Kapitel 9

Metrische Raume und
Banachriaume

9.1 Metrik und Norm

Definition 9.1. (Metrik auf einer Menge X) Fine Metrik (oder Abstandsfunktion) ist
eine Abbildung d : X x X — R, (x,y) — d(z,y) mit drei Eigenschaften

(i) d(xz,y) >0 fir alle x,y € X und d(z,y) =0 x =1y (Positivitit).
(ii) d(z,y) =d(y,z) (Symmetrie).
(iii) d(z,y) < d(x,z) +d(z,y) fir alle x,y,z € X (Dreiecksungleichung).

0 firx=y

Beispiel 9.2. (i) auf jeder Menge X definiert d(x,y) = )
1 firz#y

die sogenannte diskrete Metrik.
(ii) AufK definiert d(z,y) = |z — y| eine Metrik.

(iii) Awuf jeder nicht leeren Teilmenge A C X eines metrischen Raumes (X, d) definiert
die Finschrinkung von d auf A x A — R eine Metrik.

(iv) Auf dem kartesischen Produkt zweier metrischer Riume definiert die Summe bei-
der Metriken eine Metrik. Sie heifit Metrik des kartesischen Produktes.

(v) Die Einschrinkung der Metrik (i) auf die Vereinigung der inversen der natiirli-
chen Zahlen mit {0} definiert eine Metrik auf N = NU{oo} ~ {X | n € N}U{0}:

— 1
d(n,m) = ‘"nmm| d(o0,n) = d(n,00) = d(00,00) =0 fiir alle n,m € N.
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108 KAPITEL 9. METRISCHE RAUME UND BANACHRAUME

Die Menge V = K" erfiillt mit (z1,...,2,) + (Y1, -, Yn) = (T1 + Y1, -, Tp + Yn)
und 0 = (0,...,0) die Axiome Al. Aulerdem besitzt sie eine Skalarmultiplikation

KxV =V, A (1, ) = N (21, x,) = (Axq, .0, Axy),
so dass sie einen Vektorraum uber dem Koérper K bildet:

Definition 9.3. Fin K-Vektorraum V ist eine Menge V' zusammen mit Abbildungen:
+:VxV =V (v,w) »v+w CKxV =V, (A, v) = X,
die die Axiome Al der Addition und fir alle A\, u € K und v,w € V' folgendes erfiillt:

A(vF+w)=Av+ A w, A+p)-v=Xv+p-v,
A-p)-v=X(u-v), 1-v=nw.

Definition 9.4. Eine Norm auf einem reellen bzw. komplexen Vektorraum V ist eine
Abbildung || - || : V — R, x> ||x|| mit folgenden drei Eigenschaften:

@A) |lz|l =0 fir allex € V und ||z|| =0 <=2 =0

i) ||A-z|| = Al ||z]| fir N e K und z € V

(iii) [z +yl < llll + llyll fir alle z,y € V

Satz 9.5. Fir jede Norm istd:V xV =R, (z,y)+— d(x,y) = ||x — y|| eine Metrik.

Beweis:(i) folgt aus (i) der Definition einer Norm.

(i) d(y,z) = ly —z|| = |(=D(z =)l = | = Ullz =yl = [z —y| = d(z,y)

(iii) d(z,y) = |z —yl = [z =2+ 2z —y| < lz =zl + |z =yl = d(z, 2) + d(z,y).q.e.d.
Im folgenden werden wir mit der Vorgabe einer Norm auf einem Vektorraum immer

auch die entsprechende induzierte Metrik auf diesem Vektorraum betrachten. Deshalb

fassen wir jeden normierten Vektorraum auch als metrischen Raum auf.

Definition 9.6. (Euklidische Norm und Metrik) AufR™ definiert

|(x1,. .., 20| = \/|:£1|2—|—...—|—|:17n|2: a2+ a2

die euklidische Norm. Die entsprechende Metrik heifst dann euklidische Metrik.

Die Eigenschaft (iii) heifit dabei Minkowski-Ungleichung;:

\/(x1+y1)2+...+(g:n+yn)2§\/x§+...+xi+\/y%+...+yg.

Um diese zu beweisen zeigen wir zuerst die
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Cauchy—Schwarzsche Ungleichung 9.7.

lz1ys] + -+ ey S\/x%+...+x%\/y%+...+y%

Beweis*: Wegen |zy;| = |zi] - |yi], 27 = |z:]* und y? = |y;]? geniigt es offenbar

T1y1 + .o+ TpYn < \/x%+...+xfl\/yf+...+y3
zu zeigen. Das ist dquivalent zu

(@11 + o F Tyn)” < (21 + ) (0 + )
Firy = (y1,...,yn) = 0 ist die Aussage trivial. Fiir y # 0 gilt

2 n 2
Y1+ ...+ TpYn
| =3 (1ol - ")

TiYyr + ...+ Tpln

vl -

o] o]
. (xlyl +...+ xnyn>2
= Z (’|y’|2xz2 + H?JH2 y12 o 2(5(31y1 +oo+ xnyn>x2yz
1=1
(@191 + - - + Tyn)?
= ||y||2||SL’H2+ ||y||2 ||y||2—2(x1y1+...+xnyn)2

= lylPPll=]® = (2191 + - + 20yn)*.
Weil diese Ausdriicke nicht negativ sind folgt (z1y1 + ... + x,yn)? < ||2]]?|ly|]*. q.e.d.
Beweis der Minkowski Ungleichung:
(21 +y)? + oA (@ +yn) = 2+ [yl + 20z + -+ T0yn)
<l + gl + 202l -yl < ()l + lylD?* a-e.d.

Analog definiert ||(x1,...,%,)|| = /2121 + ... + 2,Z,, eine Norm auf C". Identifizieren
wir C mit R? (Realteil und Imaginérteil), dann ist C" ~ (R?)" ~ R?".

Ubungsaufgabe 9.8. Die euklidische Norm auf R*" induziert durch diese Identifika-
tion auf C™ die Norm |[(z1,...,2,)|| = VX121 + ... + TpTp.

Definition 9.9. Fir x = (z1,...,z,) € K" und 1 < p < oo sei
lzllp = (21| + ... + o [)?
Wir hatten in einer Ubungsaufgabe gesehen, dass ||x||, im Grenzwert p — oo gegen
[ €]l = max{|zy|,... [zn]}
konvergiert. Das sogenannte hermitische Skalarprodukt wird definiert als
<x,y>:x1§1+...+mn§n€K, fir x,y € K".

Fiir y € R™ setzen wir hierbei (Y, ..., Yn) = J =Y.
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Satz 9.10. (Héldersche Ungleichung) Seienp > 1 und ¢ > 1 mit % + % =1.
Dann gilt [, 9)] < lzunl 4+ |zwynl < lzllp - Nyl fir alle 2,y € K"
Fiir p = q = 2 erhalten wir wieder die Cauchy-Schwarzsche Ungleichung
[Zi] + - aayn] < fl2f] -yl
Beweis: Wenn p = 1 und ¢ = oo gilt
lz1yr] + - 2yn] < (|21 + 4 Jzn]) max{ |, - - - |ynl}-

Den Fall p = oo und ¢ = 1 erhalten wir durch vertauschen von z und y. Wir kénnen
also 1 < p, ¢ < oo annehmen, und dass ||z||, # 0 # ||y, gilt, weil die Ungleichung sonst
offensichtlich ist. Dann folgt aus der Youngschen Ungleichung fiir alle k =1,...,n

L N 7 72 R 8 7 L
lzllpllylle — Nzlly lylle — pllzllp g llyll
Nach Summation iiber k£ =1,...,n erhalten wir
oz 11
[T1] + -+ Ty |§_+_:1. qed.
[y llq poq

Satz 9.11. (Minkowski Ungleichung) Seip > 1 und z,y € K", dann gilt
Iz +yllp < llzllp + [yl
Korollar 9.12. Fir alle1 <p <oo undn € Nist |||, : K* — R eine Norm. q.e.d.

Beweis der Minkowski Ungleichung: Fiir p = 1 oder p = oo folgt sie aus der
Dreiecksungleichung. Sei also 1 < p, ¢ < oo mit %—l—% =1l ptg=pg=p=(p—1)q.

