,α to Ty (
∑n

i=1 hi∂iφ).
If x 7→ F (TxPg) does not vanish on a neighbourhood of a point x, then g(x−y) 6= 0

for an element y ∈ suppF . Hence x = y + (x− y) is the sum of an element of suppF
with an element of supp g. q.e.d.

This Lemma implies that even the convolution of a distribution F ∈ D′(Rn) with
a distribution G ∈ D′(Rn) with compact support suppG is a well defined distribution:

F ∗G : C∞0 (Ω)→ R, φ 7→ F (φ ∗ PG) with PG(φ) := G(Pφ).
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In particular, the δ-distribution is the neutral element of the product defined by the
convolution, i.e. the convolution with the δ-distribution maps each distribution to itself.
We introduced a family of test functions (φB(0,ε))ε>0 which converge in the limit ε ↓ 0
to the δ-distribution. For each F ∈ D′(Ω) the family fε := φB(0,ε) ∗ F converge in the
limit ε ↓ 0 in a specific sense to F . Such a family (λε)ε>0 in C∞0 (Rn) with

λε ≥ 0 suppλε ⊂ B(0, ε)

∫
Rn
λε dnx = 1,

which converges in the limit ε ↓ 0 to the δ-distribution, is called mollifier. Now we can
show that all distributions can be approximated by smooth functions.

Lemma 2.8. Let f ∈ C(Ω) and (λε)ε>0 be a mollifier. In the limit ε ↓ 0 the family of
smooth functions λε ∗ f converges uniformly on compact subsets of Ω to f . For smooth
functions the same holds for all derivatives of f .

Proof. On compact sets continuous functions are uniformly continuous. Any x ∈ Ω is
contained in an open ball B(x, ε) ⊂ Ω. For sufficiently small ε we have

|(λε ∗ f)(x)− f(x)| =
∣∣∣∣∫
B(x,ε)

λε(x− y)(f(y)− f(x)) dny

∣∣∣∣ ≤ sup
y∈B(x,ε)

|f(y)− f(x)|.

This shows the uniform convergence limε↓0 λε ∗ f = f . By definition of the convolution
two smooth functions f and g obey

∂i(f ∗ g) = f ∗ ∂ig = ∂if ∗ g.

Hence for f ∈ C∞(Ω) these arguments carry over to all partial derivatives of f . q.e.d.

As previously mentioned, any f ∈ L1
loc(Ω) defines in a canonical way a distribution

Ff : C∞0 (Ω)→ R, φ 7→
∫

Ω

fφ dµ.

For φ ∈ C∞0 (Ω) with support in a compact subset K ⊂ Ω and f ∈ L1(Ω) we have

|Ff (φ)| ≤ sup
x∈K
|φ(x)|‖f‖L1(Ω).

For f ∈ L1
loc(Ω) every compact subset K ⊂ Ω has a cover of open subsets O1, . . . , OL

of Ω such that f |Ol ∈ L1(Ol) for l = 1, . . . , L. This shows Ff ∈ D′(Ω):

|Ff (φ)| ≤ sup
x∈K
|φ(x)|

L∑
l=1

‖f |Ol‖L1(Ol) for suppφ ⊂ K.
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Lemma 2.9. (Fundamental Lemma of the Calculus of Variations) If f ∈ L1
loc(Ω) obeys

Ff (φ) ≥ 0 for all non-negative test functions φ ∈ C∞0 (Ω), then f is non-negative almost
everywhere. In particular the map L1

loc(Ω)→ D′(Ω), f 7→ Ff is injective.

Proof. It suffices to prove the local statement for f ∈ L1(Ω). We extend f to Rn by
setting f on Rn \ Ω equal to zero. The extended function is also denoted by f and
belongs to f ∈ L1(Rn). For a mollifier (λε)ε>0 we have

‖λε ∗ f − f‖1 =

∫
Rn

∣∣∣∣∫
B(0,ε)

λε(y)f(x− y) dny − f(x)

∣∣∣∣ dnx ≤

≤
∫
B(0,ε)

∫
Rn
λε(y)|f(x− y)− f(x)| dnx dny ≤ sup

y∈B(0,ε)

‖f(· − y)− f‖1.

If f is the characteristic functions of a rectangle, then the supremum on the right hand
side converges to zero for ε ↓ 0. Due to the triangle inequality the same holds for
step functions, i.e. finite linear combinations of such functions. Since step functions
are dense in L1(Rn) for each f ∈ L1(Rn) this supremum becomes arbitrary small for
sufficiently small ε. Hence the family of functions (λε ∗ f)ε>0 converges in L1(Rn) in
the limit ε ↓ 0 to f . Hence there exists a sequence (εn)n∈N which converges to zero,
with ‖fn+1 − fn‖1 ≤ 2−n for all n ∈ N and fn = λεn ∗ f . This ensures that the
series |f1| +

∑
n∈N |fn+1 − fn| converges in L1(Rn). Furthermore, due to Lebesgue’s

bounded convergence theorem the sequence (fn)n∈N converges almost everywhere to
f . The non-negativity of the mollifiers together with the assumption on Ff implies
(λε ∗ f)(x) = Ff (λε(x− ·) ≥ 0. This indeed shows that f is a.e. non-negative.

In particular, if f belongs to the kernel of f 7→ Ff , then f is almost everywhere
non-negative and non-positive. So f vanishes almost everywhere. q.e.d.

Exercise 2.10. In this exercise we show that for distributions there is a one-to-one
correspondence between solutions of the linear transport equation and initial values.

1. Show that for any distribution F ∈ D′(Rn×R) which solves the transport equation
(∂t + b∇)F = 0, the following distribution solves the equation ∂tF̃ = 0:

F̃ ∈ D′(Rn×R) with F̃ (φ) = F (φ̃) and φ̃(y, t) = φ(y−bt, t) for all (y, t)∈ Rn×R.

2. Show that the following formula defines a linear continuous map

I : C∞(Rn × R)→ C∞0 (Rn) with I(φ)(x) =

∫
R
φ(x, t) dt.

3. Let F̃ ∈ D′(Rn×R) solve ∂tF̃ = 0. Show F̃ (φ) = G(I(φ)) for some G ∈ D′(Rn).
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4. Show that for any mollifier (λε)ε>0 on R and any φ ∈ C∞0 (Rn) the functions

φ× λε : Rn × R→ R with (x, t) 7→ φ(x)λε(t)

belong to C∞0 (Rn × R) and that F̃ (φ× λε) does not depend on ε > 0.

5. Show that for any G ∈ D′(Rn) the following F ∈ D′(Rn×R) solves (∂t+b∇)F = 0:

F : C∞0 (Rn × R)→ R, φ 7→ G

(∫
R
T−tbφ(·, t) dt

)
.

6. Show that G→ F is bijective onto {F ∈ D′(Rn × R) | (∂t + b∇)F = 0}.

A short and lucid introduction into the theory of distributions is contained in the
first chapter of the book of Lars Hörmander: “Linear Partial Differential Operators”.

2.5 Regularity of Solutions

The regularity of a solution of a differential equation refers to the local properties of the
corresponding functions. The most general functions we shall consider are distributions,
which we say have the lowest regularity. They contain the measurable functions with
the next highest regularity. The elements of Lploc describe ever smaller families of
functions, whose regularity increase with p ∈ [1,∞]. The next smallest class are
Sobolev functions whose k-th order partial derivatives belong to Lploc. The regularity
further increases for the functions in Ck. Finally we end with the smooth functions
and the analytic functions with the highest regularity.

2.6 Boundary Value Problems

Our investigations of solutions of partial differential equations aims for a complete char-
acterisations of all solutions. In general partial differential equations have an infinite
dimensional space of solutions. A solution of an ordinary differential equations of m-th
order is in many cases uniquely determined by fixing the values of the first m deriva-
tives at some initial value of the parameter. For partial differential equations we search
a similar characterisation. The solutions are functions on higher dimensional domains
Ω ⊂ Rn. A natural condition is the specification of the values of the solution and
some of its derivatives on the boundary of the domain. The search for solutions which
obey this further specification are called boundary value problems. So an important
objective in the investigation of partial differential equations is to find boundary value
problems that have unique solutions. If we determine in addition all possible boundary
values that have solutions, then the space of solutions is completely parameterised.
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Laplace Equation

One of the most important PDEs is the Laplace equation

4u =
∂2u

∂x2
1

+ . . .+
∂2u

∂x2
n

= 0.

The corresponding inhomogeneous PDE is Poisson’s equation

−4u = f.

Both equations are linear PDEs of second order with the unknown function u : Rn → R.
They show up in many situations. In physics they describe for example the potential
of an electric field in the vacuum with some distribution of charges f .

3.1 Fundamental Solution

The Laplace equation is invariant with respect to all rotations and translations of the
Euclidean space Rn. Therefore we first look for solutions which are invariant with
respect to all rotations. These solutions depend only on the length r = |x| =

√
x · x of

the position vector x. For such functions u(x) = v(r) = v(
√
x · x) we calculate:

∇xu(x) = v′
(√

x · x
)
∇xr = v′

(√
x · x

) 2x

2r
.

Hence the Laplace equation simplifies to an ODE

4xu(x) = ∇x · ∇xu = v′′(r)
x2

r2
+ v′(r)

n

r
− v′(r) x

2

r2r
= v′′(r) +

n− 1

r
v′(r) = 0.

Let us solve this ODE:

v′′(r)

v′(r)
=

1− n
r

⇒ ln(v′(r)) = (1−n) ln(r)+C ⇒ v(r) =

{
C ′ ln(r) + C ′′ for n = 2
C′

rn−2 + C ′′ for n ≥ 3.

39
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Definition 3.1. Let Φ(x) be the following solutions of the Laplace equation:

Φ(x) =

{
− 1

2π
ln |x| for n = 2

1
n(n−2)ωn|x|n−2 for n ≥ 3.

Here ωn denotes the volume of the unit ball B(0, 1) in Euclidean space Rn.

This solution has a singularity at the origin x = 0. We have chosen the constants
in such a way that the following theorem holds:

Theorem 3.2. For f ∈ C2
0(Rn) a solution of Poisson’s equations −4u = f is given

by

u(x) =

∫
Rn

Φ(x− y)f(y)dny =

∫
Rn

Φ(z)f(x− z)dnz.

Proof. The equality of both integrals in the definition of u(x) follows from the substi-
tution z = x − y. The second integral is twice continuously differentiable, since f is
twice continuously differentiable and has compact support. We calculate

∂2u

∂xi∂xj
(x) =

∫
Rn

Φ(y)
∂2f

∂xi∂xj
(x− y)dny.

In particular, 4u(x) =
∫
Rn Φ(y)4xf(x−y)dny. We decompose this integral in the sum

of an integral nearby the singularity of Φ and an integral away from this singularity:

4u(x) =

∫
B(0,ε)

Φ(y)4xf(x− y)dny +

∫
Rn\B(0,ε)

Φ(y)4xf(x− y)dny

= Iε +Jε.

We use
∫
r ln rdr = r2

2
(ln r− 1

2
) and

∫
rdr = r2

2
and estimate the first integral for ε ↓ 0:

|Iε| ≤ C‖4xf‖L∞(Rn)

∫
B(0,ε)

|Φ(y)|dny ≤

{
Cε2(| ln ε|+ 1) (n = 2)

Cε2 (n ≥ 3).

Integration by parts of the second integral yields

Jε =

∫
Rn\B(0,ε)

Φ(y)4yf(x− y)dny

= −
∫
Rn\B(0,ε)

∇yΦ(y) · ∇yf(x− y)dny +

∫
∂B(0,ε)

Φ(y)∇yf(x− y) ·Ndσ(y)

= Kε +Lε.
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Here N is the outer normal and dσ the measure on the boundary of Rn \B(0, ε). The
second term converges in the limit ε ↓ 0 to zero:

|Lε| ≤ |∇f |L∞(Rn)

∫
∂B(0,ε)

|Φ(y)|dσ(y) ≤

{
Cε| ln ε| (n = 2)

Cε (n ≥ 3).

Another integration by parts of the first term yields

Kε =

∫
Rn\B(0,ε)

4yΦ(y)f(x− y)dny −
∫
∂B(0,ε)

∇yΦ(y)f(x− y) ·Ndσ(y)

= −
∫
∂B(0,ε)

∇yΦ(y)f(x− y) ·Ndσ(y).

Here we used that φ is harmonic for y 6= 0. The gradient of Φ is equal to ∇Φ(y) =
− 1
nωn

y
|y|n . The outer normal points towards the origin and is equal to − y

|y| . Let σn(r)

denote the area of ∂B(0, r) ⊂ Rn. By the divergence theorem for x 7→ x we have

nωnr
n =

∫
B(0,r)

∇ · xdµ =

∫
∂B(0,r)

x ·N(x)dσ(x) =

∫
∂B(0,r)

x · x|x|dσ(x) = rσn(r), σn(r) = nωnr
n−1.

Now Kε is the mean value of −f on ∂B(0, ε), since σn(ε) = nωnε
n−1 is the area of

∂B(0, ε). By continuity of f this mean value converges for ε ↓ 0 to −f(x). q.e.d.

By this theorem we have −4Φ(x) = δ(x) in the sense of distributions. This relation
justifies the choice of the constant in the definition of φ. The convolution of f with
Φ is defined for continuous functions f ∈ L1(Rn). On can show that as a measurable
function the convolution is defined even for f ∈ L1(Rn) and belongs to L1(Rn). In this
case the convolution is in the sense of distributions a solution of Poisson’s equation.
In general, for a continuous f ∈ L1(Rn) the corresponding u is not twice differentiable,
and the theorem is not valid for such f . But it is valid for all Lipschitz continuous
functions f in L1(Rn). Since Poisson’s equation is an inhomogeneous linear PDE, all
solutions are defined up to adding a solution of the homogeneous equation which is
Laplace equation.

3.2 Mean Value Property

In this section we shall prove the following property of a harmonic function u on an
open domain Ω ⊂ Rn: the value u(x) of u at the center of any ball B(x, r) with compact
closure in Ω is equal to the mean of u on the boundary of the ball. Conversely, if this
holds for all balls with compact closure in Ω, then u is harmonic. The mean of u on
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the ball B(x, r) is the mean over r′ ∈ [0, r] of the means of u on the boundary of
B(x, r′). Therefore the same statement holds for the means of u on the balls B(x, r).
This relation is called mean value property and has many important consequences.

Mean Value Property 3.3. Let u ∈ C2(Ω) be harmonic on an open domain Ω ⊂ Rn

containing the closure of the ball B(x, r). The mean of u on the ball B(x, r) and on its
boundary is equal to the value u(x) of u at the center. Conversely, if the means of a
function u ∈ C2(Ω) on all balls B(x, r) with compact closure in Ω or on all boundaries
of such balls is equal to the value u(x) at the center of the ball, then u is harmonic.

Proof. We define Φ(r) for x ∈ Ω as the mean of u on ∂B(x, r) ⊆ Ω:

Φ(r) :=
1

rn−1nωn

∫
∂B(x,r)

u(y) dσ(y) =
1

nωn

∫
∂B(0,1)

u(x+ rz) dσ(z).

Here ωn denotes the volume of the unit ball in Euclidean space Rn. We apply the
Divergence Theorem and calculate the derivative Φ′(r) =

=
1

nωn

∫
∂B(0,1)

∇u(x+ rz) · z dσ(z) =
1

rn−1nωn

∫
∂B(x,r)

∇u(y) ·N dσ(y) =
1

rn−1nωn

∫
B(x,r)

4u dµ.

Hence for harmonic u this function is constant as long as B(x, r) has compact closure
in Ω. By continuity of u this function Φ(r) converges in the limit lim r → 0 to u(x).
This shows that the means of u on all spheres ∂B(x, r) are equal to the values u(x) of
u at the center x. Now we claim that the integral of the function u over B(x, r) is∫

B(x,r)

u(y)dµ(y) =

∫
B(0,r)

u(x+ y)dµ(y) =

∫ r

0

∫
∂B(0,s)

u(x+ y)dσ(y)ds =

∫ r

0

∫
∂B(x,s)

u(y)dσ(y)ds.

In fact for any linear rotation O the square of the determinant of the Jacobean of the
map (z, r) 7→ O(z,

√
r2 − z2) is equal to r2

r2−z2 which is equal to det
(
(Φ′(z))TΦ′(z)

)
=

1 + (∇z

√
r2 − z2)2 of the pasteurisation z 7→ Φ(z) = O(z,

√
r2 − z2) of ∂B(0, r). Hence

the claim follows from Jacobi’s transformation formula and the Definition 2.3 of the
integral over ∂B(0, r). So the mean of u on the ball B(x, r) is equal to

1

rnωn

∫
B(x,r)

u(y) dny =
n

rn

∫ r

0

1

sn−1nωn

∫
∂B(x,s)

sn−1u(y) dσ(y) ds =
n

rn

∫ r

0

sn−1Φ(s) ds.

For constant Φ this is again equal to the value u(x) of u at the center x.
Conversely, if the means of u on all balls B(x, r) with compact closure in Ω is equal

to the values u(x) of u at the center x, then we have

u(x) =
1

ωnrn

∫ r

0

nωns
n−1Φ(s) ds =

n

rn

∫ r

0

sn−1Φ(s) ds.
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The vanishing of the derivative with respect to r of the right hand side yields

0 = − n2

rn+1

∫ r

0

sn−1Φ(s) ds+
n

rn
rn−1Φ(r) = −n

r
u(x) +

n

r
Φ(r).

Therefore also the means Φ(r) of u on the boundaries ∂B(x, r) are equal to the value
u(x) of u at the center x. Since u is twice continuously differentiable, the function Φ
is twice continuously differentiable. We have seen that Φ′(r) is the mean of 4u on
B(x, r). In particular, if the mean of u on all ∂B(x, r) ⊂ Ω is equal to the value u(x)
of u at the center x, then the integral of 4u over the balls with compact closure in Ω
vanish. If there exists x ∈ Ω with 4u(x) 6= 0, then there is a ball B(x, r) with compact
closure in Ω, such that either 4u < −|4u(x)|/2 or 4u > |4u(x)|/2 on B(x, r) and∫
B(x,r)

4u(y)dny 6= 0. Therefore 4u vanishes and u is harmonic on Ω. q.e.d.

Corollary 3.4. Let u be a smooth1 harmonic function on an open domain Ω ⊂ Rn and
B(x, r) a ball with compact closure in Ω. For all multi-indices α we have the estimate

|∂αu(x)| ≤ C(n, |α|)r−|α|‖u‖L∞(B(x,r)) with C(n, |α|) = 2
|α|(1+|α|)

2 n|α|.

Proof. All partial derivatives of a harmonic function are harmonic. The Mean Value
Property and the Divergence Theorem yield for i = 1, . . . , n

|∂i∂αu(x)| =
∣∣∣∣ 2n

ωnrn

∫
B(x,r/2)

∂i∂
αudµ

∣∣∣∣ =

∣∣∣∣ 2n

ωnrn

∫
∂B(x,r/2)

∂αuNidσ

∣∣∣∣ ≤ 2n

r
‖∂αu‖L∞(∂B(x,r/2)).

The inductive application gives first C(n, 1) = 2n, and using the induction hypothesis

‖∂αu(y)‖ ≤ 2|α|C(n, |α|)r−|α|‖u‖L∞(B(x,r)) for all y ∈ ∂B(x, r/2)

the relation C(n, 1+ |α|) = 21+|α|nC(n, |α|). The given C(n, |α|) is the solution. q.e.d.

Liouville’s Theorem 3.5. On Rn a bounded harmonic function is constant.

Proof. The foregoing corollary shows that |∂iu(x)| is bounded by 2n‖u‖L∞(Rn)r
−1 for

each i = 1, . . . , n and x ∈ Rn. In the limit r → ∞ the first partial derivatives vanish
identically. Therefore u is constant. q.e.d.

Let us now transfer the Mean Value Property to a property of distributions. If
u ∈ C2(Ω) is harmonic, then for B(x, r) ⊂ Ω and ψ ∈ C∞0 ((0, r)) we have∫

B(x,r)

u(y)
ψ(|y − x|)

n|y − x|n−1ωn
dny =

∫ r

0

ψ(s)

nsn−1ωn

∫
∂B(x,s)

u(y) dσ(y) ds =

(∫ r

0

ψ(s) ds

)
u(x).

So the distribution Fu has the following property:

1We shall see in Weyl’s Lemma that this assumption can be replaced by the assumption u ∈ L∞loc(Ω).
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Weak Mean Value Property 3.6. Let U ∈ D′(Ω) be a harmonic distribution on an
open domain Ω ⊂ Rn. For each ball B(x, r) with B(x, r) ⊂ Ω and each ψ ∈ C∞0 ((0, r))
with

∫
ψ dµ = 0 the distribution U vanishes on the following test function:

f ∈ C∞0 (Ω), y 7→ f(y) =
ψ(|y − x|)

n|y − x|n−1ωn
with supp f ⊂ B(x, r) ⊂ Ω.

Proof. It suffices to show that there exists a test function g ∈ C∞0 (Ω) with 4g = f .
By the assumptions on ψ there exists a test function Ψ ∈ C∞0 ((0, r)) with Ψ′ = ψ. We
define

g(y) = v(|y − x|) with v(t) =

∫ t

r

Ψ(s)

nsn−1ωn
ds.

This function g has compact support in B(x, r) ⊂ Ω, depends only on |y − x| and is
constant on B(x, ε) for some ε > 0. We calculate for y 6= x:

∇yg(y) = v′′(|y − x|) +
n− 1

|y − x|
v′(|y − x|)

This implies

4yg(y) =
ψ(|y − x|)

n|y − x|n−1ωn
− (n− 1)Ψ(|y − x|)

n|y − x|nωn
+
n− 1

|y − x|
Ψ(|y − x|)

n|y − x|n−1ωn
= f(y). q.e.d.

Weyl’s Lemma 3.7. On an open domain Ω ⊂ Rn for each harmonic distribution
U ∈ D′(Ω) there exists a harmonic function u ∈ C∞(Ω) with U = Fu.

Proof. Let us first define u. For all x ∈ Ω choose a ball B(x, r) ⊂ Ω and a test function
ψ ∈ C∞0 ((0, r)) with

∫ r
0
ψ(s) ds = 1. Then we define

u(x) := U(gx) with gx(y) :=
ψ(|y − x|)

n|y − x|n−1ωn
.

If U is harmonic, then the Weak Mean Value Property implies that u(x) does not
depend on the choice of r and ψ. Hence we can use in the formula for u(x) the same r
and ψ for all x in a small neighbourhood of each x0. Then u is the convolution of the
test function g0 = Pg0 with the distribution U . Due to Lemma 2.7, u is smooth.

Next we prove that the distribution Ũ = Fu has the Weak Mean Value Property.
By the discussion which motivates Lemma 2.7 this distribution Ũ is the convolution
of g0 = Pg0 with U , conceived not as the function u but as a distribution Fu. The
functions f in the Weak Mean Value Property are characterised by three properties:
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1. they depend only on the distance |y − x| of the variable y to some center x ∈ Ω,

2. they vanish on a neighbourhood of the center x and

3. their integrals vanish.

The first property is equivalent to the invariance of f with respect to all rotations
around the center. We show that the convolution g ∗ f of a test function g which is
invariant with respect to all rotations around the center x with a test function f which
is invariant with respect to all rotations around a center z is invariant with respect to
all rotations around the center x+ z. In fact, for all O ∈ O(n,R) we use the invariance
of the Lebesgue measure with respect to translations and O and obtain

(g∗f)(x+z+Oy) =

∫
Rn
g(x+z+Oy−y′)f(y′) dny′ =

∫
Rn
g(x+O(y−z′))f(z+Oz′) dnz′.

Furthermore, the integral of g ∗ f is the product of the integrals of g and f :∫
Rn

(g ∗ f)(x) dnx =

∫
Rn

∫
Rn
g(x− y)f(y) dny dnx =

∫
Rn

∫
Rn
g(x− y)f(y) dnx dny

=

(∫
Rn
g(x) dnx

)(∫
Rn
f(y) dny

)
.

In particular, the convolution g0 ∗ f of the test functions g0 with the test function f in
the Weak Mean Value Property is again a test function which is invariant with respect
to the rotations around the same center as f with vanishing total integral. Since ψ
has compact support in (0, r) the function f vanishes on B(x, ε) for sufficiently small
ε > 0. If the support of g0 is contained in B(0, ε/2), then g0 ∗ f vanishes on B(x, ε/2).
This implies that g0 ∗ f is again a function of the form considered in the Weak Mean
Value Property and Ũ(f) = U(g0 ∗ f) = 0. So Ũ has the Weak Mean Value Property.

Next we prove that u is harmonic. Let φB(0,ε) ∈ C∞0 (R) be the mollifier defined
in Section 2.4. For any B(x, r) with compact closure in Ω, there exists R > r with
B(x,R) ⊂ Ω. For all 0 < r1 < r2 < R and sufficiently small ε the function ψ(t) =
φB(0,ε)(t−r1)−φB(0,ε)(t−r2) has compact support in (0, R) and vanishing total integral.

Let fε denote the corresponding functions in the kernel of Ũ . Since u is continuous,
the limit ε ↓ 0 of Ũ(fε) exists and converges to the difference of the means of u on
∂B(x, r2) and ∂B(x, r1). Since Ũ has the Weak Mean Value Property these differences
vanish for all 0 < r1 < r2 < R and the means of u on all ∂B(x, r) ⊂ Ω coincide. In the
limit r ↓ 0 these means converge to u(x), since u is continuous. Therefore u has the
Mean Value Property and is a smooth harmonic function.

Finally we prove Ũ = U . The functions ψ(t) = φB(0,ε/3)(t − 2/3ε) have support
[ε/3, ε] and total integral 1. The corresponding functions g0 are smooth mollifiers λε.
By definition of Ũ we have Ũ = λε ∗ U . Now Lemma 2.8 implies Ũ = U . q.e.d.



46 CHAPTER 3. LAPLACE EQUATION

Actually we have proven that any distribution U that has the Weak Mean Value
Property corresponds to a smooth harmonic function. Therefore the weak solutions of
the Laplace equations coincide with the strong solutions, and all solutions are smooth.

Let us finish this section with a proof of Harnack’s inequality. This inequality
estimates the values of a positive harmonic on a path–connected domain in terms of
the value at any point in the domain.

Harnack’s Inequality 3.8. Let Ω′ be an open path–connected domain with compact
closure in the open domain Ω ⊂ Rn. Then there exists a constant C > 0 depending
only on Ω′ and Ω, such that any non-negative harmonic function u on Ω satisfies the
Harnack inequality

sup
x∈Ω′

u(x) ≤ C inf
x∈Ω′

u(x).

In particular, for all x, y ∈ Ω′ we have
1

C
u(y) ≤ u(x) ≤ Cu(y).

Proof. Let r be the minimal value of the continuous function on the compact set Ω̄′:

Ω̄′ → R+, x 7→ sup{R > 0 | B(x, 2R) ⊂ Ω}.

For x ∈ Ω′ and y ∈ B(x, r) we have B(y, r) ⊂ B(x, 2r) ⊂ Ω. The Mean Value Property
implies

u(x) =
1

2nrnωn

∫
B(x,2r)

u dµ ≥ 2−n

rnωn

∫
B(y,r)

u dµ = 2−nu(y).

Since Ω̄′ is compact and path–connected, it can be covered by finitely many balls
B1, . . . , BN of radius r

2
such that Bn+1 ∩ Bn 6= ∅ for n = 1, . . . , N − 1. An N -fold

application of the special case implies for general x, y ∈ Ω′

u(x) ≥ 2−nNu(y).

Taking the infimum over x ∈ Ω′ and the supremum over y ∈ Ω′ gives

sup
x∈Ω′

u(x) ≤ 2nN inf
x∈Ω′

u(x). q.e.d.

Harnack’s Principle 3.9. On an open and path–connected domain Ω ⊂ Rn a mono-
tone sequence of harmonic functions (un)n∈N converges uniformly on all compact subsets
if and only if there exists x ∈ Ω such that (|un(x)|)n∈N is bounded.

Proof. If (un)n∈N converges uniformly on compact subsets, then (un(x))n∈N converges
for all x ∈ Ω. Conversely, let (|un(x)|)n∈N be bounded for some x ∈ Ω. By monotonicity
the sequence (un(x))n∈N converges. Furthermore, we may assume that (un−um)n≥m is
non-negative. Harnack’s Inequality implies that (un−um)n≥m is uniformly bounded on
compact subsets of Ω and monotonic. Hence it converges uniformly there. The limit
has together with all un the Mean Value Property and is harmonic. q.e.d.
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3.3 Maximum Principle

Let the harmonic function u take in a point x of an open path–connected domain
Ω ⊂ Rn a maximum. The Mean Value Property implies on all balls B(x, r) ⊂ Ω

1

rnωn

∫
B(x,r)

|u(x)− u(y)|dny =
1

rnωn

∫
B(x,r)

(u(x)− u(y))dny = 0.

Hence u takes the maximum on all these balls B(x, r) ⊂ Ω. Since Ω is path–connected
every other point y ∈ Ω is connected with x by a continuous path γ : [0, 1] → Ω with
γ(0) = x and γ(1) = y. The compact image γ[0, 1] is covered by finitely many balls
B(γ(t1), r1), . . . , B(γ(tN), rN) ⊂ Ω with 0 ≤ t1 < . . . tN ≤ 1 and r1, . . . , rN > 0. Hence
u is constant along γ, and on Ω since this is true for all y ∈ Ω. This proves

Strong Maximum Principle 3.10. If a harmonic function u has on a path–connected
open domain Ω ⊂ Rn a maximum, then u is constant. q.e.d.

Weak Maximum Principle 3.11. Let the harmonic function u on a bounded open
domain Ω ⊂ Rn extend continuously to the boundary ∂Ω. The maximum of u is taken
on the boundary ∂Ω.

Proof. By Heine Borel the closure Ω̄ is compact and the continuous function u takes
on Ω̄ a maximum. If it does not belong to ∂Ω, then u is constant on the corresponding
path–connected component and the maximum is also taken on ∂Ω. q.e.d.

Since the negative of a harmonic function is harmonic the same conclusion holds for
minima. Now we generalise the Maximum Principle, but not the Mean Value Property.

Definition 3.12. On an open domain Ω ⊂ Rn an differential operator L

Lu =
∑n

i,j=1
aij(x)

∂2u(x)

∂xi∂xj
+
∑n

i=1
bi(x)

∂u(x)

∂xi

with symmetric coefficients aij = aji is called elliptic, if∑n

i,j=1
aij(x)kikj > 0 for all x ∈ Ω and all k ∈ Rn \ {0}.

If we replace aij by 1
2
(aij + aji), then the assumption aij = aji is fulfilled. Due to

the commutativity of the second derivatives this replacement does not change L.

Theorem 3.13. Let L be an elliptic operator on a bounded open domain Ω ⊂ Rn whose
coefficients aij and bi extend continuously and elliptic to ∂Ω. Every twice differentiable
solution u of Lu ≥ 0 which extends continuously to ∂Ω takes its maximum on ∂Ω.
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Proof. Let us first show that L is uniform elliptic, i.e. there exists λ > 0 with

n∑
i,j=1

aij(x)kikj ≥ λ

n∑
i=1

k2
i for all x ∈ Ω and all k ∈ Rn.

The continuous function (x, k) 7→
∑n

i,j=1 aij(x)kikj attains on the compact set (x, k) ∈
Ω̄× Sn−1 ⊂ Ω̄× Rn a minimum λ > 0. Hence L is uniform elliptic.

For v(x) = exp(αx1) with α > 0 we conclude

Lv = α(αa11(x) + b1(x))v ≥ α(αλ+ b1(x))v.

The continuous coefficients bi are bounded on the compact set Ω̄. Therefore there exists
α > 0 with Lv > 0. By linearity of L we obtain L(u+ εv) > 0 on Ω for all ε > 0. The
continuous functions u+εv attains on Ω̄ a maximum. The first derivative of the function
u+εv which is twice differentiable on Ω vanishes at a maximum x0 ∈ Ω and the Hessian
is negative semi-definite. In particular there exists an orthogonal matrix B ∈ O(n) and

non-positive λ1, . . . , λn with ∂2(u+εv)(x0)
∂xi∂xj

=
∑

k BkiλkBkj. Now the ellipticity implies

−L(u + εv)(x0) ≥ −λ
∑

ki λkB
2
ki ≥ 0 and contradicts to L(u + εv) > 0. Therefore for

all ε > 0 the maximum belongs to the boundary x0 ∈ ∂Ω:

sup
x∈Ω

u(x)+ε inf
x∈Ω

v(x) ≤ sup
x∈Ω

(u(x)+εv(x)) = max
x∈∂Ω

(u(x)+εv(x)) ≤ max
x∈∂Ω

u(x)+εmax
x∈∂Ω

v(x).

Because this holds for all ε > 0 the boundedness of v on Ω̄ implies the theorem. q.e.d.

The negative of the functions u in the theorem obey Lu ≤ 0 and take a minimum
on the boundary. In particular, the solutions u of Lu = 0 take the maximum and the
minimum on the boundary.

3.4 Green’s Function

In this section we try to find some conditions which ensure the existence and uniqueness
of a harmonic function on a path–connected, open and bounded domain Ω ⊂ Rn. A
natural candidate for further conditions are boundary value problems. This means
that we assume that either the harmonic function or some of its derivatives extends
continuously to the boundary and coincides there with a given function. We call a
function u on the closure Ω̄ of an domain m times continuously differentiable, if it is
m times continuously differentiable on Ω and all partial derivatives of order at most m
extend continuously to ∂Ω.

In the following formula we apply the Divergence Theorem to x 7→ v(x)∇u(x):
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Green’s First Formula 3.14. Let the Divergence Theorem hold on the open and
bounded domain Ω ⊂ Rn. Then for two functions u, v ∈ C2(Ω̄) we have∫

Ω

v(y)4u(y)dny+

∫
Ω

∇v(y) ·∇u(y)dny =

∫
∂Ω

v(z)∇u(z) ·Ndσ(z). q.e.d.

If we subtract the formula for interchanged u and v, then we obtain:

Green’s Second Formula 3.15. Let the Divergence Theorem hold on the open and
bounded domain Ω ⊂ Rn. Then for two functions u, v ∈ C2(Ω̄) we have∫

Ω

(v(y)4u(y)− u(y)4v(y)) dny =

∫
∂Ω

(v(z)∇u(z)− u(z)∇v(z)) ·Ndσ(z). q.e.d.

Let us apply this formula to the fundamental solution v(y) = Φ(x−y). This solution
is harmonic only for y 6= x. Like in the proof of Theorem 3.2 we restrict the integral
to the compliment of B(x, ε). For u ∈ C2(Rn) we showed in the proof of Theorem 3.2

lim
ε→0

∫
∂(Rn\B(x,ε))

u(z)∇zΦ(x−z)·Ndσ(z) = lim
ε→0

∫
∂(Rn\B(0,ε))

u(x−z)∇zΦ(z)·Ndσ(z) = u(x).