T T L R e R N L R Y N 2 e V1 el M B /e Ry IO VN
< (loa]| + [yl +ya P 4 -4 (] + [ynl)|zn + yul?!
< (Illp + yllp) (21 + 31| P77+ |2, 4 g P07

= (lzlly + lyllp) Nz + yll5®

Die zweite Zeile wurde ausmultlphzlert und jeweils die Holdersche Ungleichung benutzt.
Es folgt ||z + |5 < (l|lzll, + lyllp) 2 + vl Fur |z +yll, = O 1st die Aussage trivial.

Aus [l 4 yll, # 0 folgt [l +yll, =l + 9l " =llz+ylly " < lall, + ], ae.d.

Definition 9.13. (offener Ball, Umgebung, offene Menge) FEin offener Ball in (X, d)
mit Zentrum x € X und Radius r > 0 ist die Menge B(x,r) ={y € X | d(z,y) < r}.
FEine Umgebung eines Punktes x € X st eine Menge O C X, die fir ein r > 0 einen
Ball B(z,r) enthdlt. Eine offene Menge O C X ist eine Teilmenge, die eine Umgebung
aller ihrer Punkte ist, d.h. fir alle x € O gibt es ein € > 0 mit B(x,¢e) C O.
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Beispiel 9.14. In R besteht der Ball B(x,r) aus (x —r,z+1). Im R™ besteht der Ball
B(z,r) aus allen Punkten, deren euklidischer Abstand zu x kleiner ist als r.

Alle offenen Bille B(z,r) sind tatséchlich offen: Fir y € B(x,r) ist d(x,y) < 7.
Sei z € B(y,r — d(x,y)). Dann gilt d(x, 2) < d(z,y) + d(y, z) < r, also auch B(y,r —
d(z,y)) C B(z,r). Deshalb sind die offenen Bélle tatséchlich offen.

Offenbar ist die beliebige Vereinigung von offenen Mengen wieder offen. Fiir zwei
offene Mengen O und O" und x € ONO’ gibt es r > 0 und ' > 0 mit B(z,r) C O und
B(x,r") C O'. Also ist B(x, min{r,7'}) C B(z,r)NB(x,r") C ONO’, und ONO’ offen.
Damit ist auch die Schnittmenge von endlich vielen offenen Mengen wieder offen.

Definition 9.15. (abgeschlossene Mengen, Absghluss} Die Komplemente von offenen
Mengen heifien abgeschlossen. Der Abschluss A eine Menge A ist die Schnittmenge
aller abgeschlossenen Mengen, die A enthalten.

Wegen der Regel von de Morgan, sind beliebige Schnitte und endliche Vereinigungen
von abgeschlossenen Mengen wieder abgeschlossen. Deshalb ist eine Menge genau dann
abgeschlossen, wenn sie mit ihrem Abschluss iibereinstimmt.

Definition 9.16. Zwei Normen || |1 und | |2 heiffen dquivalent, wenn es Konstan-
ten Cy,Cy > 0 gibt, so dass fir allev € V' gilt

[olly < Cifoll2 und [vll2 < Cafv]]1-
Diese Relation zwischen Normen ist eine Aquivalenzrelation, denn aus

[olly < Gifjolla lvllz < Calflolly [vll2 < Csllvlls [olls < Callv]l2
folgt ol < CiCs|lv]ls  und  [olls < CaChfv]]s.

Beispiel 9.17. Auf den Vektorrdumen K™ haben wir fir 1 < p < oo die Normen

n 1/p
v; [P fiir p < oo

Il K" SR, v o, = (E")
max{|vi|,...|vn|}  fir p=cc.

eingefiihrt. Sie sind alle dquivalent, weil fiir 1 < p < oo und v € K" folgendes gilt:
[v]lee < [0l < (R]|0][2)"? = n'2[0]| .

Aquivalente Normen besitzen offenbar die gleichen offenen Mengen, so dass eine
Folge beziiglich einer Norm genau dann konvergiert, wenn sie beziiglich einer &qui-
valenten Norm konvergiert. Wenn umgekehrt die offenen Mengen von zwei Normen
iibereinstimmen, dann miissen sie dquivalent sein, weil dann jeder Ball um die Null
der einen Norm einen Ball um die Null der anderen Norm enthalten mufl. Wir werden
sehen, dass auch die stetigen Funktionen von dquivalenten Normen iibereinstimmen.
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9.2 Vollstandigkeit und Kompaktheit

Zunéchst verallgemeinern wir einige Aussagen iiber Zahlenfolgen auf allgemeine Folgen
in metrischen Raumen.

Definition 9.18. (Folgen und Cauchyfolgen) Eine Folge (x,)nen in einem metrischen
Raum (X,d) ist eine Abbildung von N nach X, mit n — x,.

FEine Folge (zy)nen in einem metrischen Raum (X, d) konvergiert gegen x € X,
wenn es fir jedes € >0 ein N € N gibt, so dass d(x,,x) < € fir allen > N gilt.

Fine Folge (x,)nen heifit Cauchyfolge, wenn es fir jedes € > 0 ein N € N gibt, so
dass d(xy,, Ty) < € fir alle n,m > N gilt.

Offenbar konvergiert eine Folge (x,)n,en genau dann gegen einen Punkt z, wenn
jede Umgebung von z alle bis auf endlich viele Folgenglieder enthélt. Deshalb hangt
der Begriff der Konvergenz nur von der Wahl der offenen Mengen ab.

Ein Punkt x gehort genau dann zu dem Abschluss A, wenn es keine offene Menge
gibt, die x enthélt und einen leeren Schnitt mit A hat. Dies ist wiederum dquivalent
dazu, dass es fiir jedes n € N ein Element a,, in dem Ball B(z, %) N A gibt, oder auch
dazu, dass es eine Folge in A gibt, die gegen x konvergiert. Damit haben wir gezeigt:

Lemma 9.19. Der Abschluss einer Teilmenge eines metrischen Raumes besteht aus
allen Grenzwerten von Folgen innerhalb der Teilmenge, die in dem metrischen Raum
konvergieren. Und eine Teilmenge ist genau dann abgeschlossen, wenn die Grenzwerte
von allen konvergenten Folgen in der Teilmenge auch zu der Menge gehdren. q.e.d.

Wenn die Folge (z,)nen gegen z konvergiert, dann gibt es fiir jedes € > 0 ein
N €N, so dass d(x,,r) < § und d(x,,,r) < § fiir alle n,m > N gilt. Dann gilt auch
d(zp, ) < d(zy, ) + d(x, ) < €. Damit haben wir gezeigt:

Satz 9.20. In einem metrischen Raum sind konvergente Folgen Cauchyfolgen. q.e.d.

Definition 9.21. Ein metrischer Raum (X, d) heifit vollstindig, wenn auch jede Cau-
chyfolge konvergiert.

Definition 9.22. Fin vollstindiger normierter Vektorraum heifst Banachraum.

Wegen dem Vollstindigkeitsaxiom sind R™ und C™ fiir alle n € N Banachridume.
Wegen Lemma [0.19 ist eine Teilmenge eines vollstdndigen metrischen Raumes genau
dann ein vollstdndiger metrischer Raum, wenn sie abgeschlossen ist.

Definition 9.23. (kompakt) Eine Teilmenge der Menge der offenen Teilmengen von
(X,d) heift offene Uberdeckung von X, wenn jedes Element von X in mindestens
einer der offenen Mengen enthalten ist. Der metrische Raum heifit kompakt, wenn jede
offene Uberdeckung eine endliche Teiliberdeckung besitzt, d.h. jede Menge von offenen
Teilmengen von X, die X tdiberdeckt, enthdlt eine endliche Teilmenge, die X idiberdeckt.
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Satz 9.24. Fir einen metrischen Raum (X, d) sind folgende Aussagen dquivalent:
(1) (X,d) ist kompakt.
(ii) Jede Folge in (X,d) besitzt eine konvergente Teilfolge.

(iii) (X, d) ist vollstindig und fiir jedes ¢ > 0 besitzt (X,d) eine endliche Uberdeckung
mit offenen Bdllen vom Radius €.

Beweis: (i)=-(ii): Sei (z,,)nen eine Folge ohne Haufungspunkte und F,, = {x,, | m > n}
fiir alle n € N. Fiir m € Nund x € F,,\ F},, gilt d(z, x,,) > 0. Wegen Lemma [0.19 folgt
zuerst © € F, 41 \ Fny1 und dann o € ﬂneN(F’n \ F,). Weil dann x ein Haufungspunkt
von (Zn)nen Wire, ist [, abgeschlossen. Weil auch ), oy £ nur Haufungspunkte von
(Zn)nen enthilt, ist (X \ F},)nen eine offene Uberdeckung von X. Die Schnittmenge
von endlich vielen der Mengen (F},),en ist nicht leer. Also besitzt die Uberdeckung
(X \ F,)nen keine endliche Teiliiberdeckung, und (X, d) ist nicht kompakt.