We also showed that the other integral over ∂(R2 \ B(x, ε)) converges to zero in the
limit ε→ 0 and 4yΦ(x− y) vanishes on Rn \B(x, ε). This proves

Green’s Representation Theorem 3.16. Let the Divergence Theorem hold on the
open and bounded domain Ω ⊂ Rn. Then for x ∈ Ω and a function u ∈ C2(Ω̄) we have

u(x) = −
∫

Ω

Φ(x− y)4u(y)dny +

∫
∂Ω

(Φ(x− z)∇zu(z)− u(z)∇zΦ(x− z)) ·Ndσ(z).

This implies that on Ω each solution of the Poisson equation is uniquely determined
by the values of u and the normal derivative ∇u·N on ∂Ω. Conversely, we look for such
functions, such that there exists a solution of Poisson’s equation with the additional
condition that u and∇u·N take on ∂Ω the given values. The Weak Maximum Principle
implies the harmonic function is already uniquely determined by the values of u on ∂Ω.
So we formulate the following boundary value problem:

Dirichlet Problem 3.17. For a given function f on an open domain Ω ⊂ Rn and g
on ∂Ω we look for a solution u of −4u = f on Ω which extends continuously to ∂Ω
and coincides there with g.

Green’s Function 3.18. A function GΩ : {(x, y) ∈ Ω × Ω | x 6= y} → R is called
Green’s function for the open domain Ω ⊂ Rn, if it has the following two properties:
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(i) For x ∈ Ω the function y 7→ GΩ(x, y)− Φ(x− y) is harmonic on y ∈ Ω.

(ii) For x ∈ Ω the function y 7→ GΩ(x, y) extends continuously to ∂Ω and vanishes on
y ∈ ∂Ω.

Green’s Second Formula yields for the function v(y) = GΩ(x, y)− Φ(x− y):

−
∫

Ω

Φ(x− y)4u(y)dny +

∫
∂Ω

(Φ(x− z)∇zu(z)− u(z)∇zΦ(x− z)) ·Ndσ(z)

= −
∫

Ω

GΩ(x, y)4u(y)dny −
∫
∂Ω

u(z)∇zGΩ(x, z) ·Ndσ(z).

Now Green’s Representation Theorem implies

u(x) = −
∫

Ω

GΩ(x, y)4yu(y)dny −
∫
∂Ω

u(z)∇zGΩ(x, z) ·Ndσ(z).

If, conversely, the functions f : Ω̄→ R and g : ∂Ω→ R have sufficient regularity, then

u(x) =

∫
Ω

GΩ(x, y)f(y)dny −
∫
∂Ω

g(z)∇zGΩ(x, z) ·Ndσ(z)

solves the Dirichlet Problem. In fact by Theorem 3.2 the first term solves the Dirichlet
Problem for g = 0. If g : ∂Ω → R is the boundary value of a function on Ω with
sufficient regularity, then the difference of g minus the corresponding first term is
harmonic and coincides with the second term. Therefore the Dirichlet Problem reduces
to the search of the Green’s Function.

For x ∈ Ω the difference y 7→ GΩ(x, y)−Φ(x− y) is harmonic on y ∈ Ω and on the
boundary ∂Ω equal to −Φ(x− y). Hence the difference is the solution of the Dirichlet
Problem for f = 0 and g(x) = −Φ(x− y).

Theorem 3.19 (Symmetry of the Green’s Function). If there is a Green’s Function
GΩ for the domain Ω, then GΩ(x, y) = GΩ(y, x) holds for all x 6= y ∈ Ω.

Proof. For x 6= y ∈ Ω let ε > 0 be sufficiently small, such that both balls B(x, ε)
and B(y, ε) are disjoint subsets of Ω. Green’s Second Formula implies for the domain
Ω \ (B(x, ε) ∪B(y, ε)) and the functions u(z) = G(x, z) and v(z) = G(y, z)∫

∂B(x,ε)

(G(y, z)∇zG(x, z)−G(x, z)∇zG(y, z)) ·Ndσ(z)

=

∫
∂B(y,ε)

(G(x, z)∇zG(y, z)−G(y, z)∇zG(x, z)) ·Ndσ(z).

For ε → 0 the estimate for Lε in the proof of Theorem 3.2 shows that both second
terms converge to zero. The calculation of Kε in the proof of Theorem 3.2 carries over
and shows that the first terms converge to G(y, x) and G(x, y), respectively. q.e.d.
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We shall calculate Green’s function for all balls in Rn. Let us first restrict to the
unit ball Ω = B(0, 1). We may use the inversion x 7→ x̃ = x

|x|2 in the unit sphere

∂B(0, 1) in order to solve the corresponding Dirichlet Problem. The inversion maps
the inside of the unit ball to the outside and vice versa. It helps to solve the Dirichlet
Problem for f = 0 and g(x) = Φ(x− y):

Green’s Function of the unit ball 3.20. The Green’s Function of B(0, 1) is

GB(0,1)(x, y) = Φ(x− y)−Φ(|x|(x̃− y)) =

{
Φ(x− y)− |x|2−nΦ(x̃− y) for n > 2

Φ(x− y)− Φ(x̃− y)− Φ(x) for n = 2.

Proof. For |y| = 1 we have |x|2|x̃− y|2 = 1− 2y · x+ |x|2 = |x− y|2. Hence Φ(|x|(x̃−
y)) and Φ(x− y) coincide on the boundary y ∈ ∂B(0, 1). q.e.d.

Poisson’s Representation Formula 3.21. For f ∈ C2(B(z, r)) and g ∈ C(∂B(z, r))
the unique solution of the Dirichlet Problem on Ω = B(z, r) is given by

u(x) =
1

rn−2

∫
B(z,r)

GB(0,1)(
x−z
r
, y−z

r
)f(y)dny +

1− |x−z|
2

r2

nωn

∫
∂B(0,1)

g(z + ry)

|x−z
r
− y|n

dσ(y).

Proof. The affine map x 7→ x−z
r

is a homeomorphism from B(z, r) onto B(0, 1) and
from ∂B(z, r) onto ∂B(0, 1). The difference r2−nΦ(x−z

r
− y−z

r
)−Φ(x− y) vanishes for

n > 2 and is constant for n = 2. Therefore the Green’s function of B(z, r) is equal to

GB(z,r)(x, y) = r2−nGB(0,1)(
x−z
r
, y−z

r
).

It suffices to consider the two cases g = 0 and f = 0 separately. The properties of
the Green’s function together with Theorem 3.2 show, that for g = 0 the function u
differs by a harmonic function from a solution of Poisson’s equation. By the symmetry
of the Green’s Function the map x 7→ GB(z,r)(y, x) extends continuously to B(z, r) and
vanishes on the boundary x ∈ ∂B(z, r). This finishes the proof for g = 0.

For |y| = 1 and n > 2 we observe (the reader should check this formula for n = 2):

K(x, y) = −∇yGB(0,1)(x, y) · y
|y|

=
−1

n(n− 2)ωn

y

|y|
· ∇y

(
1

|x− y|n−2
− 1

|x|n−2 |x̃−y|n−2

)
=

1

nωn

y

|y|
·
(

y − x
|x− y|n

− |x|
2(y − x̃)

|x|n |x̃− y|n
)

(for |y| = 1) =
1− x · y − |x|2 + x · y

nωn|x− y|n
=

1− |x|2

nωn|x− y|n
.
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By the Symmetry of the Green’s Function the function x 7→ K(x, y) is harmonic. Hence
for f = 0 the given function u is harmonic. For finishing the proof we show that

u(z + rx) =

∫
∂B(0,1)

g(z + ry)K(x, y)dσ(y)

extends continuously to x ∈ ∂B(0, 1) and coincides there with g(z + rx). We observe

(i) the integral kernel K(x, y) is positive for (x, y) ∈ B(0, 1)× ∂B(0, 1).

(ii) For all x ∈ ∂B(0, 1) and ε > 0 the family of functions y 7→ K(λx, y) converge
uniformly to zero for λ ↑ 1 on y ∈ ∂B(0, 1) \B(x, ε), and

(iii) The formula which follows from Green’s Second Formula and Green’s Represen-
tation Formula yields for the function u = 1 on the domain Ω = B(0, 1)∫

∂B(0,1)

K(x, y)dσ(y) = 1 for x ∈ B(0, 1).

For continuous g the properties (i)-(iii) ensure that in the limit λ ↑ 1 the family of
functions x 7→

∫
∂B(0,1)

g(y)K(λx, y)dσ(y) converge on ∂B(0, 1) uniformly to g. q.e.d.

A harmonic function u on B(z, r) which extends continuously to ∂B(z, r) obeys

u(x) =
1− |x−z|

2

r2

nωn

∫
∂B(0,1)

u(z + ry)

|x−z
r
− y|n

dσ(y) =
r2 − |x− z|2

nrωn

∫
∂B(z,r)

u(y)

|x− y|n
dσ(y).

In particular, u is completely determined by the values on ∂B(z, r). Partial derivatives
with respect to x yield similar formulas for the values of all partial derivatives of u.
This formula implies the Mean Value property. For all y ∈ ∂B(z, r) the Taylor series
of x 7→ |x−y|−n = (y2−2xy+x2)−

n
2 in x = z converge on all balls B(z, r′) with r′ < r

uniformly to |x− y|−n. Consequently all harmonic functions are analytic.

Corollary 3.22. Harmonic functions on an open domain Ω ⊂ Rn are analytic.q.e.d.

Exercise 3.23. 1. Show the estimate |∂α|x|−n| ≤ C(n, |α|)|x|−n−|α| for all |x| 6= 0
and all multi-indices α with a constant C(n, |α|) depending only on n and |α|.

2. Give another proof of Corollary 3.4.

Lemma 3.24. Let Ω ⊂ Rn be an open neighbourhood of 0 and u a bounded harmonic
function on Ω \ {0}. Then u extends as a harmonic function to Ω.
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Proof. On a ball B(0, r) with compact closure in Ω, Theorem 3.21 gives a harmonic
function ũ which coincides on ∂B(0, r) with u. The family of harmonic functions
uε(x) = ũ(x)−u(x)+ εGB(0,r)(x, 0) on B(0, r)\{0} vanish on ∂B(0, r). If for any ε > 0
the function uε takes on B(0, r) \ {0} a negative value, then due to the boundedness of
u and ũ and the unboundedness of GB(0,r)(·, 0) the harmonic function uε has a negative
minimum on B(0, r) \ {0}. This contradicts the Strong Maximum Principle. Hence
uε is non-negative. Analogously uε us for negative ε non-positive. Otherwise uε would
have a positive maximum in B(0, r) \ {0}. In both limits ε ↓ 0 and ε ↑ 0 u0 = ũ − u
vanishes identically on B(0, r) \ {0} and ũ is a harmonic extension of u to Ω. q.e.d.

The proof shows a slightly stronger statement. Each harmonic function on Ω \ {0}
whose absolute value |u(x)| is for all ε > 0 bounded by εGB(0,r)(x, 0) on B(0, δ) \ {0}
with sufficiently small δ > 0 depending on ε has an harmonic extension to Ω.

3.5 Dirichlet’s Principle

The unique solution of Dirichlet’s Problem solves also a variational problem.

Dirichlet’s Prinzip 3.25. Let Ω ⊂ Rn be bounded and open and obey the assumptions
of the Divergence Theorem. For continuous real functions f on Ω̄ and g on ∂Ω the
solution u of the Dirichlet Problem 3.4 is the minimizer of the following functional:

I : {w ∈ C2(Ω̄) | w|∂Ω = g} → R, w 7→ I(w) =

∫
Ω

(
1

2
∇w · ∇w − wf

)
dnx.

Proof. Let u be a solution of the Dirichlet Problem and w another function in the
domain {w ∈ C2(Ω̄) | w|∂Ω = g} of I. An integration by parts yields

0 =

∫
Ω

(−4u− f)(u− w)dnx =

∫
Ω

(∇u · ∇(u− w)− f(u− w)) dnx.

∫
Ω

(∇u · ∇u− fu) dnx =

∫
Ω

(∇u · ∇w − fw) dnx ≤

≤
∫

Ω

1

2
∇u · ∇udnx+

∫
Ω

(
1

2
∇w · ∇w − fw

)
dnx

Here we used the Cauchy-Schwarz inequality:∫
Ω

∇u · ∇wdnx ≤
∫

Ω

∇u · ∇wdnx+
1

2

∫
Ω

(∇u−∇w) · (∇u−∇w)dnx =

∫
Ω

1

2
∇u · ∇udnx+

∫
Ω

1

2
∇w · ∇wdnx.
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This shows I(u) ≤ I(w).
If, conversely, u is a minimum, then all v ∈ C2(Ω̄) which vanish on ∂Ω obey

0=
d

dt
I(u+ tv)

∣∣∣∣
t=0

=
d

dt

(
I(u) + t

∫
Ω

(∇u · ∇v − fv) dnx+
t2

2

∫
Ω

∇v · ∇vdnx
)∣∣∣∣
t=0

=

∫
Ω

(∇u · ∇v − fv) dnx =

∫
Ω

(−4u− f)vdnx.

The final integration by parts shows −4u = f on Ω. q.e.d.

Finally we remark that one can also prove the uniqueness of the solution with the
help of this functional. The difference of two solutions solves the Dirichlet Problem for
f = 0 and g = 0. In this case the functional is non-negative, and vanishes if and only if
u is constant. The boundary conditions forces this constant to be zero. By using this
principle one can show in a larger class of functions, that this functional has a unique
minimizer, which thereby solves the Dirichlet Problem.



Chapter 4

Heat Equation

In this chapter we investigate the heat equation

u̇−4u = 0

and the corresponding inhomogeneous variant

u̇−4u = f.

The unknown function u is defined on an open domain Ω ⊂ Rn × R and the inhomo-
geneity f is a given function on Ω. We shall extend some statements about harmonic
functions to solutions of the heat equation.

This heat equation describes a diffusion process. This means a time-like evolution
of space-like distributed quantities like heat, chemical concentration and others. Here
the flow density is proportional to the negative of the gradient. Then the heat equation
follows from the scalar conservation law.

4.1 Fundamental Solution

Since the heat equation is linear and contains only a first order derivative with respect
to time and only second derivatives with respect to space, for any solution u(x, t) and
any λ ∈ R the function u(λx, λ2t) is also a solution. This scaling behaviour suggests
to look for solutions which depend only on x2

t
. We invoke the following ansatz:

u(x, t) =
1

tα
v
( x
tβ

)
x ∈ Rn, t ∈ R+.

Here α and β are constants and v : Rn → R an unknown function. This ansatz
is justified by the scaling behaviour u(x, t) = λαu(λβx, λt). With λ = 1

t
we obtain

55
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v( x
tβ

) = u( x
tβ
, 1). This ansatz transforms the heat equation into the following PDE

−α · t−(α+1)v(y)− βt−(α+1)y · ∇v(y)− t−(α+2β)4v(y) = 0 mit y =
x

tβ
.

If we set β = 1
2
, then this equation does not depend on t and reduces to

αv + 1
2
y · ∇v +4v = 0.

Again we assume that v is a function of |y|. With v(y) = w(|y|) we obtain:

αw +
1

2
rw′ + w′′ +

n− 1

r
w′ = 0 with r =

| x |√
t
.

If we set α = n
2
, then we may integrate once:(
rn−1w′

)′
+ 1

2
(rnw)′ = 0 rn−1w′ + 1

2
rnw = a.

The constant a vanishes, if w and w′ vanish at infinity.

w′ = −1
2
rw w = b · e

−r2
4 .

For a special choice of the constants a and b we again obtain the fundamental solution.

Definition 4.1. The fundamental solution of the heat equation is defined as

Φ(x, t) =

{
1

(4πt)n/2
e−
|x|2
4t for x ∈ Rn, t > 0

0 for x ∈ Rn, t < 0
.

Lemma 4.2. For all t > 0 the fundamental solution satisfies

∫
Rn

Φ(x, t)dnx = 1.

Proof.
1

(4πt)n/2

∫
Rn
e
−|x|2

4t dnx =
1

πn/2

∫
Rn
e−x

2

dnx =
1

πn/2

(∫
R
e−x

2

dx

)n
= 1. q.e.d.

The fundamental solution is similar to a mollifier on Rn. So we may expect that
the convolution with Φ converges in the limit t ↓ 0 like the identity.

Theorem 4.3. For h ∈ Cb(Rn,R) the following function u has the properties (i)-(iii):

u(x, t) =

∫
Rn

Φ(x− y, t)h(y)dny

(i) u ∈ C∞(Rn × R+)



4.2. INHOMOGENEOUS INITIAL VALUE PROBLEM 57

(ii) u̇−4u = 0 on Rn × R+

(iii) u extends continuously and bounded to Rn × [0,∞) with lim
t→0

u(x, t) = h(x).

Proof. Since Φ(x, t) is smooth on Rn×R+ the foregoing lemmas and the boundedness
of h implies that u(x, t) is well defined, bounded and continuous on Rn × [0,∞). On
(x, t) ∈ Rd×R+ all partial derivatives of (x, t) 7→ Φ(x−y, t) belong to L1(Rn) considered
as functions on y ∈ Rn and depend continuously on (x, t) ∈ Rn. So they define a smooth
map from (x, t) ∈ Rn × R+ into L1(Rn). The integral is a linear continuous operator
from L1(Rn) to R. So u is smooth. No (ii) follows, since Φ solves the heat equation on
Rn×R+. The continuity of h implies uniform continuity on compact subsets. For any
ε > 0 and any x in a compact subset of Rn there exists δ > 0, such that |h(x)−h(y)| < ε
for all |x− y| < δ. Furthermore there exists T > 0, such that∫

Rn\B(0,δ)

Φ(y, t)dny =

∫
Rn\B(0,δ/

√
t)

Φ(y, 1)dny < ε for all t < T .