(ii)=-(iii): Sei also (X,d) ein metrischer Raum, der (ii) erfiillt. Dann besitzt jede
Cauchyfolge (z,,)nen einen Haufungspunkt z. Fiir jedes € > 0 gibt es also eine natiirliche
Zahl N € N, so dass d(zy,, T,,) < § fiir alle alle m,n > N gilt. Weil 2 ein Haufungspunkt
ist, gilt d(zp,,r) < § fiir ein ein m > N. Dann folgt

d(zp, z) < d(zp, ) + d(xm, x) < e firallen > N.

Also konvergiert (z,)nen gegen z. Damit ist (X, d) vollstandig. Sei jetzt € > 0 und
z1 € X. Induktiv wihlen wir z,,+1 aus X \|J _, B(z, €), solange B(x1,¢€), ..., B(zy,€)
nicht X iiberdecken. Wenn das fiir alle n € N gelten wiirde, dann wére (z,,),en eine
Folge, die d(z,,x,,) > € fir alle n > m € N erfiillt. Sie beséfle keine Teilfolge, die eine
Cauchyfolge ist, und damit auch keinen Haufungspunkt im Widerspruch zu (ii).
(iii)=(i): Wir nehmen an (X, d) erfiillt Bedingung (iii) und (Uy)aer sei eine offene
Uberdeckung von (X, d), die keine endliche Teiliiberdeckung besitzt. Wir definieren
induktiv eine Folge (z,)nen, so dass die Bille B(x,,2™") nicht durch endlich viele
(Uy) ez iiberdeckt werden und B(zy,41,2~ ™) und B(x,,2™") fiir alle n € N nicht
disjunkt sind. Weil (X, d) fiir alle n € Ny durch endliche viel Bélle vom Radius 2-("*+1
tiberdeckt wird, konnen wir falls B(z,,2™") fiir n € N nicht durch endlich viele (Uy)aer
iiberdeckt wird, einen B(z,,1,2~ ™) davon auswihlen, der nicht durch endlich viele
(Ux)xer Uberdeckt wird, und fiir n € N nichtleeren Schnitt mit B(x,,27") hat. Wegen

3 >, 3 3 1 3
d n n < 2_n 2_(n+1) == d —_= . —_ —
(@, Toy1) + 5.on ZQ.Qn 2.2m 117 om

n=m

ist (z,)nen eine Cauchyfolge. Fiir ein A € L enthélt U, den Granzwert x und fiir ein
m € N sogar B(x,2*™™). Das widerspricht wegen d(,,2) < 52 der Konstruktion:

B(xm,2™) C B(x,27™ +3-27™) = B(x,2>™™) C U,.
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Also gibt es keinen metrischen Raum (X, d), der (iii) eriillt aber nicht (i). q.e.d.

Dieser Satz hat einige wichtige Folgerungen:
Korollar 9.25. (i) Kompakte Mengen eines metrischen Raums sind abgeschlossen.
(ii) Abgeschlossene Teilmengen einer kompakten Menge sind wieder kompakt.

Beweis: (i) Kompakte Mengen sind wegen (iii) des vorangehenden Satzes vollsténdig,
und stimmen wegen Lemma mit ihrem Abschluss iiberein.

(ii) Abgeschlossene Teilmengen einer kompakten Menge erfiillen wegen Lemma
wieder die Bedingung (ii) des vorangehenden Satzes. q.e.d.

Definition 9.26. Eine Teilmenge A eines metrischen Raumes (X, d) heifit beschrinkt,
wenn fir ein x € X, die Menge der Abstinde {d(z,y)|y € A} beschrinkt ist.

Wegen der Dreiecksungleichung ist diese Bedingung #quivalent dazu, dass fiir alle
x € X die Mengen {d(x,y) | y € A} beschriankt sind, aber nicht uniform in z € X.

Der zweite Teil des Beweises vom Satz zeigt dass alle kompakten Teilmengen
eines metrischen Raumes beschriankt sind. Von einer beschrénkten Folge im K™ kénnen
wir mit dem Auswahlprizip von Bolzano Weierstrafl induktiv Teilfogen auswéhlen, so
dass der Reihe nach erst die erste, dann zusétzlich die zweite und zuletzt all Kompo-
nenten konvergieren. Deshalb iibertragt sich der gesamte Beweis des Satzes

Satz 9.27. In jedem metrischen Raum ist eine kompakte Teilmenge beschrdnkt.
In K™ ist eine Teilmenge beziglich einer der dquivalenten Normen || - ||, mit p €
[1,00] genau dann kompakt, wenn sie abgeschlossen und beschrankt ist.

Beispiel 9.28. (i) Die Intervalle [a,b] sind kompakt.
(ii) N aus Beispiel (vi) ist kompakt.
(iii) Sei (an)nen konvergent mit Grenzwert a. Dann ist {a} U {a,|n € N} kompakt.

9.3 Stetigkeit

Definition 9.29. Fine Abbildung f : X =Y, x+— f(z) von einem metrischen Raum
(X,d) in den metrischen Raum (Y,d) heifit stetig in x € X, wenn es fir jedes € > 0
ein d > 0 gibt, so dass alle y € B(x,0) C X auch f(y) € B(f(x),e) CY erfillen. Die
Abbildung f heifit stetig, wenn sie in allen Punkten von X stetig ist.

Stetig im Punkt x heifit also, dass alle Punkte, die hinreichend nahe bei x liegen,
auf Werte abgebildet werden, die beliebig nahe bei f(z) liegen.

Satz 9.30. Fiir eine Abbildung f : X — Y, x +— f(x) zwischen den metrischen
Réaumen (X, d) und (Y, d) ist folgendes dquivalent:
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(1) f ist stetig in .
(ii) Das Urbild jeder Umgebung von f(x) ist eine Umgebung von x.

(iii) Fir jede Folge (x,)nen in (X, d), die gegen x konvergiert, konvergiert auch die
Folge (f(4))nen gegen f(z).

Beweis: (i)« (ii) Die Umgebungen von x sind gerade die Mengen, die einen §-Ball um
x enthalten. Also ist (ii) dquivalent zu der Aussage, dass das Urbild jedes e-Balles um
f(z) einen 0-Ball um x enthélt. Diese Aussage ist nur eine Umformulierung von (i).

(i)« (iii) Die Folgen (z,)neny und (f(z,))nen konvergieren genau dann gegen x bzw.
f(x), wenn jede Umgebung von x bzw. f(z) alle bis auf endlich viele Folgenglieder
enthdlt. Wenn also (z,)n,en gegen x konvergiert und f (ii) erfiillt, dann konvergiert
auch (f(x,))nen gegen f(x). Also folgt (iii) aus (ii). Wenn es umgekehrt einen e-Ball
von f(z) gibt, dessen Urbild keinen 4-Ball von x enthélt, dann gibt es fiir alle n € N ein
T, € B(x,+), so dass f(z,) nicht in diesem e-Ball von f(z) liegt: f(z,) & B(f(z), €.
Dann konvergiert (z,)nen gegen z aber (f(x,))nen nicht gegen f(z). q.e.d.

Korollar 9.31. Fir eine Abbildung f : X — Y zwischen den metrischen Rdumen
(X,d) und (Y, d) ist folgendes dquivalent:

(1) f ist stetig.

(ii) Das Bild (f(x,))nen jeder konvergenten Folge (x,,)nen ist konvergent und es gilt

lim f(z,) = f ( Tim xn>

n—oo

(iii) Das Urbild jeder offenen Menge ist offen.
(iv) Das Urbild jeder abgeschlossenen Menge ist abgeschlossen.

Beweis: Wegen dem vorangehenden Satz sind (i) und (ii) dquivalent. Weil eine Menge
genau dann offen ist, wenn sie eine Umgebung von allen ihren Punkten ist, zeigt der
vorangehende Satz, dass aus (i) bzw. (ii) auch (iii) folgt. Weil jede Umgebung eines
Punktes auch eine offene Umgebung des Punktes enthilt, folgt wieder wegen dem
vorangehenden Satz aus (iii) auch (i) bzw. (ii). Weil nun die abgeschlossenen Mengen
gerade die Komplemente der offenen Mengen sind und das Urbild eines Komplementes
gerade gleich dem Komplement des Urbildes ist, ist (iii) zu (iv) dquivalent. q.e.d.