This implies |u(x, t)− h(x)| ≤
∣∣∣∣∫

Rn
Φ(x− y, t)(h(y)− h(x))dny

∣∣∣∣
≤
∫
B(x,δ)

Φ(x− y, t) | h(y)− h(x) | dny +

∫
Rn\B(x,δ)

Φ(x− y, t)|h(y)− h(x)|dny

≤ ε+ 2ε sup{|h(y)| | y ∈ Rn} for all t < T.

So u(x, t) converges in the limit t ↓ 0 uniformly on compact subsets of Rn to h. q.e.d.

In this limit t ↓ 0 Φ converges as a distribution (and as a measure) to the δ-
distribution. Note that by this formula the speed of propagation is unbounded.

4.2 Inhomogeneous Initial value problem

In the forgoing section we constructed a solution of the initial value problem

u̇−4u = 0 and u(x, 0) = h(x).

Duhamel’s principle derives solutions of the inhomogeneous initial value problem from
solutions of the homogeneous initial values problem. If we write the heat equation
as u̇ = 4u and recall that the Laplace operator is a linear map from the space of
smooth functions on Rn into itself, then the heat equation becomes a linear ODE
in the (infinite-dimensional) space of smooth functions on Rn. For linear ODEs the
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variation of constants is also a method to obtain the solutions of the inhomogeneous
equation in terms of homogeneous solutions. In fact if we take the integral over the
interval [0, t] of the corresponding homogeneous solutions which are at s ∈ [0, t] equal to
the inhomogeneity at s, then we obtain a solution of the inhomogeneous equation which
vanishes at t = 0. Now Duhamel’s principle is just the application of the variation of
constants to the heat equation considered as an ODE in the space of functions on Rn:

Let u(x, t) =

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s)dnyds. Then formally we obtain

u̇(x, t)−4u(x, t) = lim
s→0

∫
Rn

Φ(x− y, s)f(y, t− s)dny+

+

∫ t

0

∫
Rn

(
Φ̇(x− y, t− s)−4xΦ(x− y, t− s)

)
f(y, s)dnyds = f(x, t).

Theorem 4.4 (Solution of the inhomogeneous initial value problem). If f is twice
continuously and bounded differentiable on Rn × [0,∞), then

u(x, t) =

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s)dnyds =

∫ t

0

∫
Rn

Φ(y, s)f(x− y, t− s)dnyds

solves the inhomogeneous initial value problem

u̇−4u = f on Rn × R+ and lim
t→0

u(x, t) = 0.

Proof. We already proved that vs(x, t) =
∫
Rn Φ(x− y, t− s)f(y, s)dny solves on Rn ×

(s,∞) the initial value problem v̇s − 4vs = 0 with lim
t→s

vs(x, t) = f(x, t). So vs is on

Rn × [s,∞) continuous. This implies for all ε > 0 the relation

uε(x, t) =

∫ t−ε

0

vs(x, t)ds =

∫ t−ε

0

∫
Rn

Φ(x− y, t− s)f(y, s)dnyds

u̇ε(x, t)−4uε(x, t) =

∫
Rn

Φ(x−y, t−(t−ε))f(y, t−ε)dny =

∫
Rn

Φ(x−y, ε)f(y, t−ε)dny.

Theorem 4.3 (iii) implies limε→0 u̇ε−4uε = f on Rn×R+. On the other hand we have

uε(x, t) =

∫ t−ε

0

∫
Rn

Φ(x− y, t− s)f(y, s)dnyds =

∫ t

ε

∫
Rn

Φ(y, s)f(x− y, t− s)dnyds.

By the second integral in the Theorem and the assumptions on f we conclude that

lim
ε→0

(u̇ε(x, t)−4uε(x, t)) =

(
∂

∂t
−4

)
lim
ε→0

uε(x, t) =

(
∂

∂t
−4

)
u(x, t)

holds. The continuity of v gives u(x, 0) = 0. q.e.d.
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Corollary 4.5. The inhomogeneous initial value problem has the following solution:

u̇−4u = f u(x, 0) = h(x)

u(x, t) =

∫
Rn

Φ(x− y, t)h(y)dny +

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s)dnyds. q.e.d.

4.3 Mean Value Property

We use the fundamental solution Φ(x, t) in order to determine the value u(x, t) as a
mean value on some ball like domain which has to be chosen properly.

Definition 4.6. For all (x, t) ∈ Rn × R and all r > 0 we define

E(x, t, r) =
{

(y, s) ∈ Rn+1 | s ≤ t,Φ(x− y, t− s) ≥ 1
rn

}
e−
|x−y|2
4(t−s) ≥ (4π)n/2(t− s)n/2

rn
⇐⇒ e

|x−y|2
4(t−s) ≤ 1

πn/2

(
r2

4(t− s)

)n/2
⇐⇒ | x− y |2

4(t− s)
≤ n

2
(2 ln(r)− ln(4(t− s))− ln(π))

⇐⇒ | x− y |2≤ 2(t− s)n(2 ln(r)− ln(t− s)− ln(4π)).

Theorem 4.7 (mean value property of the heat equation). Let u be a solution of the
heat equation on an open domain Ω ⊂ Rn × R. For any (x, t) ∈ Ω and any r > 0 with
E(x, t, r) ⊂ Ω we have

u(x, t) =
1

Cnrn

∫
E(x,t,r)

u(y, s)
|x− y|2

(t− s)2
dnyds with Cn =

∫
E(0,0,1)

|y|2

s2
dnyds.

Proof. Due to the translation invariance we may assume (x, t) = (0, 0). We define

φ(r)=
1

rn

∫
E(0,0,r)

u(y, s)
|y|2

s2
dnyds=

1

rn

∫
E(0,0,r)

u(ry, r2s)
|ry|2

(r2s)2
dn(ry)d(r2s)=

∫
E(0,0,1)

u(ry, r2s)
|y|2

s2
dnyds.

Here we used the fact that the bijective map (y, t) 7→ (ry, r2t) maps E(x, t, 1) onto
E(rx, r2t, r) since Φ(r(x− y), r2t) = r−nΦ(x− y, t). We calculate

φ′(r) =

∫
E(0,0,1)

|y|2

s2

(
y · ∇u(ry, r2s) + 2rsu̇(ry, r2s)

)
dnyds

=
1

rn+1

∫
E(0,0,r)

|y|2

s2
y · ∇u(y, s)dnyds+

1

rn+1

∫
E(0,0,r)

2u̇(y, s)
| y |2

s
dnyds
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For ψ = −n
2

ln(−4πs) + |y|2
4s

+ n ln r we obtain E(0, 0, r) = {(y, s) | ψ(y, s) ≥ 0}.
Furthermore ψ vanishes on the boundary of E(0, 0, r).

1

rn+1

∫
E(0,0,r)

2u̇
| y |2

s
dnyds =

1

rn+1

∫
E(0,0,r)

4u̇y · ∇ψdnyds

= − 1

rn+1

∫
E(0,0,r)

(4nu̇ψ + 4ψy · ∇u̇)dnyds

=
1

rn+1

∫
E(0,0,r)

(−4nu̇ψ + 4ψ̇y · ∇u)dnyds

=
1

rn+1

∫
E(0,0,r)

(
−4nu̇ψ+4

(
− n

2s
−| y |

2

4s2

)
y · ∇u

)
dnyds.

Hence we have φ′(r) =
1

rn+1

∫
E(0,0,r)

(
−4n4uψ − 2n

s
y · ∇u

)
dnyds

=
1

rn+1

∫
E(0,0,r)

(
4n∇u · ∇ψ − 2n

s
y · ∇u

)
dnyds = 0.

This shows that φ is constant. By the continuity of u and by the equation

1

rn

∫
E(0,0,r)

| y |2

s2
dnyds =

1

rn

∫
E(0,0,r)

| ry |2

(r2s)2
dnrydr2s =

∫
E(0,0,1)

| y |2

s2
dnyds = Cn

we obtain lim
r→0

φ(r) = Cnu(0, 0). q.e.d.

It is possible to calculate the constant explicitly. The heat ball E(0, 0, 1) contains
all (y, s) ∈ Rn × (−∞, 0] with s ≤ 0 and |y|2 ≤ −2sn(2 ln(1) − ln(−s) − ln(4π)) =
2ns ln(−4πs). By the positivity of |y|2 we have −4πs < 1 and − 1

4π
< s < 0. This gives

Cn =

∫ 0

− 1
4π

1

s2

∫
B(0,
√

2ns ln(−4πs)⊂Rn
|y|2dnyds

=

∫ 0

− 1
4π

1

s2

∫ √2ns ln(−4πs)

0

nωnr
n+1drds =

∫ 1
4π

0

1

s2

∫ √−2ns ln(4πs)

0

nωnr
n+1drds

= nωn

∫ 1
4π

0

1

s2

[
rn+2

n+ 2

]√2ns ln( 1
4πs)

0

ds =
nωn(2n)

n+2
2

n+ 2

∫ 1
4π

0

(
s ln

(
1

4πs

))n+2
2
ds

s2
.
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Now we substitute 4πs = e−
2
n
t2 with 2

n
t2 = ln( 1

4πs
) and 4

n
tdt = −ds

s
.

Cn =
nωn(2n)

n+2
2

n+ 2

∫ ∞
0

(
e−

2
n
t2

4π

)n
2 (

2
n
t2
)n+2

2 4
n
tdt =

nωn2n+2−n+1

(n+ 2)nπ
n
2

∫ ∞
0

2te−t
2

tn+2dt

= − 8ωn

(n+ 2)π
n
2

[
e−t

2

tn+2
]∞

0
+

8ωn

π
n
2

∫ ∞
0

e−t
2

tn+1dt =
4ωn

π
n
2

∫ ∞
0

2te−t
2

tndt

= −4ωn

π
n
2

[
e−t

2

tn
]∞

0
+

4

π
n
2

∫ ∞
0

nωne
−t2tn−1dt =

4

π
n
2

(∫ ∞
−∞

e−x
2

dx

)n
= 4.

4.4 Maximum Principle

For any open domain Ω ⊂ Rn we define the parabolic cylinder as ΩT = Ω× (0, T ]. The
parabolic boundary ∂ΩT of ΩT is defined as Ω̄T \ΩT . It is the union of (∂Ω× (0, T ])∪(
Ω̄× 0

)
and does not contain at time t = T points inside of Ω.

Theorem 4.8 (strong maximum principle of the heat equation). Let Ω be path con-
nected (i.e. any x, x′ ∈ Ω are connected by a continuous path from x to x′) and let u be
twice continuously differentiable solution of the heat equation on ΩT with continuous
extension to Ω̄T . If u takes the maximal value in ΩT , then u is constant on Ω̄T .

Proof. Let (x0, t0) be an element of ΩT at which u takes the maximal value. Then
there exists r0 > 0 such that E(x0, t0, r0) is contained in ΩT . By the mean value
property u is constant on E(x0, t0, r0). Since Ω is path connected there exists for any
(x, t) ∈ Ω×(0, t0) finitely many E(x0, t0, r0), E(x1, t1, r1), . . . , E(xn, tn, rn) in Ω×(0, t0)
containing the points (x1, t1), . . . , (xn, tn), (x, t). So u is constant on Ω̄T . q.e.d.

Theorem 4.9 (weak maximum prinziple for the heat equation). Let Ω ⊂ Rn be open
and bounded and u a twice differentiable solution of the heat equation on ΩT which
extends continuously to Ω̄T . Then the maximum of u is taken on ∂ΩT . q.e.d.

Again this Maximum principle implies the uniqueness of a boundary value problem:

Theorem 4.10 (uniqueness of the boundary value problem). On an open and bounded
domain Ω ⊂ Rn there exists at most one solution u of the inhomogeneous heat equation
which extends continuously to Ω̄T and coincides on ∂ΩT with a given function.

Proof. Apply the weak maximum principle to the difference of two solutions. q.e.d.

In order to prove on Rn × R+ the uniqueness of the initial value problem we need
as in the case of the Poisson problem a bound on the growth at infinity.
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Theorem 4.11 (maximum prinziple for the Cauchy problem). For a bounded and
continuous initial value h on Rn let u be a solution on Rn × (0, T ] of the problem:

u̇−4u = 0 on Rn × (0, T ) u(x, 0) = h(x)on Rn × {0},

which is bounded by u(x, t) ≤ Aea|x|
2

on Rn × [0, T ]
for some positive constants A, a > 0. Then u is bounded by sup

Rn×[0,T ]

u = sup
Rn

h.

Proof. We first consider the case where a and T obey 4aT < 1. Then there exists an
ε > 0 with 4a(T + ε) < 1. For all y ∈ Rn and µ > 0 the following function v solves
together with the fundamental solution on Rn × (0, T + ε) the heat equation:

v(x, t) = u(x, t)− µ(T + ε− t)−
n
2 exp

(
|x−y|2

4(T+ε−t)

)
On any domain of the form ΩT = B(y, r)× (0, T ] the weak maximum principle applies.
Due to the assumptions both function u and h are bounded by Aea|x|

2
. Since the

inequality 1
4(T+ε−t) > a holds for t > 0 there exists for any µ > 0 a R > 0 such that

v(x, t) ≤ sup{h(x) | x ∈ R} holds for all r > R on ∂B(y, r)T = B(y, r)×{0}∪∂B(y, r)×
(0, T ]. Hence the weak maximum principle implies v(x, t) ≤ sup{h(x) | x ∈ Rn} for all
(x, t) ∈ Rn × [0, T ]. This holds for all µ > 0 and by continuity also for µ = 0.

For 4aT ≥ 1 we decompose the time interval into [0, T ] = [0, T1]∪ . . .∪ [TM , T ] with
the property 4a(Tm+1 − Tm) < 1. By induction the general case follows. q.e.d.

Theorem 4.12 (existence and uniqueness of the initial value problem). For h ∈ C(Rn)
and f ∈ C(Rn × [0, T ]) there exists at most one solution of the initial value problem

u̇−4u = f on Rn × (0, T ) u = h on Rn × {0}

which is bounded by |u(x, t)| ≤ Aea|x|
2

on Rn × [0, T0] for some A>0, a>0 and T0>0.
If h and f are bounded by |h(x)| ≤ Aea|x|

2
and f(x, t) ≤ Aea|x|

2
on (x, t) ∈ Rn×[0, T ]

for some A > 0, a > 0, and T > 0 then this unique solution is given by

u(x, t) =

∫
Rn

Φ(x− y, t)h(y)dny +

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s)dnyds.

This solution might explode at some finite t ↑ T0 ≥ 1
16a

.

Proof. By the maximum principle for for the Cauchy problem Theorem 4.11 the dif-
ference of any two solutions vanishes. This shows uniqueness.
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In order to prove existence we apply Corollary 4.5 and show that the given u(x, t)

has a bound as stated. For 0 ≤ t− s ≤ 1
16a

we have − |x−y|
2

4(t−s) ≤ −2a|x− y|2− ε|x−y|2
8(t−s) and

e−2a|x|2ea|y|
2

Φ(x− y, t− s) ≤ e−2a|x|2+a|y|2−2a|x−y|2e−
|x−y|2
8(t−s)

(4π(t− s))n/2
=

2n/2e−a|2x−y|
2
e−
|x−y|2
8(t−s)

(8π(t− s))n/2
,

Φ(x− y, t− s) ≤ 2n/2Φ(x, y, 2(t− s))e2a|x|2e−a|y|
2

.

The inequalities |h(x)| ≤ Aea|x|
2

and f(x, t) ≤ Aea|x|
2

which hold for (x, t) ∈ Rn× [0, T ]
first imply u(x, t) ≤ A′e2a|x|2 for t ∈ [0, T0] with T0 = min{T, 1

16a
} and some A′ > 0.

For f = 0 the maximum principle for the Cauchy problem Theorem 4.11 implies

sup
(x,t)∈Rn×[0,T0]

e−2a|x|2|u(x, t)| ≤ 2
n
2 sup

(x,t)∈Rn×[0,T0]

∫
Rn
Φ(x− y, 2t)e−a|y|2|h(y)|dny

≤ 2
n
2 sup
y∈Rn

e−a|y|
2|h(y)| ≤ 2

n
2A.

For non vanishing f we get sup
(x,t)∈Rn×[0,T0]

e−2a|x|2|u(x, t)| ≤ 2
n
2A

(
1 +

∫ t

0

ds

)
≤ 2

n
2A(1 + T ).

So the given u obeys locally in t ∈ [0, T ] a bound as stated and is the unique solution,

as long as it obeys such a bound. The solution u(x, t) = (T0− t)−
n
2 exp

(
|x|2

4(T0−t)

)
of the

homogeneous heat equation shows that this might not be true for all t ∈ [0, T ]. q.e.d.

Improved arguments yields the sharp bound on the extinction time T0 ≥ 1
4a

.

Example 4.13. We show by a counterexample the non uniqueness of solutions without
any bound of the initial value problem. For n = 1 we make the ansatz

u(x, t) =
∞∑
l=0

gl(t)x
l, u̇(x, t)−4u(x, t) =

∞∑
l=0

(ġl(t)− (l + 2)(l + 1)gl+2(t))xl.

For a given function g0(t) = g(t) we thus obtain the following formal solution of the
homogeneous heat equation:

u(x, t) =
∞∑
l=0

g(l)(t)

(2l)!
x2l.