Korollar 9.32. Die Komposition zweier stetiger Abbildungen ist stetig. Die analoge
punktweise Aussage gilt auch.

Beweis: Benutze die Aquivalenz zwischen (i) und (iii) im vorangehenden Korollar und
die Gleichung

(fog) ' [Al =g '[f Al
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Beispiel 9.33. (i) Auf jedem metrischen Raum ist die identische Abbildung 1x stetig.
(ii) Die konstante Abbildung, die alle v € X auf einen Punkt y abbildet ist stetig.
(iii) Wegen der Dreiecksungleichung gilt

d(z,y) < d(z,u)+d(u,y) < d(z,u) + d(u,v) + d(v,y).

Also gilt auch d(z,y) — d(u,v) < d(x,u) + d(v,y). Durch vertauschen (z,y) <>
(u,v) und unter Benutzung der Symmetrie erhalten wir

d(u> 'U) - d(Ia y) < d(l’, u) + d(l}, y) = |d(Ia y) - d(ua U)| < d(l’, u) + d(l}, y)
Mit der Metrik aus dem Beispielld2 (v) auf X x X istd : X x X — R also stetig.

(iv) Auf jedem normierten Vektorraum V zeigt der Beweis von Korollar auch
folgende Ungleichung, aus der die Stetigkeit von || - ||: V — R, v ||v]| folgt:

ol = llwll] < flv = wl[ fir alle v,w € V

(v) Wegen der Dreiecksungleichung sind fir jeden normierten Vektorraum V
+:VxV =V, @wWw—ov+w KxV-=K  (Av)—=Awv
stetige Abbildungen. Das gilt auch fiir die Abbildungen

— K=K, =z~ -z und LK\ {0} = K\ {0}, a2~ a2l

(vi) Eine Folge (x,)nen in einem metrischen Raum (X, d) laft sich genau dann zu
einer stetigen Abbildung von N nach X fortsetzen, wenn sie konvergiert. Dann
wird oo auf lim x,, abgebildet.

n—oo

Korollar 9.34. Das Bild einer kompakten Menge unter einer stetigen Abbildung ist
kompakt.

Beweis: Sei f: X =Y, x> f(z) eine stetige Abbildung und A C X eine kompakte
Menge. Dann ist das Urbild einer beliebig offenen Uberdeckung von dem Bild

flAl={y €Y | Iz € Amit f(z) =y}

eine offene Uberdeckung von A. Diese besitzt, wenn A kompakt ist, eine endliche
Teiliiberdeckung. Also besitzt jede offene Uberdeckung von f[A] eine endliche Teiliiber-
deckung und f[A] ist kompakt. q.e.d.

Korollar 9.35. Das Bild einer kompakten Menge unter einer stetigen Abbildung ist
beschrdnkt. Das Bild einer solchen reellen Funktion besitzt Minimum und Maximum.
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Beweis: Sei (X, d) kompakt und f: X — Y, x~— f(z) stetig. Wegen Korollar 0.34]
ist f[X] kompakt und wegen Satz beschrinkt. Wegen Korollar 5.11] besitzen die
kompakten Teilmengen von R sowohl ein Minimum als auch ein Maximum. q.e.d.

Eine bijektive stetige Abbildung f : X — Y zwischen metrischen Raumen (X, d)
und (Y, d) heilt homdomorph oder Homéomorphismus, wenn f~! stetig ist.

Korollar 9.36. Auf kompaktem X ist jedes stetige bijektive f : X — Y homdomorph.

Beweis: Wegen Korollar [0.34ist das Bild f[X]| =Y kompakt. Wegen Korollar ist
eine Teilmenge eines kompakten metrischen Raumes genau dann abgeschlossen, wenn
sie kompakt ist. Weil das Urbild unter der Umkehrabbildung gleich dem Bild unter f
ist, folgt die Aussage aus Korollar und Korollar (iv). q.e.d.

Satz 9.37. Auf K" sind alle Normen paarweise dquivalent.

Beweis: Es geniigt zu zeigen, dass alle Normen dquivalent sind zu || - ||;. Sei also || - ||
eine beliebige Norm. Sei ey, ..., ¢, die Basis von K", deren i—tes Element nur an der
i—ten Stelle eine nicht verschwindende Komponente hat, die dann jeweils gleich Eins
ist. Wegen der Dreiecksungleichung gilt dann fiir jedes v = (vq,...,v,) € K"

[0l < or] - flexll + - 4 vn] - llen]] < max{[lea]], ..., [[en[[}]v]1-
Aus der Dreiecksungleichung folgt dann fiir alle v, w € K"
ol = llwll] < flv = wl < max{fle]], ..., [enl[}]v — w].

Also ist die Abbildung v — ||v|| stetig beziiglich der Norm || - ||;, und wegen dem
Satz von Heine-Borel ist die Teilmenge {v € K" | ||v||y = 1} mit der von || - ||
induzierten Metrik kompakt. Wegen Korollar nimmt diese Funktion auf dieser
Menge das Minimum C' an. Wegen der Positivitiat von || - || gilt C' > 0. Daraus folgt

v ..
Ol < HW ol = ol < max{lleal,. .. lenlHlolh fir alle v € K™\ {0}.q.e.d.

Definition 9.38. (Gleichmajige Stetigkeit, Lipschitzstetigkeit) Eine Abbildung f :
X = Y zwischen metrischen Raumen heifit gleichmdfiig stetig, wenn es fir alle € > 0
ein § > 0 gibt, so dass d(f(x), f(y)) < € fir alle x,y € X mit d(z,y) < J gilt.

Die Abbildung heifit lipschitzstetig auf A, wenn es eine Konstante L > 0 (Lip-
schitzkonstante) gibt, so dass fir alle v,y € A gilt d(f(x), f(y)) < Ld(x,y).

Offenbar ist jede lipschitzstetige Abbildung auch gleichméBig stetig und jede gleich-
méfig stetige Abbildung auch stetig. Es gilt auch folgende Umkehrung:

Satz 9.39. Sei f : X — Y, x— f(x) eine stetige Abbildung zwischen metrischen
Rdaumen und A C X kompakt. Dann ist f auf A auch gleichmdflig stetig.
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Auf kompakten Mengen sind also gleichméflige und einfache Stetigkeit dquivalent.
Beweis: Wegen der Stetigkeit gibt es fiir jedes € > 0 und jedes z € A ein §(x), so dass
fly) € B(f(z),5) aus y € B(x,20(x)) folgt. Wir wihlen eine endliche Teiliiberdeckung
von der offenen Uberdeckung {B(z,d(x)) | + € A} von A. Sei § das Minimum der
Radien dieser endlichen Teiliiberdeckung. Dann gibt es fiir alle y, 2 € A mit d(y, z) < §
einen Ball B(z,d(z)) der endlichen Teiliiberdeckung mit y € B(z,d(z)). Dann folgt

d(z,z) <d(z,y)+d(y,z) < o(x) + 6 <2§(x) alsoz € B(x,2(x)).

Daraus folgt d(f(y), f(z)) < d(f(y), f(x)) +d(f(z), f(2)) <e. q.e.d.

Ubungsaufgabe 9.40. In dieser Aufgabe konstruieren wir R als die Vervollstindigung
von dem angeordneten Korper Q. Sei dazu € die Menge der Cauchyfolgen in Q.
Fiir zwei Cauchyfolgen (x,)nen, (Tn)nen € € definieren wir die Relation

(2n) ~ (Tn)nen = (T, — Tp)nen st Nullfolge in Q.
(i) Zeige, dass ~ eine Aquivalenzrelation auf € ist.

(ii) Wir bezeichnen die Menge der Aquivalenzklassen €/ ~ suggestiv mit R. Zeige,
dass die folgendermafen definierte Addition und Multiplikation

[(@n)nen] + [(Un)nen] = [(Zn + Yn)nenls  [(@n)nen] - [(Yn)nen] = [(Zn - Yn)nenl

jeweils wohldefiniert sind, d.h. dass erstens die Addition und die Multiplikati-
on von zwei Cauchyfolgen selbst eine Cauchyfolge ist und zweitens, dass diese
Verkniipfungen nicht von den jeweiligen Reprasentanten (x,) und (y,) der Aqui-
valenzklassen abhdngen. (Tipp: Benutze: Cauchyfolgen sind beschrdnkt)

(iii) Zeige, dass R = €/ ~ mit diesen Verkniipfungen die Kéorperaziome A1-A3 erfillt.
(Tipp: Benutze, dass Q die Aziome A1-A3 erfiillt.)