We now show that for g(t) = exp(−t−2) this power series indeed converges to a solution
such that on every compact subset of Rn the uniform limit t ↓ 0 vanishes. We first
calculate g(l)(t) for any l ∈ N0 by a real polynomial pl of degree l solving the relation

g(l)(t) = t−lpl(t
−2) exp(−t−2) with pl+1(z) = 2zpl(z)− lpl(z)− 2zp′l(z).
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This recursion relation for pl follows by differentiating by t The first two polynomials
are p0(z) = 1 and p1(z) = 2z. We claim that the coefficient of pl(z) in front of zk is

bounded by l!7l

2kk!
. For l = 0, k = 0 this is clear. By induction we obtain with k ≤ l + 1

2
l!7l

2k−1(k − 1)!
+ l

l!7l

2kk!
+ 2k

l!7l

2kk!
=
l!7l(4k + l + 2k)

2kk!
≤ l!7l7(l + 1)

2kk!
≤ (l + 1)!7l+1

2kk!
.

This proves the claim. Using the inequalities l!
(2l)!

= 1
2l1·3···(2l−1)

≤ 1
2ll!

we conclude

|u(x, t)| ≤
∞∑
l=0

l!7lx2l

(2l)!tl

l∑
k=0

g(t)

2kk!t2k
≤

∞∑
l=0

1

l!

(
7x2

2t

)l ∞∑
k=0

g(t)

k!

(
1

2t2

)k
= exp

(
7x2

2t
− 1

2t2

)
.

Therefore the series converges absolutely and for t ↓ 0 uniformly on compact sets to 0.

In analogy to the Laplace equation one can show the uniqueness of the boundary
value problem Theorem 4.10 and of the initial value problem Theorem 4.12 also with
the monotonicity of an energy functional. We define

e(t) =

∫
Ω

u2(x, t)dnx.

If u solves the homogeneous heat equation and vanishes at the boundary of Ω, then
this functional is monotonically decreasing with respect to time:

ė(t) = 2

∫
Ω

u(x, t)u̇(x, t)dnx = 2

∫
Ω

u(x, t)4u(x, t)dnx = −2

∫
Ω

(∇u(x, t))2 dnx ≤ 0.

If u(x, t) vanishes at t = 0, and if u(·, t) and ∇u(·, t) are square integrable for t > 0,
then u vanishes identically since ∇u(·, t) vanishes and u(·, t) is constant for t > 0.

4.5 Heat Kernel

In analogy to the Green’s function of the Laplace equation we define for open subsets
Ω ⊂ Rn the heat kernel HΩ.

Definition 4.14. For an open domain Ω ⊂ Rn the heat kernel HΩ : Ω×Ω×R+ → R
of Ω is characterised by the following two properties:

(i) For (x, t) ∈ Ω×R+ y 7→ HΩ(x, y, t) extends continuously to Ω̄ with value 0 on ∂Ω.

(ii) For x ∈ Ω the function (y, t) 7→ HΩ(x, y, t) − Φ(x − y, t) solves the homogeneous
heat equation and extends continuously to Ω̄×R+

0 with value 0 on (y, t) ∈ Ω̄×{0}.
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Lemma 4.15. If u and v are two functions on Ω× R+ with an open domain Ω ⊂ Rn

which all three have appropriate regularity, then we have∫ T

0

∫
Ω

u(x, t)(∂tv(x, T − t) +4v(x, T − t))dnxdt

+

∫ T

0

∫
Ω

(∂tu(x, t)−4u(x, t))v(x, T − t)dnxdt =

=

∫ T

0

∫
∂Ω

(u(y, t)∇yv(y, T − t)−∇yu(y, t)v(y, T − t)) ·N(y)dσ(y)dt

+

∫
Ω

(u(x, T )v(x, 0)− u(x, 0)v(x, T ))dnx.

Proof. The fundamental theorem of calculus gives for the terms with t-derivatives the
final integral over Ω and the boundary terms of a partial integration with respect to y
yields the two gradients with respect to x in the integral over ∂Ω. q.e.d.

The function v(y, t) = HΩ(x, y, t) has at v(x, 0) a singularity and is not defined
there. Hence we integrate with respect to dt over the interval t ∈ [0, T − ε] instead of
t ∈ [0, T ] and take afterwards the limit ε ↓ 0. Then Theorem 4.3 gives∫ T

0

∫
Ω

(u̇(y, t)−4u(y, t))HΩ(x, y, T − t)dnydt =

=

∫ T

0

∫
∂Ω

u(z, t)∇zHΩ(x, z, T−t)·N(z)dσ(z)dt+u(x, T )−
∫

Ω

u(y, 0)HΩ(x, y, T )dny.

This shows also u(x, T ) =

∫ T

0

∫
Ω

(u̇(y, t)−4u(y, t))HΩ(x, y, T − t)dnydt

−
∫ T

0

∫
∂Ω

u(z, t)∇zHΩ(x, z, T − t)N(z)dσ(z)dt+

∫
Ω

u(y, 0)HΩ(x, y, T )dny.

Theorem 4.16 (solution of the initial and boundary value problem). Let f be a func-
tion on Ω×(0, T ), g a function on ∂Ω×[0, T ] and h a function on Ω which together with
the open domain Ω ⊂ Rn have appropriate regularity such that all appearing integrals
converge absolutely. Then

u(x, T ) =

∫ T

0

∫
Ω

f(y, t)HΩ(x, y, T − t)dnydt

−
∫ T

0

∫
∂Ω

g(z, t)∇zHΩ(x, z, T − t)N(z)dσ(z)dt+

∫
Ω

h(y)HΩ(x, y, T )dny
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is the unique solution of the initial and boundary value problem

u̇−4u = f on Ω× (0, T ) u = g on ∂Ω× [0, T ] u(x, 0) = h(x) on Ω.

We prepare the proof by showing that the heat kernel is symmetric:

Lemma 4.17. For all T > 0 and x, y ∈ Ω̄ we have HΩ(x, y, T ) = HΩ(y, x, T ).

Proof. We insert u(z, t) = HΩ(x, z, t) and v(z, t) = HΩ(y, z, t) in Lemma 4.15. By
Theorem 4.3 (iii) and the property (ii) of the heat kernel the following integral vanishes:∫

Ω

(HΩ(x, z, T )HΩ(y, z, 0)−HΩ(x, z, 0)HΩ(y, z, T ))dnz=HΩ(x, y, T )−HΩ(y, x, T ).q.e.d.

Sketch of the proof of Theorem 4.16. The case f = 0 = g follows from the defin-
ing properties of the heat kernel. This implies that in the second case g = 0 = h

v(x, T ) =

∫
Ω

HΩ(x, y, T − t)f(y, t)dny solves the initial value problem

v̇ −4v = 0 on Ω× (t,∞) v(x, t) = f(x, t) on Ω× {t} v(x, t) = 0 on ∂Ω× [0,∞].

If we assume that f has appropriate regularity and extends twice continuously differ-
entiable to Ω̄ × [0, T ] as in the homogeneous initial value problem Theorem 4.4, then

u(x, T ) =

∫ T

0

∫
Ω

HΩ(x, y, T − t)f(y, t)dnydt solves the initial value problem

u̇(x, t)−4u(x, t) = f on Ω× (0, T ) u(x, 0) = 0 on Ω u(x, t) = 0 on ∂Ω× [0, T ].

Finally we consider the inhomogeneous boundary value problem: In this case u solves

u̇(x, t)−4u(x, t) = 0 on Ω× (0, T ) u(x, 0) = 0 on Ω u(x, t) = g on ∂Ω× [0, T ].

We first extend any function g on ∂Ω× [0, T ] with appropriate regularity to Ω× [0, T ]
such that it vanishes outside a tubular neighbourhood of ∂Ω × [0, T ]. If we subtract
from this extension ũ the solution of f = ˙̃u−4ũ and h(x) = ũ(x, 0) then we obtain a
solution of the desired boundary value problem. q.e.d.

The appropriate regularity conditions depend on the heat kernel and therefore also
on the domain. All the time we assumed that the divergence theorem holds for the
open domain Ω ⊂ Rn. Before we construct the heat kernel for some special domains,
we prove the following general property of the heat kernel:

Lemma 4.18. For any bounded connected open domain Ω ⊂ Rn the corresponding heat
kernel is positive on the corresponding parabolic cylinder, if it exists.
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Proof. The fundamental solution Φ(x, t) is positive on (x, t) ∈ Rn × R+. For bounded
open domains Ω ⊂ Rn and given x ∈ Ω the difference Φ(x − y, t) − HΩ(x, y, t) of the
fundamental solution minus the heat kernel is the unique solution of the heat equation
on Ω×[0, T ] which vanishes on Ω×{t = 0} and coincides on ∂Ω×[0, T ] with Φ(x−y, t).
This solution is for all ε > 0 on Ω×{t = ε} and on ∂Ω×[0, T ] not larger than Φ(x−y, t).
By the Maximum Principle it is smaller than Φ(x − y, t) and HΩ(x, y, t) is positive.
q.e.d.

4.6 Spectral Theory and the Heat Equation

In this section we solve the initial value problem

u̇−4u = 0 on Ω× [0, T ] u = 0 on ∂Ω× [0, T ] u = h on Ω× {0}

with the help of the Laplace operator on Ω. If h is an eigenfunction of the Laplace
operator:

−4h = λh on Ω and h|∂Ω = 0,

then the initial value problem can be solved by the following ansatz:

u(x, t) = ϕ(t)h(x) ϕ̇(t)h(x) + λϕ(t)h(x) = 0.

The general solution is ϕ̇ = −λϕ, ϕ(t) = e−λ(t−to). With ϕ(0) = 1 we obtain the unique
solution of the corresponding initial value problem u(x, t) = e−λth(x). By linearity the
corresponding solution for initial value h = h1 + . . . + hM with −4hi = λihi on Ω
and hi|∂Ω = 0 is given by u(x, t) = e−λ1th1(x) + . . .+ e−λM thM(x). Hence it suffices to
decompose h into a sum of eigenfunctions of the Laplace operator on Ω with Dirichlet
boundary conditions.

To explain this strategy we first interpret the fundamental solution as such a de-
composition. On Rn the Laplace operator has the following eigenfunctions:

−4e2πik·x = 4π2k2e2πikx.

The equality

∫
Rn
e

(
2πik
√
t+ x

2
√
t

)2
dnk =

1

(2π
√
t)n

∫
Rn
e

(ik+ x
2
√
t
)2
dnk =

1

(4πt)n/2
,

holds for all imaginary x and by analytic continuation for all x ∈ Rn. This implies

1

(4πt)n/2
e−

(x−y)2
4t =

∫
Rn
e

(
2πik
√
t+x−y

2
√
t

)2
e−

(x−y)2
4t dnk =

∫
Rn
e−4π2k2te2πi(x−y)kdnk.

So by our considerations above the solution of the initial value problem

u̇−4u = 0 on Rn × [0, T ] u(x, 0) = h on Rn
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is given by

u(x, t) =

∫
Rn

∫
Rn
e−4π2k2te2πi(x−y)kh(y)dnkdny.

For an integrable function h we can apply Fubini’s Theorem. So for continuous and
integrable h we conclude from lim

t↓0
u(x, t) = h(x) also

h(x) = lim
t↓0

∫
Rn

∫
Rn
e−4π2k2te2πi(x−y)kh(y)dnydnk.

We define the Fourier transform of h as ĥ(k) =

∫
Rn
e−2πikyh(y)dny. This gives

u(x, t) =

∫
Rn
e−4π2k2te2πikxĥ(k)dnk and h(x) = lim

t↓0

∫
Rn
e−4π2k2te2πikxĥ(k)dnk.

Definition 4.19. Let S be the so called Schwartz space which contains all smooth
complex valued functions on Rn all whose partial derivatives decay faster than every
negative power of the coordinate.

Lemma 4.20. The Fourier transformation maps the Schwartz space into itself. The
inverse map is given by

P ◦ F : S → S, ĥ 7→ h, with h(x) =

∫
Rn
e2πikxĥ(k)dnk.

Proof. By two partial integrations we calculate

−4̂h(k) = −
∫
Rn
e−2πiky4h(y)dny =

∫
Rn

4π2k2e−2πikyh(y)dny = 4π2k2ĥ(k).

So by |ĥ(k)| ≤
∫
Rn |h(y)|dny the Fourier transform of any Schwartz function decays

faster then every inverse power of the coordinate. For any h ∈ C∞0 (Rn,C) we obtain

‖ĥ‖∞ ≤ ‖h‖L1(Rn).

Since C∞0 (Rn,C) is dense in L1(Rn), the Fourier transform extends to a continuous
linear map from L1(Rn) into the Banach space Cb(Rn,C). Furthermore, we have

|∂iĥ(k)| =
∣∣∣∣∫

Rn
−2πiyie

−2πiykh(y)dny

∣∣∣∣ ≤ 2π‖|y|h(y)‖L1(Rn).

So ĥ is smooth, if h decays faster than every inverse power of the coordinate. So the
Fourier transform of an integrable function is continuous and the Fourier transform of
a Schwartz function is smooth.
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Theorem 4.3 implies for any h ∈ S

h(x) = lim
t↓0

∫
Rn
e−4π2k2te2πikxĥ(k)dnk with ĥ(k) =

∫
Rn
e−2πikyh(y)dny.

Since e−4π2k2t converges in the limit t ↓ 0 on any compact subset K ⊂ Rn uniformly
to 1 and since ĥ ∈ S belongs to L1(Rn), we also have P ◦ F ◦ F = 1lS and F ◦ F = P,
respectively. Now the equation∫

Rn
e2πikxĥ(k)dnk =

∫
Rn
e−2πikxĥ(−k)dnk

implies P ◦ F = F ◦ P and henceforth also F ◦ P ◦ F = F ◦ F ◦ P = 1lS . q.e.d.

For any Schwartz function h we apply Fubini’s Theorem and obtain∫
Rn
ĥ(k)

¯̂
h(k)dnk =

∫
Rn

∫
Rn
ĥ(k)h̄(y)e2πikydnydnk

=

∫
Rn

∫
Rn
ĥ(k)e2πikyh̄(y)dnkdny =

∫
Rn
h(y)h̄(y)dny.

This shows that the Fourier transform preserves the L2(Rn)-norm. Since the Schwartz
space is dense in L2(Rn) this implies that the Fourier transform extends to an unitary
operator from L2(Rn) to L2(Rn).

Definition 4.21. For any open connected domain Ω ⊂ Rn let W 2,2
0 (Ω) be the closure

of C∞0 (Ω) in the Hilbert space with the scalar product

〈f, g〉W 2,2
0 (Ω) =

∫
Ω

(4f)4ḡdnx+

∫
Ω

fḡdnx.

All functions h ∈ C∞0 (Ω) obey

〈4h,4h〉L2(Ω) =

∫
Ω

(4h)4h̄dnx ≤ 〈h, h〉W 2,2
0 (Ω).

Therefore for any h ∈ W 2,2
0 (Ω) the function 4h belongs to L2(Ω). For f ∈ L2(Ω) the

Cauchy Schwarz inequality implies∣∣〈f,4h〉L2(Ω)

∣∣ ≤ ‖f‖L2(Ω) · ‖h‖W 2,2
0 (Ω).

A sequence (hn)n∈N in C∞0 (Ω) converges together with (4hn)n∈N in L2(Ω), if and only
if it converges in W 2,2(Ω). So the operator H = −4 is a closed self adjoint operator
on L2(Ω) with domain W 2,2

0 (Ω) ⊂ L2(Ω). By the inequality∫
Ω

(−4h)h̄dnx =

∫
Ω

|∇h|2 ≥ 0 for all h ∈ C∞0 (Ω),
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H is non negative. Hence the operator H has a spectral decomposition and e−tH is a
bounded operator from L2(Ω) to L2(Ω) such that the following equation holds:

‖e−tHh‖L2(Ω) ≤ ‖h‖L2(Ω).

This shows that u(x, t) = (e−tHh)(x) solves u̇(x, t) = −(He−tH)(x) = 4u(x, t) with
Dirichlet boundary condition

u(x, 0) = h(x) u(x, t) = 0 for x ∈ ∂Ω.

We shall calculate with the help of this relation between the spectral theory of the
Laplace operator with Dirichlet boundary condition and the heat equation the heat
kernel of the circle S1 and the interval [−1, 1].

4.7 Heat Kernel of S1

We identify the circle S1 with the quotient R/Z. The eigenfunctions of − d2

dx2
on R/Z

are equal to e2πikx with k ∈ Z with eigenvalues 4π2k2. This eigenfunctions build
an orthogonal system of the Hilbert space L2(R/Z). By the Theorem of Stone and
Weierstraß the algebra of polynomials with respect to sin(2πx) and cos(2πx) are dense
in the real Banach space C(R/Z,R). This in turn implies that the same holds for
polynomials with respect to e2πıx and e−2πıx in the complex Banach space C(R/Z,C).
Therefore the orthogonal complement in L2(R/Z) of the former orthogonal system is
trivial, and this system is an orthogonal basis. So any h ∈ L2(R/Z) may be decomposed
into a series of the eigenfunctions e2πikx of − d2

dx2
on R/Z with eigenvalues 4π2k2:

h(x) =
∑
k∈Z

ake
2πikx with ak =

∫
R/Z

e−2πikyh(y)dy.

Therefore the heat kernel of R/Z is given by

HR/Z(x, y, t) =
∑
k∈Z

e−4π2k2t+2πik(x−y) = Θ(x− y, 4πit) with Θ(x, τ) =
∑
k∈Z

e2πikx+πiτk2 .