(iv) Zeige, dass folgende Relation auf R eine wohldefinierte Ordnungsrelation ist, die
das Aziom AJ erfillt:

(2 )nen] > [(Yn)nen] — dN eN:z, —y, > % Vn > N.

(v) Definiere die Einbettungsabbildung,
:Q =R, g~ ld];

wobei fir jedes q € Q, [q] die konstante Folge q,, = q bezeichnet. Diese Abbildung
ist offenbar injektiv. Zeige, dass R archimedisch ist. Hierbei kann ohne Beweis
benutzt werden, dass die natirlichen Zahlen in R das Bild von N C Q unter ®
sind. Zeige in einem zweiten Schritt, dass das Bild ®[Q] dicht in R liegt.
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(vi) Zeige, dass R wvollstindig ist. (Tipp: Nimm eine Cauchyfolge (£,)nen in R als
gegeben an. Da das Bild ®[Q] dicht in R liegt, existiert fiir jedes n € N jeweils
ein x, € Q mit O(—+) < ®(x,)—&, < P(L). Zeige, dass (x,)nen eine Cauchyfolge
in Q ist, und (&,)nen in R gegen das entsprechende & := [(xy,)nen] konvergiert.)

9.4 Funktionenriaume

In diesem Abschnitt sei (Y, d) ein metrischer Raum, ein normierter Vektorraum oder
eine normierte Algebra und spéter auch (X, d) ein metrischer Raum:

Definition 9.41. Fine normierte Algebra ist ein normierter Vektorraum V mit einer
assoziativen und distributiven Multiplikation - -V x V. — V| die folgendes erfiillt:

(v+0") v =v- v +0" 0 ()0 = A o< ol - (1]
v- (W +V")=v-0 +v-0" v (W)= ANv-d)  firallev, v, 0" € VX e K

Wenn V' wvollstindig ist, heifst V' Banachalgebra.

Wir betrachten in diesem Abschnitt Mengen von Abbildungen von X nach Y. Wenn
Y ein normierter Vektorraum ist, konnen wir solche Abbildungen punktweise mitein-
ander addieren und mit Elementen von K multiplizieren, und wenn Y eine Algbera ist,
auch punktweise miteinander multiplizieren:

f+g:X =Y, x = fx) + g(x), A X =Y, x —=Af(x)
f-9:X=Y, z = f(z) - g(x).

Die Addition erfiillt die Axiome Al und mit der Skalarmultiplikation das Distributiv-
gesetz. Dadurch wird die Menge aller Abbildungen in einen Vektorraum Y zu einem
Vektorraum, und zu einer Algebra, wenn Y eine Algebra ist. Das Inverse einer Funktion
f in eine Algebra mit Eins 1 € Y existiert nur, wenn f(x) fiir alle x € X invertier-
bar ist. Indem wir die Elemente von K mit den entsprechenden Vielfachen der Eins
identifizieren, wird die Skalarmultiplikation zu einem Spezialfall der Multiplikation.

Definition 9.42. Fine Folge von Funktionen (f,)neny von X nach'Y heifst

punktweise konvergent, wenn die Folgen (f,(x))nen fiir jedes © € X konvergieren.
Die Grenzwerte definieren wieder eine Funktion f: X =Y, x+— lim,_, fo(2).

gleichmiflig konvergent, wenn es eine Funktion f : X — Y, zw— f(x) gibt, und
fir alle e >0 ein N € N, so dass d(fn(x), f(z)) <€ firn >N und x € X gilt.

Offenbar ist jede gleichméBige konvergente Folge (f,,) auch punktweise konvergent,
aber nicht umgekehrt (siehe Beispiel [5.24]).
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Definition 9.43. FEine Abbildung f : X — Y in einen metrischen Raum Y heifst
beschrankt, wenn das Bild f[X] inY beschrankt ist. B(X,Y), bezeichne die Menge aller
beschrdankten Abbildungen von X nachY . Auf B(X,Y') bezeichne d folgende Abbildung:

d: B(X,Y)x B(X,Y) =R, (f,9)—d(f,g) =sup{d(f(x), g(x)) | 2 € X}.
Wenn Y ein normierter Vektorraum ist, dann bezeichne || - ||« folgende Abbildung:
[ floe : BX,Y) = R, f = [ flloe = sup{llf ()] | z € X}
Satz 9.44. (i) Fir einen metrischen Raum Y ist d eine Metrik auf B(X,Y).

(i) Wenn Y ein normierter Vektorraum (Algebra) ist, ist B(X,Y) ein normierter
Vektorraum (Algebra) mit Norm || - ||oo, die die Metrik aus (i) induziert.

(iii) Wenn'Y ein vollstindiger metrischer Raum ist, dann auch (B(X,Y),d).

Beweis: (i) und (ii) folgen aus den Eigenschaften der Metrik bzw. Norm || - || von Y,
und weil wegen der Dreiecksungleichung und wegen |[v - w|| < [Jv|| - ||w]| die Summe
und das Produkt zweier beschrankter Abbildungen wieder beschréankt ist.

(iii) Sei (fn)nen eine Cauchyfolge in B(X,Y). Fiir alle € > 0 gibt es ein N € N mit

d(fu(2), fm(2)) < d(fn, fm) < §  fiir allen,m > N und alle 2 € X.

Dann sind fiir alle x € X die Folgen (f,(x)),eny Cauchyfolgen. Also konvergieren sie
punktweise gegen eine Funktion f: X — Y, x— f(z). Fiir obiges € und alle z € X
gibt es ein M(z) € N, so dass d(fn (), f(z)) < § fiir alle m > M(z) gilt. Damit folgt

d(fn(z)a f(l’)) < d(fn(x)> fmax{N,M(w)}(z)) + d(fmax{N,M(m)}(x)> f(l’)) <€

fir alle x € X und n > N. Also konvergiert (f,).en gleichméBig gegen f. Aus
sup{d(fn(x), f(z)) |z € X} <eund fy € B(X,Y) folgt f € B(X,Y). q.e.d.

Definition 9.45. Cy(X,Y) sei der Unterraum von B(X,Y) aller stetigen und be-
schrinkten Funktionen von X nach'Y .

Satz 9.46. (i) Fir metrische Riume X undY ist Cy(X,Y) abgeschlossen in B(X,Y).
(ii) Wenn'Y wollstindig ist, dann auch Cp(X,Y).
(iii) Wenn'Y ein normierter Vektorraum (Algebra) ist, dann auch Cyp(X,Y).

Beweis: Wegen dem vorangehenden Satz und Lemma [9.19] folgen (i) und (ii), wenn
fiir jede Folge in Cy(X,Y), die als Folge in B(X,Y) konvergiert, der Grenzwert in
Cy(X,Y) liegt. Sei (fn)nen eine Folge in Cp(X,Y), die in B(X,Y') gegen f konvergiert.
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Dann gibt es fiir jedes € > 0 ein n € N mit d(f,, f) < 5. Weil f, stetig bei v € X ist
gibt es ein § > 0, so dass d(f.(z), fu(y)) < § fiir alle y € B(x,0) gilt. Dann folgt

d(f(x), f(y)) < d(f(x), fa(2)) + d(fn(2), fu(y) + d(fuly), f(y)) <€

Also ist f bei z € X stetig. (iii) folgt aus der Stetigkeit der Operationen von Y und
der Abbildung X =Y XY, z+— (f(x),g(x)) fiir f,g € Cp(X,Y). q.e.d.
Die gleichméflige Konvergenz der Folge ( f,,)nen ist notwendig (siehe Beispiel [5.24]).
Wenn Y ein Banachraum ist, dann sind sowohl B(X,Y") als auch Cy(X,Y") Banachréu-
me. Wenn Y eine Banachalgebra ist wie z.B. K, dann sind auch B(X,Y") und Cy(X,Y)
Banachalgebren. Der Fall Y = K wird im folgenden noch o6fter vorkommen. Jetzt
kénnen wir die Vervollsténdigungen aller metrischen Rdume leicht konstruieren:

Satz 9.47. Sei X ein metrischer Raum und xq € X. Fir alle x € X gehort dann

I(z): X - R y—d(x,y) —d(xe,y) 2u Cp(X,R).
Die Abbildung I : X — Cy(X,R) z— I(x)

ist isometrische Abbildung, d.h. es gilt d(I(x),1(y)) = d(x,y) fir alle z,y € X. Fiir
jede gleichmdfsig stetige Abbildung f von X in einen vollstindigen metrischen Raum

Y, gibt es eine gleichmdfige stetige Abbildung g : I[X] — Y auf dem Abschluss des
Bildes von I in Cy(X,R), so dass f gleich g o I ist (vergleiche Ubungsaufgabe [9.40).