Here Θ(x, τ) is Jacobi’s Theta function. This sum converges on the domain (x, τ) ∈
C × {τ ∈ C | =(τ) > 0} to a holomorphic functions since eπiτk

2
decays exponentially

with respect to k2. This Theta function is characterised by the following properties:

Θ(x+ 1, τ) = Θ(x, τ), Θ(x+ τ, τ) = Θ(x, τ)e−πiτ−2πix, Θ(1
2

+ 1
2
τ, τ) = 0.
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The first property follows from the periodicity of e2πikx with period 1. The other two
properties we show by direct calculation:

Θ(x+ τ, τ) =
∑
k∈Z

e2πik(x+τ)+πik2τ =
∑
k∈Z

e2πikx+πi(k+1)2τ−πiτ

=
∑
k∈Z

e2πi(k+1)x+πi(k+1)2τ−2πix−πiτ = Θ(x, τ)e−2πix−πiτ

Θ(1
2

+ τ
2
, t) =

∑
k∈Z

(−1)keπiτ((k+ 1
2

)2− 1
4

) = e−
4πiτ
4

∑
l∈N0

eπiτ(l+ 1
2

)2(1− 1) = 0.

Exercise 4.22. (i) Show that for all t > 0 the fundamental solution Φ(x, t) belongs to
the Schwartz space considered as a function on x ∈ Rn.

(ii) Calculate for all t > 0 the Fourier transform of the fundamental solution Φ(x, t)
considered as a function on x ∈ Rn.

(iii) Show that for any Schwartz function f on R the following series converges to a
smooth function f̃ on R which is periodic with period 1:

f̃(x) =
∑
n∈Z

f(x+ n).

(iv) Let h be a periodic continuous functions on R with period 1. Show that the solution
of the heat equation with initial values h preserves periodicity with period 1 for
all t > 0. Conclude that the following series is the heat kernel of S1:∑

n∈Z

Φ(x− y + n, t).

(v) Due to Poisson’s summation formula every Schwartz function on R satisfies∑
n∈Z

f(x+ n) =
∑
n∈Z

f̂(n)e2πinx.

Show with the help of this formula the relation

HS1(x, y, t) =
∑
n∈Z

Φ(x− y + n, t).

(vi) Show that f(x) = e−x
2
(e−x

2
+ sin2 x) is a positive Schwartz function on R, whose

square root does not belong to the Schwartz space.
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4.8 Heat Kernel of [0, 1]

The eigenfunctions of − d2

dx2
on [0, 1] with Dirichlet boundary conditions, this means

roots at ∂[0, 1] = {0, 1}, are given by
√

2 sin(kπx) with k ∈ N

These functions again build an orthogonal system:∫ 1

0

√
2 sin(kπx)

√
2 sin(k′πx)dx =

∫ 1

0

(cos((k − k′)πx)− cos((k + k′)πx))dx = δk,k′ .

For any continuous functions f on [0, 1] with roots at ∂[0, 1] the function

f̃(x) =

{
f(x− 2n) for x ∈ [2n, 2n+ 1] with n ∈ Z
−f(2n− x) for x ∈ [2n− 1, 2n] with n ∈ Z

is continuous on R with roots at Z and is periodic with period 2. By the Theorem
of Stone and Weierstraß the finite linear combinations of (x 7→ exp(kπıx))k∈N build
a dense subalgebra of C(R/2Z) and therefore are also dense in L2(R/2Z). The map
f 7→ f̃ maps L2[0, 1] onto the following closed subspace A ⊂ L2(R/2Z):{

f ∈ L2(R/2Z)

∣∣∣∣∣f(n+ x) =

{
f(x) for even n ∈ 2Z and x ∈ R
−f(1− x) for odd n ∈ 2Z + 1 and x ∈ R

}
.

This space A consists of all periodic odd functions on R with period 2, since n = −1
gives f(x − 1) = −f(1 − x). A linear combination

∑
k ak exp(kπıx) belongs to A,

if and only if a−k = −ak holds for all k ∈ Z. Hence the linear combinations of
(
√

2 sin(kπx))k∈N are dense in A and build an orthogonal basis of L1[0, 1]. This implies

h =
∑
k∈N

ak
√

2 sin(kπx) with ak =

∫ 1

0

√
2 sin(kπy)h(y)dy for h ∈ L2[0, 1].

We conclude that the unique solution of the initial value problem

u̇(x, t)−4u(x, t) = 0 u(x, 0) = h(x) u(0, t) = u(1, t) = 0 for (x, t) ∈ (0, 1)× R+

is given by u(x, t) =

∫ 1

0

H[0,1](x, y, t)h(y)dy with

H[0,1](x, y, t) =
∞∑
k=1

e−π
2k2t2 sin(kπx) sin(kπy)

=
∞∑
k=1

e−π
2k2t(cos(kπ(x− y))− cos(kπ(x+ y))) =

1

2
Θ(x−y

2
, πit)− 1

2
Θ(x+y

2
, πit).
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Exercise 4.23. (i) Show that the heat kernel H[0,1] is given by

H[0,1](x, y, t) =
1

2
Θ(x−y

2
, πıt)− 1

2
Θ(x+y

2
, πıt).

(ii) Let A be the space of all continuous functions on R with the following properties:

f(n+ x) =

{
f(x) for even n ∈ 2Z and x ∈ R
−f(1− x) for odd n ∈ 2Z + 1 and x ∈ R.

Show that the functions in A vanish at Z and that A contains all continuous odd
and periodic functions with period 2.

(iii) Show that for any Schwartz function f on R the following series converges to a
smooth functions f̃ in A:

f̃(x) =
∑
n∈Z

f(2n+ x)−
∑
n∈Z

f(2n− x).

(iv) Show for any h ∈ A, that the solutions of the heat equation with initial value h is
for all t > 0 a smooth function in A. Conclude from this that the following sum
has the properties of the Heat kernel of [0, 1]:∑

n∈Z

Φ(x+ 2n− y, t)−
∑
n∈Z

Φ(x+ 2n+ y, t).

(v) Show the relation

H[0,1](x, y, t) =
∑
n∈Z

Φ(x+ 2n− y, t)−
∑
n∈Z

Φ(x+ 2n+ y, t).

The heat kernel of the Cartesian product of two domains can be easily calculated
in terms of the heat kernels of both domains:

Lemma 4.24. If Ω ⊂ Rm and Ω′ ⊂ Rn are two open, bounded and connected domains
with given heat kernels HΩ and HΩ′, then the heat kernel of Ω× Ω′ is given by

HΩ×Ω′((x, x
′), (y, y′), t) = HΩ(x, y, t)HΩ′(x

′, y′, t) (x, x′), (y, y′) ∈ Ω̄× Ω̄′ t ∈ R+.

Proof. For any (x, x′, t) ∈ Ω × Ω′ × R+ the function (y, y′) 7→ HΩ(x, y, t)HΩ′(x
′, y′, t)

extends by the value zero continuously to ∂(Ω × Ω′) = (∂Ω × Ω′) ∪ (ω × ∂Ω′). The
Laplace operator of the Cartesian product is the sum of the corresponding Laplace
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operators. Hence for all (x, x′) ∈ Ω×Ω′ the function (y, y′, t) 7→ HΩ(x, y, t)HΩ′(x
′y′, t)

solves the homogeneous heat equation. The product of both fundamental solutions
is the fundamental solution on Rm+n. Hence for all (x, x′) ∈ Ω × Ω′ the function
(y, y′, t) 7→ HΩ(x, y, t)HΩ′(x

′, y′t) − Φ(x − y, t)Φ(x′ − y′, t) extends continuously to
Ω̄× Ω̄′ × R+

0 by setting it zero on (y, y′, t) ∈ Ω̄× Ω̄′ × {0}. q.e.d.

So we might have a formula for the heat kernels all tori (R/Z)n and all Cartesian
products [0, 1]n. However the boundaries of the Cartesian products [0, 1]n ⊂ Rn are no
continuously differentiable submanifolds of Rn and our proof of the divergence theorem
does not apply to these Cartesian products. However, the divergence theorem holds for
these Cartesian products and we prove this in the lecture Partial Differential Equations.
So we have determined the heat kernel of all tori (R/Z)n and all Cartesian products
[0, 1]n. Hence the unique solution of the initial value problem

u̇−4u = 0 on (0, 1)n × (0, T ], u(x, 0) = h(x) on [0, 1]n, u = 0 on ∂[0, 1]n × [0, T ]

is given by u(x, t) =
∫

[0,1]n

∏n
i=1H[0,1](xi, yi, t)h(y)dny.

From Φ(x−y, t) = 1
rn

Φ(x
r
− y

r
, t
r2

) we obtain H[0,r]n(x, y, t) =
1

rn

n∏
i=1

H[0,1]

(
xi
r
, yi
r
, t
r2

)
.

Corollary 4.25. Any solution u(x, t) of the homogeneous heat equation on a neigh-
bourhood of [0, r]n × [0, T ] ⊂ Rn × R satisfies

u(x, T ) = −
∫ T

0

∫
∂[0,r]n
u(z, t)∇zH[0,r]n(x, z, T − t)N(z)dσ(z)dt+

∫
[0,r]n
u(y, 0)H[0,r]n(x, y, T )dny.

q.e.d.

In the proof of Theorem 4.3 we show that in the limit t ↓ 0 Φ(x − y, t) converges
on the complement of y ∈ B(x, δ) uniformly to zero. The same is true for all partial
derivatives and due to condition (ii) in Definition 4.14 also for H[0,1]n(x, y, t). By
Lemma 4.17 the integral for u(x, T ) is smooth at all x ∈ (0, r)n. For (z, t) ∈ ∂[0, r]n ×
[0, T ] the Taylor series of x 7→ H[0,r]n(x, z, T − t) converges uniformly on compact
subsets of x ∈ (0, r)n to H[0,r]n(x, z, T − t). This implies the following Corollary:

Corollary 4.26. Any solution u of the homogeneous heat equation on an open domain
Ω ⊂ Rn × R is smooth and for fixed t analytic with respect to x. q.e.d.



Chapter 5

Wave Equation

In this final chapter we consider the homogeneous and inhomogeneous wave equation
∂2u
∂t2
−4u = 0 and ∂2u

∂t2
−4u = f on open subsets of Rn×R. The wave equation is a linear

second order PDE. The coefficient matrix for the second derivatives has one positive
and n negative eigenvalues and is neither definite nor semi definite. In the second
chapter we introduced this differential equation as the simplest hyperbolic differential
equation. The method which solves this PDE is completely different from the methods
which solve the Laplace equation or the heat equation. The wave equation describes
phenomena which propagate with finite speed through space time. The example of
electrodynamic waves motivated the investigation of this equation. Later these methods
were generalised to non linear hyperbolic equations in order to describe gravitational
waves.

5.1 D’Alembert’s Formula for n = 1

First we solve the following initial value problem:

∂2u

∂t2
− ∂2u

∂x2
= 0 for (x, t) ∈ R× R+

u(x, 0) = g(x)
∂u

∂t
(x, 0) = h(x) for x ∈ R,

for given functions g and h on R. If we consider this PDE as an ODE on the vector
space of smooth functions on R, then the theory of ODEs suggests that we should fix
the initial value u(·, t0) and the first derivative ∂u

∂t
(·, t0) with respect to t for a given

initial time t0. Here the initial values g and h are exactly of this form for t0 = 0. So
we expect that this initial value problem should have exactly one solution.

75
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For n = 1 we may factorise the wave operator (also called D’Alembert’s operator)

∂2

∂t2
− ∂2

∂x2
=

(
∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)
=

(
∂

∂t
− ∂

∂x

)(
∂

∂t
+

∂

∂x

)
.

If u solves the homogeneous wave equation, then v(x, t) =
(
∂
∂t
− ∂

∂x

)
u(x, t) solves

∂v
∂t

+ ∂v
∂x

= 0. This is the transport equation with constant coefficient with the unique
solution

v(x, t) = a(x− t) with a(x) = v(x, 0).

So the solution u(x, t) of the wave equation solves the first order linear PDE

∂u

∂t
− ∂u

∂x
= a(x− t).

This is an inhomogeneous transport equation with constant coefficients with the solu-
tion

u(x, t) =

∫ t

0

a(x+ (t− s)− s)ds+ b(x+ t) =
1

2

∫ x+t

x−t
a(y)dy + b(x+ t)

with b(x) = u(x, 0). The initial values u(x, 0) = g(x) and ∂u
∂t

(x, 0) = h(x) yields

b(x) = g(x) and a(x) = v(x, 0) =
∂u

∂t
(x, 0)− ∂u

∂x
(x, 0) = h(x)− g′(x).

If we insert this in our solutions, then we obtain

u(x, t) =
1

2

∫ x+t

x−t
(h(y)− g′(y)) dy + g(x+ t)

Hence the solution of the initial value problem of the wave equation is given by

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y)dy.

In this way we derived with the help of the homogeneous and inhomogeneous transport
equation the D’Alembert’s Formula:

Theorem 5.1 (D’Alembert’s Formula). If g : R → R is twice continuously differen-
tiable and h : R→ R continuously differentiable, then

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y)dy



5.1. D’ALEMBERT’S FORMULA FOR N = 1 77

is a twice continuously differentiable function on R×R+
0 , which is the unique solution

of the initial value problem

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = 0 for (x, t) ∈ R× R+,

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) for x ∈ R.

D’Alembert’s Formula shows that for n = 1 the general solution of the wave equa-
tion takes the form

u(x, t) = F (x+ t) +G(x− t).
Conversely, every function of this form is a solution of the wave equation if F and
G are twice differentiable. This fact is a consequence of the factorisation of the wave
operator into the two first order linear PDEs’

∂F

∂t
− ∂F

∂x
= 0 and

∂G

∂t
+
∂G

∂x
= 0

whose solutions are differentiable functions of the form F (x+ t) and G(x− t).
We interpret the fact, that the value of the solution at (x, t) depends only on the

values of g at x±t and the values of h at points in the interval [x−t, x+t] as the bound
1 on the length of the speed of propagation, since the straight lines from all these points
to (x, t) propagate with speed of length not larger than 1. If we insert instead of h an
anti-derivative H, then the value u(x, t) of the solution at (x, t) depends only on the
values of g and H at x± t and the propagation speed has length 1. Furthermore, the
solution is k-times differentiable, if g and H are k times differentiable, or equivalently
if g is k times differentiable and h is (k − 1) times differentiable. So the regularity of
the solution does not improve with time, as it does for solutions of the heat equation.

Let us use a reflection in order to derive the solution of the following initial value
problem, which will show up later in this chapter:

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = 0 for (x, t) ∈ R+ × R+, u(0, t) = 0 for t ∈ R+

0 ,

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) for x ∈ R+.

The functions u, g and h extend to odd functions on the whole space R× R+
0 :

ũ(x, t) =

{
u(x, t) for x ≥ 0,

−u(−x, t) for x ≤ 0,

g̃(x) =

{
g(x) for x ≥ 0,

−g(−x) for x ≤ 0,
h̃(x) =

{
h(x) for x ≥ 0,

−h(−x) for x ≤ 0.
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For any solution ũ of the initial value problem

∂2ũ

∂t2
− ∂2ũ

∂x2
= 0 for (x, t) ∈ R× R+,

ũ(x, 0) = g̃(x) and
∂ũ

∂t
(x, 0) = h̃(x) for x ∈ R,

the function (x, t) 7→ −ũ(−x, t) is another solution. Due to the uniqueness of the
solution both solutions coincide: ũ(−x, t) = −ũ(x, t). In particular for the unique
solution of the first initial value problem the solution ũ of the former initial value
problem extends to a solution of the latter initial value problem on R × R+

0 . Because
the functions ũ, g̃ and h̃ are odd with respect to x, for x ≤ t the first integral on the
right hand side vanishes:∫ x+t

x−t
h̃(y)dy =

∫ t−x

x−t
h̃(y)dy +

∫ t+x

t−x
h̃(y)dy.

Hence the solution of the former initial value problem is given by

u(x, t) =


1
2

(
g(x+ t) + g(x− t) +

∫ x+t

x−t h(y)dy
)

for 0 ≤ t ≤ x

1
2

(
g(t+ x)− g(t− x) +

∫ t+x
t−x h(y)dy

)
for 0 ≤ x ≤ t.

Note that the waves propagating towards the boundary at x = 0 are reflected at the
boundary and propagate back.

5.2 Spherical Means of the Wave Equation

We shall derive now the PDE which is obeyed by the spherical means of the wave
equation. This PDE is similar to the one-dimensional wave equation, which we shall
solve later. This will lead to the general solution of the initial value problem of the wave
equation in all dimensions. This initial value problem is the search for the solution u
of the wave equation ∂2u

∂t2
− 4u = 0 on (x, t) ∈ Rn × R+ which obeys u(x, 0) = g(x)

and ∂u
∂t

(x, 0) = h(x). We define for all x ∈ Rn, t ≥ 0, r > 0

U(x, r, t) =
1

nωnrn−1

∫
∂B(x,r)

u(y, t)dσ(y) =

∫
-
∂B(x,r)

u(y, t)dσ(y).

Here the symbol
∫
- denotes the mean on the domain Ω, i.e. the integral over the domain

Ω divided by the integral of the function 1 over the domain Ω. Analogously we define

G(x, r) =

∫
-
∂B(x,r)

g(y)dσ(y) and H(x, r) =

∫
-
∂B(x,r)

h(y)dσ(y).
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Lemma 5.2. If u ∈ Cm(Rn×R+) is a m-times continuously differentiable solution of
the initial value problem (with continuous partial derivatives of order ≤ m on Rn×R+

0 )

∂2u

∂t
−4u = 0 on (x, t) ∈ Rn × R+ with

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x),

then the spherical mean U(x, r, t) is for fixed x ∈ Rn a m-times differentiable function
on (r, t) ∈ R+ × R+, which solves the following initial value problem of the Euler-
Poisson-Darboux Equation (with continuous partial derivatives of order ≤ m):

∂2U

∂t2
(x, r, t)− ∂2U

∂r2
(x, r, t)− n− 1

r

∂U

∂r
(x, r, t) = 0 on (r, t) ∈ R+ × R+

U(x, r, 0) = G(x, r) and
∂U

∂t
(x, r, 0) = H(x, r)

Proof. By a substitution the domain of the integral becomes independent of t and r:

U(x, r, t) =
1

nωn

∫
∂B(0,1)

u(ry + x, t)dσ(y).