Beweis: Wegen Beispiel (iii) sind die reellen Funktionen I(x) fiir alle x € X stetig.
Wegen der Dreiecksungleichung gilt fir z,y,z € X

|d(x, z) — d(y, z)| = max{d(z, z) — d(y, 2),d(y, 2) — d(z,2)} <
< max{d(z,y) + d(y, z) — d(y, 2),d(y, ) + d(z, 2) — d(x,2)} = d(x,y) und
d(z,y) = d(z,y) —d(y,y) < d(I(z), I(y)) = sup{|d(z, z) —d(y, 2)| | z € X} < d(z,y).

Mit I(zg) = 0 und y = =z folgt ||/ (2)|l = d(z,x0) und I(z) € Cp(X,R). Also ist
I eine isometrische Abbildung. Sei J € m und f : X — Y eine gleichméaBig stetig
Abbildung in einen vollstindigen metrischen Raum Y. Fiir jedes ¢ > 0 gibt es ein
d > 0, so dass d(f(z), f(y)) < § aus d(x,y) < 20 folgt. Insbesondere haben alle
Elemente von {f(z) € Y | x € X mit d(I(z), J) < ¢} paarweise einen Abstand kleiner
als €. Deshalb bildet f alle Folgen in X, deren Bilder unter I gegen J konvergieren,
auf Cauchyfolgen in Y ab, die alle gegen das gleiche Element von Y konvergieren.
Dieses definiert g(J). Fiir K € B(J,6)NI[X] gibt es x € I"'[B(J, HINfFBg(J), )]
und y € IUB(K, )] N f1[B(g(K), £)). Wegen d(z,y) < 26 und d(g(J), g(K)) <
d(g(J), f(z)) +d(f(x), f(v) +d(f(y),9(K)) < € ist g gleichmé&Big stetig. q.e.d.

Satz 9.48. (Satz von Stone—Weierstrafl) Sei (X, d) ein kompakter metrischer Raum
und A C Cp(X,R) eine Unteralgebra, die die konstanten Funktionen enthdlt und die
Punkte trennt, d.h. fir alle x #y € X gibt es f € A mit f(x) # f(y). Dann ist der
Abschluss von A gleich Cy(X,R).
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Lemma 9.49. Auf [0,1] C R konvergiert die induktiv definierte Folge von Polynomen
Pnt1(x) = pu(a) + 5(z — p2(x)) mit py = 0, gleichmdpig gegen die Funktion x — /.

Beweis : Wir zeigen zunéchst mit vollstdndiger Induktion, dass 0 < p,(z) < pui1(2)
und 0 < p?(z) < z fiir z € [0, 1] und alle n € Ny gilt. Beides ist fiir n = 0 offensichtlich.

v —pio(x) =2 —p2(a) — pulz) (x — pE(2) — L (z — p2(x))”
= (z—pi(2)) (1 — pa(z) — 3(z — pi(2)))

2(2) (1= Lpale)” = %)

—~

<1-—20 <1 ynd

Aus der Induktionsvoraussetzung folgt 0 < p,(x) < 1, also % 5
(1-— p"T(x))z > 1 > 2. Das zeigt die Induktion. Also ist (p,(z)) fir x € [0,1]
monoton wachsend mit 0 < p?(z) < . Dann gilt (1 -2 ”2( )y 7 < 1— 7 und deshalb
0<z—pi(z) <z -(1——) Wegen — x = E > 1—|—§ folgt dann aus der
Bernoulli Ungleichung ==y ,) > 145 und 0<z—pi(z) <5 T <4

(P2 (2))nen auf x € [0, 1] glelchmaﬁlg gegen x. Die Funktion [0, 1] [O, 1], xw+— aist
die Umkehrfunktion von [0,1] — [0,1], x> 2. Weil die zweite Funktion stetig ist,
ist wegen Korollar (.18 die erste stetig und wegen Satz sogar gleichméBig stetig.
Dann konvergiert die Folge (p,(x) = v/P2(2))nen gleichméBig gegen V. q.e.d.
Beweis des Satzes von Stone—Weierstraf3: Wegen Lemma [9.49] gibt es eine Folge
(Pn)nen von Polynomen, die auf [0, 1] gleichméfig gegen x — \/_ konvergieren. Fiir

jedes f € A\ {0} konvergiert dann (pn(ﬁ))n@\] in Cp(X,R) gegen ’/(||f|| )2. Also

gehort | f| = |||l oon /(”f” )2 zu dem Abschluss A von A. Aus Korollar 2220 folgt mit

T =19lllee < |If — 9l fiir alle f, g € Cy(X,R) die Stetigkeit von f — |f|. Wegen der
Stetigkeit von + und - ist A eine Algebra mit |f| € A fiir f € A. Fiir f,g € A folgt

max(f,g9) =3(f+g+If—g) €A und min(f.g)=3(f+9—[f—g) € A

Weil A die Punkte von X trennt, gibt es fiir alle z # y € X ein g € A mit g(z) # g(y).
Dann nimmt f = o+ m(g —g(x)) bei x und y zwei beliebige Werte a, § € R an.

Sei jetzt f € Cp(X,R) eine fest vorgegebene Funktion und € > 0. Dann gibt es
fiir alle 7,y € X eine Funktion g,, € A die bei x und y mit f iibereinstimmt. Sei
0zy > 0 so gewihlt, dass g, ,(2) < f(2) + e fiir alle z € B(y, d,,) gilt. Nach Ubergang
zu einer endlichen Teiliiberdeckung von {B(y,d,,) | v € X} und dem Minimum der
entsprechenden Funktionen g,, € A gibt es fiir alle z € X eine Funktion g, € A4,
die g.(x) = f(x) und g, < f + € erfiillt. Wegen der Stetigkeit von f und g, gibt
es fiir alle x € X ein §, > 0, so dass f(y) — e < g¢,(y) fir alle y € B(z,J,) gilt.
Durch Ubergang zu einer endlichen Teilitberdeckung von {B(x,d,) | € X} und dem
Maximum der entsprechenden Funktionen g, finden wir schlieffilich eine Funktion g in
A, die f —e < g < f+ e auf X erfiillt. Weil € beliebig ist folgt f € A. q.e.d.

neNp

. Also konvergiert
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Fiir jeden metrischen Raum X besitzt die Algebra Cy(X,C) folgende komplexe

Konjugation, die jedes f € Cy(X,C) auf f € Cy(X,C, mit f(z) = f(x) abbildet. Diese
Abbildung ist ein Algebrahomomorphismus, d.h. sie ist linear und erhélt das Produkt.

Korollar 9.50. Sei (X,d) ein kompakter metrischer Raum und A C Cy(X,C) eine
Unteralgebra, die die konstanten Funktionen und fiir jedes f € A auch die komplex
konjugierte Funktion f € A enthdlt und die Punkte trennt, d.h. fir alle v #vy € X gibt
es [ € A mit f(z) # f(y). Dann ist der Abschluss von A gleich Cy(X,C).

Beweis™: Jedes f € A ist die Summe einer reellen Funktion 2(f+f) € Aund des
Produktes von 2 mit einer reellen Funktion 5(f — f) € A. Also folgt die Aussage aus
dem Satz von Stone-Weierstraf. q.e.d.

Satz 9.51% (Satz von Dini) Auf einem kompakten metrischen Raum (X, d) konvergiert
eine monotone Funktionenfolge (fn)nen von stetigen reellen Funktionen gleichmdfSig,
wenn sie punktweise gegen eine stetige Funktion f konvergiert.

Beweis*: Sei (f,,)nen eine monoton wachsende Folge in Cy, (X, R), die punktweise gegen
f € Cp(X,R) konvergiert. Dann gibt es zu jedem ¢ > 0 und z € X ein n(x) € N, so
dass f(z) — fu@)(z) < 5 gilt. Da f,,) und f stetig sind gibt es ein §(z), so dass

@) (2) = o) < 5 und  [f(z) = f(y)| <5 firalley € B(z,d(x)) gilt.

Dann gilt dort auch f(y) — fu@)(y) < e. Wahle eine endliche Teiliiberdeckung von
{B(z,0(z)) | x € X}. Dann gilt fiir m > Maximum der entsprechenden n(x)

FW) = fa(y) < Fy) = faw(y) <€
auf den Mengen der Teiliiberdeckung. Das zeigt die gleichméflige Konvergenz. q.e.d.

Definition 9.52. (relativkompakt) Eine Teilmenge eines metrischen Raumes heifst re-
lativkompakt, wenn der Abschluss kompakt ist.

Lemma 9.53F Fine Teilmenge A eines metrischen Raumes (X,d) ist genau dann
relativkompakt, wenn jede Folge in A eine in X konvergente Teilfolge besitzt.

Beweis*: Wenn A relativkompakt ist, dann besitzt wegen Satz jede Folge in A eine
konvergente Teilfolge, deren Grenzwert in A liegt. Hat umgekehrt jede Folge in A eine
konvergente Teilfolge, dann gibt es wegen Lemma [0.19 fiir jede Folge (2, )nen in A auch
eine Folge (an)nen in A mit d(z,,a,) < +. Dann konvergiert die jeder konvergenten
Teilfolge von (a,,)nen entsprechende Teilfolge von (2, ),en gegen den gleichen Grenzwert
wie die entsprechende Teilfoge von (a,,)n,en. Wegen Satz ist dann A kompakt.q.e.d.

Satz 9.54. (Arzela—Ascoli) Sei X ein kompakter und Y ein vollstindiger metrischer
Raum. Eine Teilmenge F C Cy(X,Y) ist genau dann relativkompakt, wenn
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(1) fir jedes x € X die Menge {f(z) | f € F} relativkompakt ist, und

(ii) fir jedes x € X die Menge F gleichgradig stetig ist in x, d.h. fir jedes x € X und
jedes € > 0 gibt es ein § > 0 mit f(a') € B(f(x),€) fir alle ' € B(z,9), f € F.

Beweis*: Zunédchst zeigen wir, dass aus (i) und (ii) folgt, dass F relativkompakt ist.
Dafiir zeigen wir zuerst, dass F wegen (ii) sogar gleichméfig gleichgradig stetig ist. Fiir
jedes € > 0 und jedes y € X gibt es wegen (ii) ein §, > 0, so dass d(f(z), f(y)) < § fiir
alle f € F aus d(z,y) < 26, folgt. Wegen der Kompaktheit von X hat die Uberdeckung
{B(y,0,) | y € X} eine endliche Teiliiberdeckung X = B(yy,d;) U...U B(yn,dn). Sei
d das Minimum von 4y, ..., dy. Dann enthilt fiir alle Paare z, 2’ € X mit d(z,2") < §
einer der Bélle B(yi,d1), ..., B(yn,dy) den einen Punkt x. Damit sind beide in einem
der Bélle B(y1,201), ..., B(yn,20y) enthalten. Daraus folgt d(f(z), f(2')) < §+5 =€
fiir alle f € F. Also ist F auf ganz X gleichméBig gleichgradig stetig.

Wir zeigen jetzt, dass eine Folge (f,,)nen in F eine in Cy(X,Y') konvergente Teifolge
besitzt. Sei (1;);en eine Abzihlung der Zentren von Uberdeckungen von X durch Bille
mit Radien (L),,en. Wegen (i) ist fiir alle [ € N der Abschluss A, = {f.(z) | n € N}
kompakt. Wir definieren induktiv eine Teilfolge von (g, )nen von (fy,)nen und eine Folge
(a1)1en in Y. Zuerst wéhlen wir einen Haufungspunkt a; und eine Teilfolge (g, )nen von
(fa)nen, so dass d(gn(z1),a1) < = fiir alle n € N gilt. Induktiv wihlen wir fiir jedes
L € N\ {1} einen Haufungspunkt ay von (g,(zr))neny und ersetzen alle Folgenglieder
von (gn )neny mit Indizes > L durch eine Teilfolge von (g, )n>1, so dass d(gn(zr), ar) < %
fiir alle n > L gilt. Dann gilt d(g,(2), ) < L firallel=1,..., L und n > [.

Weil F gleichméflig gleichgradig stetig ist, gibt es fiir jedes € > 0 ein § > 0, so dass
d(gn(x), gn(z')) < § fiir alle n € N und z,2" € X mit d(x,2") < § gilt. Die Zentren der
Bélle (B(zy,6))ien sind so gewahlt, dass die Bille X iiberdecken. Sei L das Maximum
der Indices einer endlichen Teiliiberdeckung. Fiir alle m,n > max{g, L} folgt zuerst

d(gm (1), gn (1)) < d(gm(21), @1) + d(ar, gn(21)) < 5, und dann
d(gm (), gn()) < d(Gm (), g (1)) +d(gm(220), gn (1)) +d(gn(220), g () < 5+5+5=¢

fiir alle z € X und dem entsprechnden z;. Also ist (g, )nen in Cy(X,Y') eine Cauchyfolge,
die wegen (i) in B(X,Y') konvergiert. Wegen Satz [0.46liegt der Grenzwert in Cy,(X,Y).

Wenn umgekehrt F relativkompakt ist, dann besitzt wegen Lemma mit jeder
Folge in F fiir jedes # € X auch die Folge der entsprechenden Funktionswerte eine
konvergente Teilfolge. Also erfiillt F die Bedingung (i).

Auflerdem gibt es fiir jedes x € X und € > 0 endlich viele fi,..., fr im Abschluss
von F, so dass B(f1,5)U...UB(fk,5) den Abschluss von F iiberdeckt. Weil f1,..., fi
stetig sind, gibt es d1,...,d; > 0, so dass fi(2') € B(fi(v), ) firi = 1,...,k aus
x' € B(x,¢;) folgt. Fiir alle 2’ € B(x, min{dy,...,d;}) und f € F gibt es ein f; mit

d(f(2'), f(x)) < d(f(2), fi(a")+d(fi("), fi(x))+d(fi(z), f(2)) < §+5+§ =€ qed.
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9.5 Lineare Operatoren

Die Ableitung einer Funktion von mehreren Verénderlichen ist eine lineare Abbildung.
Zur Vorbereitung der Differentialrechnung von Funktionen mehrerer Verédnderlicher
behandeln wir in diesem Abschnitt solche linearen Abbildungen zwischen normierten
Vektorrdaumen. Dabei betrachten wir wieder Vektorrdume iiber dem Korper K.

Definition 9.55. Eine Abbildung A : V. — W won einem Vektorraum V in einen
Vektorraum W heifit linear, wenn fir alle v,w € V und A € K gilt

Alv+w) =Av+ Aw  und A(M) = NAw.

Satz 9.56. Seien V und W normierte Vektorriaume und A : 'V — W eine lineare
Abbildung. Dann ist folgendes dquivalent:

(i) A ist stetig in 0.

(i) A ist stetig.

(iii) A ist gleichmdfig stetig.

(iv) Es gibt ein C > 0, so dass fir alle v € V gilt ||Av|| < C||v]|.

(v) A ist auf B(0,1) beschrankt, d.h. ||Av|| < C fir alle ||v]| <1 mit 0 < C' < oc.

Beweis:(i)=-(v): Wenn A in 0 stetig ist, dann enthélt das Urbild jedes Balles B(0,€) C
W einen Ball B(0,d) C V. Also gibt es ein § > 0, so dass ||Av|| < 1 aus ||v]| < § folgt.
Wegen der Linearitét folgt dann ||Av| = $[|Adv|| < } aus [|v]| < 1. Also ist (v) erfiillt.
(v)=(iv): Wegen der Linearitét folgt aus (v), dass fiir alle v € V' gilt

v v
[Av] = A (znvn - —) — 2o -A( ) <20]o].

2|l 2|l

(iv)=-(iii): Fir v,w € V folgt [|[Av — Aw|| = ||A(v — w)]|| < C|jv — w|| aus (iv). Also
ist A sogar lipschitzstetig mit Lipschitzkonstante C'. Dann gilt auch (iii).

(iii)=-(ii) und (ii)=-(i): Sind offensichtlich. q.e.d.
Satz 9.57. Jede lineare Abbildung A von K™ in einen normierten Vektorraum ist stetig.
Beweis: Wir benutzen wieder die Basis ey, ..., e, von K". Dann gilt fiir alle v € K*

[Av]| < or] - [[Aea]| o 4 on] - [Aen]] < lofly max{[|Aes],.. ., [|Aen] }.