Hence we may calculate the derivative

∂U

∂r
(x, r, t) =

1

nωn

∫
∂B(0,1)

∇u(ry + x, t) · ydσ(y)

=
r

nωn

∫
B(0,1)

4u(ry + x, t)dny

=
r

n

∫
-
B(x,r)

4u(y, t)dny.

In the second line we used that the divergence of y 7→ ∇u(ry + x, t) is r4u(ry + x, t).
This shows that the partial derivative of the spherical mean with respect to the radius
is r

n
times the mean of the Laplace operator applied to the original function on the

corresponding ball. In particular we have lim
r→0

∂U
∂r

(x, r, t) = 0. Analogously we obtain

∂2U

∂r2
(x, r, t) =

∂

∂r

1

nωnrn−1

∫
B(x,r)

4u(y, t)dny

=
1− n
nωnrn

∫
B(x,r)

4u(y, t)dny +
1

nωnrn−1

∫
∂B(x,r)

4u(y, t)dσ(y).

=

(
1

n
− 1

)∫
-
B(x,r)

4u(y, t)dny +

∫
-
∂B(x,r)

4u(y, t)dσ(y).
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In particular we have limr→0
∂2U
∂r2

(x, r, t) = 1
n
4u(x, t). Furthermore, the partial deriva-

tive of the mean over a ball of radius r with respect to r is equal to n
r

times the
corresponding spherical mean minus n

r
times this mean:

∂

∂r

1

ωnrn

∫
B(x,r)

u(y, t)dny = − n

ωnrn+1

∫
B(x,r)

u(y, t)dny +
1

ωnrn

∫
∂B(x,r)

u(y, t)dσ(y)

= −n
r

∫
-
B(x,r)

u(y, t)dny +
n

r

∫
-
∂B(x,r)

u(y, t)dσ(y).

These formulas allow to calculate all partial derivatives of the spherical means in terms
of the mean of powers of the Laplace operator applied to the original functions over
spheres and balls. On the other hand we also have

∂

∂r
rn−1∂U

∂r
(x, r, t) =

∂

∂r

1

nωn

∫
B(x,r)

4u(y, t)dny =
1

nωn

∫
∂B(x,r)

∂2u
∂t2

(y, t)dσ(y) = rn−1∂
2U

∂t2
(x, r, t).

This implies rn−1∂
2U

∂t2
= (n− 1)rn−2∂U

∂r
+ rn−1∂

2U

∂r2
. q.e.d.

5.3 Solution in Dimension 3

We shall see that for odd dimensions the spherical means of solutions of the wave
equation can be transformed into solutions of the one-dimensional wave equation, but
not for even dimensions. For this reason we shall next solve the initial value problem
of the wave equation in three dimensions. In this section we consider for any x ∈ R3

the following initial value problem for the spherical means of a solution of the wave
equation:

∂2U

∂t2
− ∂2U

∂r2
− 2

r

∂U

∂r
= 0 on (x, r, t) ∈ {x} × R+ × R+

U = G and
∂U

∂t
= H on (x, r, t) ∈ {x} × R+ × {0}.

The substitution Ũ = rU transforms the former initial value problem into the following:

∂2Ũ

∂t2
− ∂2Ũ

∂r2
= 0 on (x, r, t) ∈ {x} × R+ × R+, Ũ(x, 0, t) = 0 for t ∈ R+

0 ,

Ũ(x, r, 0) = G̃(x, r) = rG(x, r) and
∂Ũ

∂t
(x, r, 0) = H̃(x, r) = rH(x, r) for r ∈ R+.

We solved this initial value problem in the first section. The solution is

Ũ(x, r, t) =
1

2

(
G̃(x, r + t)− G̃(x, t− r)

)
+

1

2

∫ r+t

−r+t
H̃(x, s)ds for 0 ≤ r ≤ t.
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The continuity of u(x, t) implies

u(x, t) = lim
r↓0

U(x, r, t) = lim
r↓0

Ũ(x, r, t)

r
.

Therefore we obtain for all x ∈ R3, t > 0.

u(x, t) = lim
r↓0

1
2

(
G̃(x,t+r)−G̃(x,t)

r
+ G̃(x,t−r)−G̃(x,t)

−r

)
+ lim

r↓0
1
2r

∫ t+r

t−r
H̃(x, s)ds

=
∂G̃(x, t)

∂t
+ H̃(x, t)

=
∂

∂t
t

∫
-
∂B(x,t)

g(y)dσ(y) + t

∫
-
∂B(x,t)

h(y)dσ(y)

=
∂

∂t
t

∫
-
∂B(0,1)

g(x+ tz)dσ(z) + t

∫
-
∂B(x,t)

h(y)dσ(y)

=

∫
-
∂B(0,1)

∇yg(x+ tz) · tzdσ(z) +

∫
-
∂B(x,t)

(th(y) + g(y)) dσ(y)

=

∫
-
∂B(x,t)

(th(y) + g(y)) dσ(y) +

∫
-
∂B(x,t)

∇yg(y) · (y − x)dσ(y)

The last line is Krichoff’s Formula for the solution of the initial value problem of the
three dimensional wave equation.

5.4 Solution in Dimension 2

In two dimensions the Euler-Poisson-Darboux equations cannot be transformed into the
one-dimensional wave equation. We present another method and transform the initial
value problem of the two-dimensional wave equation into an initial value problem of the
three-dimensional wave equation, by choosing initial vales which depend only on the
coordinates x1 and x2 and not on the coordinate x3: Let ū(x, t) be on (x, t) ∈ R3×R+

the solution of the initial value problem

∂2ū(x, t)

∂t2
−4ū(x, t) = 0 for (x, t) ∈ R3 × R+

ū(x, 0) = g(x̄) and
∂ū

∂t
(x, 0) = h(x̄) for x ∈ R3.

Here we set x̄ = (x1, x2) for x = (x1, x2, x3) ∈ R3. We observe that the mean over
∂B(x, r) of a function f depends only on x̄, if f depends only on x̄:

∂

∂x3

∫
-
∂B(x,r)

f(y)dσ(y) =
∂

∂x3

∫
-
∂B(0,r)

f(x+ y)dσ(y) =

∫
-
∂B(0,r)

∂f(x+ y)

∂x3

dσ(y) = 0.
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This shows that ū(x, t) is of the form u(x̄, t) and the latter function u(x̄, t) yields the
desired solution of the two-dimensional initial value problem. Let us now calculate
this function. The function γ(y) =

√
t2 − (y − x̄)2 on the two-dimensional ball B(x̄, t)

yields by the formula Ψ(y) = (y,±γ(y)) a parametrisations of both hemispheres of the
boundary of the three-dimensional ball B ((x̄, 0), t) by the two-dimensional ball B(x̄, t)

as in Definition 2.3. The 3 × 2-matrix Ψ′(y) has the same form Ψ′(y) = (
1lR2

±∇T γ(y)
) as

φ′ after Lemma 2.4 with O = 1l and g = ±γ. Hence the determinant of (Ψ′(y))TΨ(y)
is 1 + (∇γ(y))2. So the intgerals over both hemispheres is equal to the integral over
B(x̄, t) with the measure dσ(y,±γ(y)) =

√
1 + (∇yγ(y))2dy2:∫

-
∂B(x,t)

g(ȳ)dσ(y) =
1

4πt2

∫
∂B(x,t)

g(ȳ)dσ(y) =
2

4πt2

∫
B(x̄,t)

g(y)
√

1 + (∇yγ(y))2d2y

with

√
1 + (∇yγ(y))2 =

√
t2 − (y − x̄)2 + (y − x̄)2

t2 − (y − x̄)2
=

t√
t2 − (y − x̄)2

.

Both hemispheres do not cover the boundary ∂B((x̄, 0), t) completely, but the missing
equator is one-dimensional and has measure zero with respect to σ(y). This implies∫

-
∂B(x,t)

g(ȳ)dσ(y) =
1

2πt

∫
B(x̄,t)

g(y)√
t2 − (y − x̄)2

d2y =
t

2

∫
-
B(x̄,t)

g(y)√
t2 − (y − x̄)2

d2y.

This gives finally the following formula for u(x̄, t) on (x̄, t) ∈ R2 × R+:

u(x̄, t) =
∂

∂t
t

∫
-
∂B(x,t)

g(ȳ)dσ(y) + t

∫
-
∂B(x,t)

h(ȳ)dσ(y)

=
∂

∂t

t2

2

∫
-
B(x̄,t)

g(y)√
t2 − (y − x̄)2

d2y +
t2

2

∫
-
B(x̄,t)

h(y)√
t2 − (y − x̄)2

d2y

=
∂

∂t

t

2

∫
-
B(0,1)

g(x̄+ tz)√
1− z2

d2z +
t2

2

∫
-
B(x̄,t)

h(y)√
t2 − (y − x̄)2

d2y

=
t

2

∫
-
B(x̄,t)

g(y) + th(y) +∇yg(y)(y − x̄)√
t2 − (y − x̄)2

d2y.

The last line is Poisson’s formula for the solution of the inital value problem of the
two-dimensional wave equation. It shows that in two dimensions the propagation
speed of solutions of the wave equation has all lengths bounded by 1. In fact the value
u(x, t) depends only on the values of g and h on the ball B(x̄, t) and the straight lines
connecting these points with (x, t) have all speeds whose lengths are bounded by 1.

This method of deriving the solution of the initial value problem in a lower di-
mension by transfoming the initial value problem into an initial value problem in the
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higher dimensional space, is called the method of descent. Here the initial values do
not depend on some of the coordinates of the higher dimensional space. We have to
show that the corresponding solutions do not depend on these coordinates as well. A
natural question is, whether we may obtain the solution of the one-dimensional wave
equation by this method of descent from Poisson’s formula?

5.5 Solution in odd Dimensions

In any odd dimension we can transform the Euler-Poisson-Darboux equation into the
one-dimensional wave equation. As a preparation we first show the following Lemma:

Lemma 5.3. Let φ ba a (k + 1) times continuously differentiable function on R. We
obtain for all k ∈ N

(i)
(
d
dr

)2 (1
r
d
dr

)k−1
r2k−1φ(r) =

(
1
r
d
dr

)k
r2k dφ

dr
(r)

(ii)
(

1
r
d
dr

)k−1
r2k−1φ(r) =

∑k−1
j=0 βk,jr

j+1 djφ
drj

(r) with numbers βk,j (j = 0, . . . , k − 1),
which do not depend on φ.

(iii) βk,0 = 1 · 3 · 5 · . . . · (2k − 1) = (2k−1)!
2·4·...·(2k−2)

= (2k−1)!

2(k−1)(k−1)!

Proof. First we proof (i) by induction. For k = 1 we have

d2

dr2
rφ(r) = 2dφ

dr
(r) + r d

2φ
dr2

(r) = 1
r
d
dr
r2 dφ

dr
(r).

Now we assume that the statement is true for k ∈ N. Then we obtain for k + 1:

( d
dr

)2(1
r
d
dr

)kr2k+1φ(r) = ( d
dr

)2(1
r
d
dr

)k−1r2k−1((2k + 1)φ(r) + r dφ
dr

(r))

= (1
r
d
dr

)kr2k d
dr

((2k + 1)φ(r) + r dφ
dr

(r))

= (1
r
d
dr

)k((2k + 2)r2k dφ
dr

(r) + r2k+1 d2φ
dr2

(r)) = (1
r
d
dr

)k+1r2k+2 dφ
dr

(r).

By the Leibniz rule every derivative in (ii) results in two contributions: The first is a
deminishing of the power of r by one and does not change φ. The other does not change
the power of r and acts as a derivative on φ. The total power of r is r2k−1−(k−1) = rk

and the total order of derivatives is ( d
dr

)k−1. This implies (ii).

In the term with the coefficient βk,0 all derivatives act only on the powers of r.
The first derivative acts on r2k−1, the second derivatives acts on r2k−3 and the last
derivative acts on r3. This shows (iii). q.e.d.
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Let the dimension n = 2k + 1 ≥ 3 be odd and let u ∈ Ck+1(R2k+1 × R+
0 ) obey

∂2u

∂t2
−4u = 0 for (x, t) ∈ Rn × R+

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) for x ∈ Rn.

We define Ũ(x, r, t) =

(
1

r

∂

∂r

)k−1

r2k−1U(x, r, t)

G̃(x, r) =

(
1

r

∂

∂r

)k−1

r2k−1G(x, r) H̃(x, r) =

(
1

r

∂

∂r

)k−1

r2k−1H(x, r).

Lemma 5.4. If u ∈ Ck+1(R2k+1 × R+
0 ) solves the initial value problem of the wave

equation, then Ũ(x, r, t) solves for any x ∈ R2k+1 the following initial value problem:

∂2Ũ

∂t2
− ∂2Ũ

∂r2
= 0 on (x, r, t) ∈ {x} × R+ × R+ Ũ(x, 0, t) = 0 for t ∈ R+

0

Ũ(x, r, 0) = G̃(x, r) and
∂Ũ

∂t
(x, r, 0) = H̃(x, r) for r ∈ R+.

Proof. Let U(x, r, t) solve in the dimension 2k = n− 1 the corresponding initial value
problem of the Euler-Poisson-Darboux equation:

∂2Ũ

∂r2
(x, r, t) =

(
∂2

∂r2

)(
1

r

∂

∂r

)k−1

r2k−1U(x, r, t) =

(
1

r

∂

∂r

)k
r2k ∂U

∂r
(x, r, t)

=

(
1

r

∂

∂r

)k−1(
r2k−1∂

2U

∂r2
(x, r, t) + 2kr2k−2∂U

∂r
(x, r, t)

)
=

(
1

r

∂

∂r

)k−1

r2k−1∂
2U

∂t2
(x, r, t) =

∂2Ũ

∂t2
(x, r, t)

Due to the Lemmas 5.2 and 5.3 (iii) the values of Ũ(x, r, t) vanish for r = 0. q.e.d.

For any (x, r, t) ∈ R× R+
0 × R+

0 with r ≤ t the solution of the initial value problem is

Ũ(x, r, t) =
1

2

(
G̃(x, t+ r)− G̃(x, t− r)

)
+

1

2

∫ t+r

t−r
H̃(x, s)ds.

We recall Lemma 5.3 (ii): Ũ(x, r, t) =

(
1

r

∂

∂r

)k−1

r2k−1U(x, r, t) =
k−1∑
j=0

βk,jr
j+1∂

jU

∂rj
(x, r, t).

Lemma 5.2 implies limr→0 r
j+1 ∂jU

∂rj
(x, r, t) = 0 for all j ∈ N0. We conclude

u(x, t) = lim
r→0

U(x, r, t) = lim
r→0

Ũ(x, r, t)

βk,0r
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Alltogether the solution of the initial value problem in odd dimensions is given by

u(x, t) = 2k−1(k−1)!
(2k−1)!

lim
r→0

(
G̃(x,t+r)−G̃(x,t−r)

2r
+

∫
-
t+r

t−r
H̃(x, s)ds

)
= 2k−1(k−1)!

(2k−1)!

(
∂G̃
∂t

(x, t) + H̃(x, t)
)
.

Theorem 5.5. For odd n ≥ 3 the solution of the initial value problem

∂2u

∂t2
−4u = 0 for (x, t) ∈ Rn × R+

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) for x ∈ Rn

with g ∈ C n+3
2 (Rn) and h ∈ C n+1

2 (Rn) has at any (x, t) ∈ Rn × R+
0 the value

u(x, t) =
2
n−3
2 (n−3

2
)!

(n− 2)!

(
∂

∂t

(
1

t

∂

∂t

)n−3
2

tn−2

∫
-
∂B(x,t)

g(y)dσ(y) +

(
1

t

∂

∂t

)n−3
2

tn−2

∫
-
∂B(x,t)

h(y)dσ(y)

)
.

Proof. First we consider the case g = 0. In this case Lemma 5.3 (i) implies

∂2u

∂t2
=

2
n−3
2 (n−3

2
)!

(n− 2)!

∂2

∂t2

(
1

t

∂

∂t

)n−3
2

tn−2

∫
-
∂B(x,t)

h(y)dσ(y)

=
2
n−3
2 (n−3

2
)!

(n− 2)!

(
1

t

∂

∂t

)n−1
2

tn−1 ∂

∂t

∫
-
∂B(x,t)

h(y)dσ(y)

=
2
n−3
2 (n−3

2
)!

(n− 2)!

(
1

t

∂

∂t

)n−1
2

tn−1 ∂

∂t

1

nωn

∫
∂B(0,1)

h(x+ tz)dσ(z)

=
2
n−3
2 (n−3

2
)!

(n− 2)!

(
1

t

∂

∂t

)n−1
2 tn−1

nωn

∫
∂B(0,1)

∇xh(x+ tz) · zdσ(z)

=
2
n−3
2 (n−3

2
)!

(n− 2)!

(
1

t

∂

∂t

)n−1
2 1

nωn

∫
∂B(x,t)

∇yh(y) ·N(y)dσ(y)

=
2
n−3
2 (n−3

2
)!

(n− 2)!

(
1

t

∂

∂t

)n−1
2 1

nωn

∫
B(x,t)

4h(y)dny

=
2
n−3
2 (n−3

2
)!

(n− 2)!

(
1

t

∂

∂t

)n−3
2 1

nωnt

∫
∂B(x,t)

4h(y)dσ(y)

=
2
n−3
2 (n−3

2
)!

(n− 2)!

(
1

t

∂

∂t

)n−3
2

tn−2

∫
-
∂B(0,t)

4xh(x+ y)dσ(y)

= 4u(x, t).
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Here we used the divergence theorem and polar coordinates for the calculation of the
derivative of integrals over B(x, t) with respect to t. If we replace h by g and u(x, t) by
v(x, t) with u(x, t) = ∂v

∂t
(x, t), then we obtain the solution in the case with h = 0. This

shows that v(x, t) and therefore also u(x, t) solves the wave equation. The Lemmas 5.2
and 5.3 (iii) finally imply

u(x, 0) = lim
t→0

(
∂

∂t
t

∫
-
∂B(x,t)

g(y)dσ(y) + t

∫
-
∂B(x,t)

h(y)dσ(y)

)
+ O(t) = g(x)

∂u

∂t
(x, 0) = lim

t→0

(
t

∫
-
∂B(x,t)

4g(y)dσ(y) +
∂

∂t
t

∫
-
∂B(x,t)

h(y)dσ(y)

)
+ O(t) = h(x). q.e.d.

To the limit t ↓ 0 only the lowest powers of t with j = 0 in Lemma 5.3 (ii) contribute
and in the second formula we used that the integral solves the homogeneous wave
equation. The solution u(x, t) depends only on the values of g and h at elements of
∂B(x, t). Therefore the speed of propagation has length 1. This is the content of
Huygen’s principle. However the formula for the solution of the initial value problem
of the heat equation shows that the speed of propagation of solutions of the heat
equation can be arbitrary large. Besides this difference there exists another difference
to the heat equation: The solution u of the homogeneous wave equation is at (x, t)
n−1

2
times less differentiable than g and n−3

2
times less differentiable than h. This is a

general property of solutions of hyperbolic PDEs in contrast to parabolic PDEs: for a
large class of initial values the solutions of the homogeneous heat equation are smooth
independent of the regularity of the initial values.

5.6 Solution in even Dimensions

We again use the method of descent, and derive the solutions in the dimension n as
special solutions in the dimension n+ 1 with initial values g(x) and h(x) on Rn+1 not
depending on xn+1 for x = (x1, . . . , xn+1). By the general formula of the last section
we see that in this case also the solution does not depend on xn+1. Indeed if the partial
derivative ∂n+1g(x) and ∂n+1h(x) vanish, then the same is true for∫

-
∂B(x,t)

g(y)dσ(y) and

∫
-
∂B(x,t)

h(y)dσ(y).

If the function f obeys ∂f
∂xn+1

= 0, then we obtain

∂

∂xn+1

∫
-
∂B(x,t)

f(y)dσ(y) =

∫
-
∂B(0,t)

∂

∂xn+1

f(x+ y)dσ(y) = 0.
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This holds for all t ∈ R+ and therefore also for all partial derivatives with respect to
t. So the solution in dimension n = 2k is obtained as the composition of the inclusion
Rn ↪→ Rn+1, x 7→ (x, 0) with the solution of the corresponding initial value problem in
dimension n + 1. As in the application of the method of descent to the descent from
dimension three to dimension two we parameterise both hemispheres of ∂B(x, t) by the
maps Ψ : B(x̄, t) → ∂B(x, t) with y 7→ (y,±γ(y)) with γ(y) =

√
t2 − (y − x̄)2. The

Jacobi matrix of this map is the (n+ 1)× n Matrix (
1lRn

±(∇yγ(y))t ) and the determinan of

(Ψ′(y))TΨ′(y) is again 1 + (∇yγ(y))2. Hence we obtain

∫
-
∂B(x,t)

f̄(y)dσ(y) =
1

(n+1)ωn+1tn

∫
∂B(x,t)

f̄(y)dσ(y) =
2

(n+1)ωn+1tn

∫
B(x̄,t)

f(y)
√

1+(∇γ(y))2dny

=
2t

(n+ 1)ωn+1tn

∫
B(x̄,t)

f(y)dny√
t2 − (y − x̄)2

=
2tωn

(n+ 1)ωn+1

∫
-
B(x̄,t)

f(y)dny√
t2 − (y − x̄)2

.

Theorem 5.6 (Solution in even dimension). Let n be a positive even integer and

g ∈ C n+4
2 (Rn) and h ∈ C n+2

2 (Rn). Then the solution of the initial value problem

∂2u

∂t2
−4u = 0 for (x, t) ∈ Rn × R+

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) for x ∈ Rn

takes at any (x, t) ∈ Rn × R+
0 the following value:

u(x, t) =
1

2
n
2
n
2
!

(
∂

∂t

(
1

t

∂

∂t

)n−2
2

tn
∫
-
B(x,t)

g(y)dny√
t2 − (y − x)2

+

(
1

t

∂

∂t

)n−2
2

tn
∫
-
B(x,t)

h(y)dny√
t2 − (y − x)2

)
.

Proof. The foregoing formula yields with the function f = 1 and for x = 0 and t = r:

(n+ 1)ωn+1r
n =

∫
∂B(0,r)

dσ(y) = 2r

∫
B(0̄,r)

dny√
r2 − y2

= 2r

∫ r

0

∫
∂B(0̄,s)

dσ(y)√
r2 − s2

ds

= 2r

∫ r

0

nωns
n−1ds√

r2 − s2
= 2nωnr

n

∫ 1

0

(1− x2)
n−2
2 dx

with the substitution x =
√
r2−s2
r

=
√

1− ( s
r
)2 , rdx = − sds

rx
and s = r

√
1− x2. We
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calculate the remaining integral by inductive partial integration and insert the result:

∫ 1

0

(1− x2)mdx = x(1− x2)m
∣∣1
x=0

+ 2m

∫ 1

0

(1− x2)m−1x2dx

= −2m

∫ 1

0

(1− x2)mdx+ 2m

∫ 1

0

(1− x2)m−1dx =
2m

2m+ 1

∫ 1

0

(1− x2)m−1 =
(m!2m)2

(2m+ 1)!
.

2
n+1−3

2
n+1−3

2
!

(n+ 1− 2)!

2ωn
(n+ 1)ωn+1

=
2
n−2
2

n−2
2

!

(n− 1)!

(2n−2
2

+ 1)!

2n
2
(2

n−2
2

n−2
2

!)2
=

1

2
n
2
n
2
!
. q.e.d.

By this formula the value of the solution at (x, t) depends on the values of g and h on
B(x, t) rather than the values on ∂B(x, t) like in odd dimensions. Hence the length of
the speed of propagation is bounded by 1, but not equal to 1. Furthermore the solution
is at (x, t) n

2
times less differentiable as g and n−2

2
times less differentiable then h.

We close this section by showing that for any k ∈ N the solution in dimenson
n = 2k − 1 is obtained by the method of descent from the solution in dimension
n + 1 = 2k. The initial values g and h are functions on Rn and again they define
functions on Rn+1 ḡ(x) = g(x̄) and h̄(x) = h(x̄) with (x1, . . . , xn+1) = (x1, . . . , xn)
which do not depend on xn+1. For a differentiable function f on Rn we have

∂

∂xn+1

∫
B(x,t)

f(ȳ)√
t2 − (y − x)2

dn+1y =

∫
B(0,t)

∂f
∂xn+1

(x̄+ z̄)
√
t2 − z2

dn+1z = 0.

Hence the solution of the corresponding initial value problem in dimension n+1 does not
depend on xn+1 and again defines a solutions of the initial value problem in dimension
n. The map y 7→ ȳ maps the ball B(0, t) ⊂ Rn+1 onto the corresponding ball B̄(0, t) ⊂
Rn. The preimage of ȳ ∈ B̄(0, t) with repsect to this map is {(ȳ, yn+1) | yn+1 ∈
(−
√
t2 − ȳ2,

√
t2 − ȳ2)}. The substitution z = yn+1√

t2−ȳ2
yields dyn+1 =

√
t2 − ȳ2dz and√

t2 − ȳ2 − y2
n+1 =

√
t2 − ȳ2

√
1− z2:

∫
B(0,t)

f̄(x+ y)√
t2 − y2

dn+1y =

∫
B̄(0,t)

∫ √t2−ȳ2

−
√
t2−ȳ2

dyn+1√
t2 − ȳ2 − y2

n+1

f(x̄+ ȳ)dnȳ =

=

∫
B̄(0,t)

∫ 1

−1

dz√
1− z2

f(x̄+ ȳ)dnȳ = π

∫
B(x̄,t)

f(ȳ)dnȳ.
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So for odd n ≥ 3 we indeed recover the formula for the solution in even dimension:

u(x, t) =
π

2
n+1
2

n+1
2

!ωn+1

(
∂

∂t

(
1

t

∂

∂t

)n−1
2
∫
B(x,t)

g(y)dny +

(
1

t

∂

∂t

)n−1
2
∫
B(x,t)

h(y)dny

)

=
πnωn

2
n+1
2

n+1
2

!ωn+1

(
∂

∂t

(
1

t

∂

∂t

)n−3
2

tn−2

∫
-
∂B(x,t)

g(y)dny +

(
1

t

∂

∂t

)n−3
2

tn−2

∫
-
∂B(x,t)

h(y)dny

)
,

πnωn

2
n+1
2

n+1
2

!ωn+1

=
π

2
n+1
2

n−1
2

!

2nωn
(n+ 1)ωn+1

=
π

2
n+1
2

n−1
2

!

(2
n−3
2

n−3
2

!)2(n− 1)

(n− 2)!π
2

=
2
n−3
2

n−3
2

!

(n− 2)!
.

Here we use the same formulas as for even n. However, for odd n ≥ 3 the final integral
is

(n+ 1)ωn+1

2nωn
=

∫ 1

0

(1− x2)
n
2
−1dx =

n− 2

n− 1

∫ 1

0

(1− x2)
n
2
−2dx

=
(n− 2)!

(2
n−3
2

n−3
2

!)2(n− 1)

∫ 1

0

dx√
1− x2

=
(n− 2)!

(2
n−3
2

n−3
2

!)2(n− 1)

π

2
.

For n = 1 the first formula gives with ω2 = π D’Alembert’s Formula. In particular,
the formula for the solution in dimension n ∈ N gives by the method of descent the
formulas for the solutions in all dimensions less than n. The iterated application of
the method of descent shows that the solutions in dimensions m < n are obtained by
considering solutions u in dimension n with initial values which depend only on the
first m variables x1, . . . , xm. These solutions also depend only on x1, . . . , xm and define
the corresponding solutions as functions depending on (x1, . . . , xm, t) ∈ Rm × R+.

5.7 Inhomogeneous Wave Equation

Duhamel’s principle also applies to the initial value problem of the wave equation. We
conceive the wave equation as a first order linear ODE on pairs of functions on x ∈ Rn:

d

dt

(
u(·, t)
∂u
∂t

(·, t)

)
=

(
0 1
4 0

)(
u(·, t)
∂u
∂t

(·, t)

)
+

(
0

f(·, t)

)
.

So we may calculate the special solution of the inhomogeneous wave equation

∂2u

∂t2
−4u = f for (x, t) ∈ Rn × R+

u(x, 0) = 0 and
∂u

∂t
(x, 0) = 0 for x ∈ Rn
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as an integeral of the family of solutions of the homogeneous wave equation whose
initial values is given by the inhomogeneity: If u(x, t, s) solves for any s ∈ R+

∂2u

∂t2
−4u = 0 for (x, t) ∈ Rn × (s,∞)

u(x, s, s) = 0 and
∂u

∂t
(x, s, s) = f(x, s) for x ∈ Rn,

then u(x, t) =
∫ t

0
u(x, t, s)ds solves the former inhomogeneous wave equation since

∂2u

∂t2
(x, t) =

∂

∂t

(
u(x, t, t) +

∫ t

0

∂u

∂t
(x, t, s)ds

)
=

∂

∂t

∫ t

0

∂u

∂t
(x, t, s)ds =

=
∂u

∂t
(x, t, t) +

∫ t

0

∂2u

∂t2
(x, t, s)ds = f(x, t) +

∫ t

0

4u(x, t, s)ds = f(x, t) +4u(x, t).

Consequently the initial value problem of the inhomogeneous wave equation

∂2u

∂t2
−4u = f for (x, t) ∈ Rn × R+

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) for x ∈ Rn

is the sum of the former special solution with trivial initial value and the solution of
the corresponding homogeneous initial value problem.

Finally we investigate how the presence determines the past. The wave equations is
invariant with respect to time reversal t 7→ −t. However, this transformation replaces
∂u
∂t

by −∂u
∂t

. Therefore the values u(x, t) of the solution of the end value problem

∂2u

∂t2
−4u = f for (x, t) ∈ Rn × R−

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) for x ∈ Rn

are given by the values u(x,−t) of the solution of the initial value problem with initial
values g and −h and inhomogeneity (x, t) 7→ f(x,−t). This means that we can derive
both the future and the past from the presence. Both solutions fit together and form a
solution u(x, t) of the wave equation on (x, t) ∈ Rn×R which is completely determined
by its values u(x, 0) and ∂u

∂t
(x, 0) on x ∈ Rn.

5.8 Energy Methods

Hyperbolic PDEs do not satisfy a maximum principle. A maximum in the interior of
a domain can be only excluded by a second order PDE which ensures that the Hessian
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cannot be indefinite. This are exactely the elliptic PDEs and theire limiting cases as
the parabolic PDEs. Indeed the methods of Theorem 3.13 applies to degenerate elliptic
PDEs as well. However, energy methods apply to hyperbolic PDEs as well as to elliptic
PDEs and we may prove the uniqeness of solutions with such methods:

Theorem 5.7 (uniqueness of the solutions of the wave equation). Let Ω ⊂ Rn be a
bounded domain. Then the following initial values porblem of the wave equation

∂2u

∂t2
−4u = f on Ω× (0, T )

u(x, t) = g(x, t) on Ω× {t = 0} and on ∂Ω× (0, T )

∂u

∂t
(x, 0) = h(x) on Ω× {t = 0}

has a unique solution on (x, t) ∈ Ω× (0, T ).

Proof. The difference of two solutions solves the analogous homogeneous initial value
problem with f = g = h = 0. For such a solution we define the energy as

e(t) =
1

2

∫
Ω

((
∂u

∂t
(x, t)

)2

+ (∇u(x, t))2

)
dnx.

Then we calculate

de

dt
(t) =

∫
Ω

(
∂2u

∂t2
(x, t)

∂u

∂t
(x, t) +

∂∇u
∂t

u(x, t)∇u(x, t)

)
dnx

=

∫
Ω

∂u

∂t
(x, t)

(
∂2u

∂t2
(x, t)−4u(x, t)

)
dnx = 0.

Here we applied once the divergence theorem to the vector field ∂u
∂t
∇u which vanishes

at ∂Ω× [0, T ] together with u and ∂u
∂t

. Initially the energy is zero e(0) = 0. Since the
energy is non negative it stays zero for all positive times t > 0. This shows that u is
constant and vanishes on Ω× [0, T ) since it vanishes initially. q.e.d.

The proof gives the same conclusion if we assume that instead of u(x, t) the normal
derivative ∇u(x, t) ·N(x, t) is given on ∂Ω× [0, T ]. Finally we give a simple proof that
the length of the speed of propagation is bounded by 1.

Theorem 5.8. If u is any solution of the homogeneous wave equation obeying u = ∂u
∂t

=
0 on B(x0, t0) for t = 0, then u vanishes on the cone {(x, t) | |x− x0| ≤ t0 − t, t > 0}.
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Proof. Again we calculate the time derivative of the energy

e(t) =
1

2

∫
B(x0,t0−t)

((
∂u

∂t
(x, t)

)2

+ (∇u(x, t))2

)
dnx as

de

dt
(t) =

1

2

d

dt

∫ t0−t

0

∫
∂B(x0,s)

((
∂u

∂t
(x, t)

)2

+ (∇u(x, t))2

)
dσ(x)ds

=

∫
B(x0,t0−t)

(
∂2u

∂t2
(x, t)

∂u

∂t
(x, t) +

∂∇u
∂t

(x, t)∇u(x, t)

)
dnx

− 1

2

∫
∂B(x0,t0−t)

((
∂u

∂t
(x, t)

)2

+ (∇u(x, t))2

)
dσ(x)

=

∫
B(x0,t0−t)

∂u

∂t
(x, t)

(
∂2u

∂t2
(x, t)−4u(x, t)

)
dnx

+

∫
∂B(x0,t0−t)

(
∂u

∂t
(x, t)∇u(x, t) ·N(x, t)− 1

2

(
∂u

∂t
(x, t)

)2

− 1

2
(∇u(x, t))2

)
dσ(x)

=

∫
∂B(x0,t0−t)

(
∂u

∂t
(x, t)∇u(x, t) ·N(x, t)− 1

2

(
∂u

∂t
(x, t)

)2

− 1

2
(∇u(x, t))2

)
dσ(x).

Since the outer normal has length one we derive

∂u

∂t
(x, t)∇u(x, t) ·N(x, t) ≤ 1

2

(
∂u

∂t
(x, t)

)2

+
1

2
(∇u(x, t))2

with a = ∇u(x, t) and b = ∂u
∂t

(x, t)N(x, t) from the following inequality:

a · b ≤ a · b+
1

2
(a− b) · (a− b) =

1

2
a2 +

1

2
b2.

So by ė(t) ≤ 0 the energy is monotonically decreasing. Because the energy is non-
negative and vanishes initially it stays zero for all positive times in t ∈ [0, t0]. This
implies u = 0 on {(x, t) | |x− x0| ≤ t0 − t, t > 0}. q.e.d.

By the invariance with respect to time reversal we can also deduce the vanishing of
u on the cone {(x, t) | |x− x0| < t0 + t, t < 0} from the vanishing of u and ∂u

∂t
= 0 on

(x, t) ∈ B(x0, t0)× {0}.
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