Also folgt die Aussage aus Satz und Satz [0.56] q.e.d.
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Definition 9.58. Seien V., W normierte Vektorrdume. Dann sei L(V, W) die Menge
aller linearen stetigen Abbildungen von V nach W zusammen mit den Abbildungen:

+: LV,W) X L(V,W) = L(V,W), (A,B)— A+B: VW, v Av+ Bv
Kx L(V,W)—= LV, W), (\A)— NA: V=W, v Ao
-1 £V, W) = R, A [JA]] = sup{||Av]| [ v € B(0,1)} = sup{[|Av[| | v € B(0,1)}.

Fiirw € B(0,1) gilt namlich || Aw|| :lim A Awl| :lim | A w|| <sup{]||Av]|||ve B(0,1)}.

Satz 9.59. L(V, W) ist ein normierter Untervektormum von Cy(B(0,1), W).

Beweis: Wegen Satz[0.50 L(V, W) ist die Menge aller linearen Abbildungen A :V —
W, deren Einschrénkungen Alggy in Cy(B(0,1), W) liegen. Aus der Linearitét zweier
solcher Abbildungen A und B folgt die Linearitdt von A+ B und A - A fiir A € K. Fiir
jeden linearen Operator A € L(V,W) und v € V' \ {0} gilt Av = [[v[| - A(5;)- Also

ist A durch seine Werte auf B(0,1) eindeutig bestimmt und die Norm von L(V, W)
ist einfach die Supremumsnorm der stetigen Abbildung von B(0, 1) nach W. Also ist
L(V, W) ein normierter Untervektorraum von Cy(B(0,1), ). q.e.d.

Offenbar gilt [|A| = sup {IZd | v € V'\ {0}} fiir A € L(V, W) und [|Av| <
| Al - |Jv]| fiir alle v € V. Aus der Konvergenz einer Folge (A, )nen in L(V, W) folgt also
die gleichméBige Konvergenz auf B(0,1) und die punktweise Konvergenz auf V. Fiir
V = K" ist der Abschluss der Einheitskugel B(0,1) = {v € K" | ||v]| < 1} kompakt.

Deshalb gibt es also fiir jedes A € L(K™, W) ein v € K"\ {0} mit ||A|| = ||A”U|| | = ”ﬁzﬁ”

Satz 9.60. Seien V ein normierter Vektorraum und W ein Banachraum. Dann ist
L(V,W) ein Banachraum.

Beweis: Wir miissen wegen Satz [0.46] (ii)-(iii) und Satz [@.59 nur zeigen, dass L(V, W)

in Cy(B(0,1), W) abgeschlossen ist. Sel (A,)nen eine Cauchyfolge in L£(V, W). Fiir jedes

v € Vist (A,0)nen wegen ||(A, — Ap)v|| < ||An — Al - ||v|| eine Cauchyfolge in .

Der Grenzwert von (A,)nen in Cb(B (0,1), W) setzt sich zu folgender Abbildung fort:
AV —=>W, v Av= lim A,v firalleveV.

n—oo

Wir miissen nur noch zeigen, dass A linear ist. Aus der Linearitat von A,, folgt

[A(v +w) = (Av + Aw)|| <
< [I(A = An) (v +w) = (A= Ao = (A = Ap)w)) || + [[An(v + w) = (Apv + Ayw)|
< [I(A = An) (v + w)[[ + [[(A = Ap)o + [[(A = Ay)wl], und
[AAv = AQ)[| < [[AMA = Ap)v = (A = An) (M) || + [[AAnv — An(Av)]]
< [A[I(A = An)oll + [[(A = An) (M)

fiir alle n € N und alle v,w € V. Im Grenzwert n — oo konvergieren die rechten Seiten
fiir alle v,w € V und A € K punktweise gegen Null, so dass A linear ist. q.e.d.
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Satz 9.61. Seien U,V und W normierte Vektorrdume und A € L(U,V) und B €
L(V,W), dann ist Bo A € LIU,W) und es gilt || Bo A|| < ||B| -||A||. Insbesondere ist
die Abbildung o : LU, V) x L(V,W) — L(U,W), (A, B)+— Bo A stetig.

Beweis: Fiir alle u € U gilt [[(Bo A)ull < [|B] - ||Aul| < [|B]| - [|A]| - [lu|. Also folgt
die Ungleichung || B o A|| < ||B]| - ||A]| aus Satz[@.56l Fiir zwei normierte Vektorrdume
V, W mit Normen || - ||y und || - ||w ist

[ llvsw = VX W =R, (v,w) = ||vflv + [Jw]lw

eine Norm auf V x W und induziert die Metrik des kartesischen Produktes der metri-
schen Rdume V und W. Fiir (A, B), (A", B") € L(U,V) x L(V, W) gilt dann

|[BoA—B oAl =|BoA—-—BoA +BoA —B oA
=||Bo(A—A")+ (B —B)o A

<|IB[-I[A= A+ 1B =B - |14

< (|A= A+ 1B = BHUBI + 14])

< (A=A + 1B = BHIBI + 1A + [[A" = Al))

< (I(4, B) = (A", BB + Al + (A, B) = (A, B)))-
Also ist diese Abbildung im Punkt (A, B) € L(U,V) x L(V, W) stetig. q.e.d.

Wir bezeichnen die Komposition B o A von linearen Operatoren auch mit BA.
Definition 9.62. Auf einem normierten Vektorraum V ist L(V') = L(V, V) mit
o L(V)x L(V)—= L(V), (A B)—AB und | -||:L(V)—=R, A~ |A]

eine normierte Algebra mit Eins 1y, und eine Banachalgebra fiir einen Banachraum V' .

Satz 9.63. (Neumannsche Reihe) Sei A eine Banachalgebra mit Fins 1 und A € A
ein Operator mit ||A|| < 1. Dann ist 1 — A invertierbar und es gilt (1 —A)~! = S A™.
n=0

Beweis: Wegen || A™|| < ||A||™ ist (> A™)
N
DA

n=M

Also konvergiert diese Reihe gegen ein B € A. Wie im Satz [0.61] ist wegen ||B - A|| <
|B]| - ||Al| die Multiplikation - : A x A — A stetig und es gilt

(H—A)B:iA"—iA": und B(H—A):iA"—iA”: .
n=0 n=1 n=0 n=1

nen fur ||A[] < 1 eine Cauchyfolge mit

N
LAY = A At
< All" = < f < M < N.
<2l oA STy OSME
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1
Also ist 3> ;A" das Inverse von 1 — A mit ||(1 — A)7'|| < AT q.e.d.
Jede Potenzreihenfunktion f(z) = > _y @nz" mit Konvergenzradius R > 0 defi-
niert also auf jeder Banachalgebra A eine Abbildung

Fi{Ae A||lA] <R} — A, AHf(A)zf:anA".
n=0

Viele der Aussagen, die wir fiir Potenzreihenfunktionen auf K gezeigt haben, lassen sich
auf Potenzreihenfunktionen auf Banachalgebren A ausdehnen. Aber weil im allgemei-
nen AB # BA fir A, B € A, gilt im allgemeinen auch exp(A) exp(B) # exp(A + B).

Definition 9.64. Eine Derivation einer Algebra A ist eine lineare Abbildung D : A —
A, die D(A-B) = D(A)- B+ A-D(B) fiir alle A, B € A erfillt.

Ubungsaufgabe 9.65. (i) Zeige, dass jedes Element A einer Algebra A folgende De-
rivation definiert:
Dy:A— A B+~ AB— BA

(ii) Sei A eine Banachalgebra und D € L(A) eine Derivation von A. Zeige dass
exp(D) ein Algebraisomorphismus von A ist, d.h. ein invertierbares Element von

(C e L(A) | C(A- B) = C(A) - C(B) fiir alle A, B € A}.

(iii) Zeige exp(Da)B = exp(A) - B -exp(—A) fir alle A, B in einer Banachalgebra A.

In der Vorlesung Analysis 11 wird gezeigt, dass die Derivationen der Algebra C*°(R)
von der Form f + gf’ fiir ein g € C*°(R) sind. Auflerdem werden die entsprechenden
Algebraisomorphismen bestimmt, soweit sie existieren.

In dem Buch L. Gillman, M. Jerison: “Rings of continuous functions” wird gezeigt,
dass fiir jeden kompakten metrischen Raum X die einzigen Algebraisomorphismen von
C(X,R) von der Form f — fo® fiir einen Hombomorphismus ® : X — X sind. Daraus
lasst sich folgern, dass £(C(X,R)) nur die triviale Derivation von C'(X,R) enthéilt.



