
Kapitel 9

Metrische Räume und
Banachräume

9.1 Metrik und Norm

Definition 9.1. (Metrik auf einer Menge X) Eine Metrik (oder Abstandsfunktion) ist
eine Abbildung d : X ×X → R, (x, y) 7→ d(x, y) mit drei Eigenschaften

(i) d(x, y) ≥ 0 für alle x, y ∈ X und d(x, y) = 0 ⇔ x = y (Positivität).

(ii) d(x, y) = d(y, x) (Symmetrie).

(iii) d(x, y) ≤ d(x, z) + d(z, y) für alle x, y, z ∈ X (Dreiecksungleichung).

Beispiel 9.2. (i) auf jeder Menge X definiert d(x, y) =

{
0 für x = y

1 für x 6= y

die sogenannte diskrete Metrik.

(ii) Auf K definiert d(x, y) = |x− y| eine Metrik.

(iii) Auf jeder nicht leeren Teilmenge A ⊂ X eines metrischen Raumes (X, d) definiert
die Einschränkung von d auf A× A → R eine Metrik.

(iv) Auf dem kartesischen Produkt zweier metrischer Räume definiert die Summe bei-
der Metriken eine Metrik. Sie heißt Metrik des kartesischen Produktes.

(v) Die Einschränkung der Metrik (ii) auf die Vereinigung der inversen der natürli-
chen Zahlen mit {0} definiert eine Metrik auf N̄ = N∪{∞} ≃ { 1

n
| n ∈ N}∪{0}:

d(n,m) =
|n−m|
nm

d(∞, n) = d(n,∞) =
1

n
d(∞,∞) = 0 für alle n,m ∈ N.
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Die Menge V = Kn erfüllt mit (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)
und 0 = (0, . . . , 0) die Axiome A1. Außerdem besitzt sie eine Skalarmultiplikation

K× V → V, (λ, (x1, . . . , xn)) 7→ λ · (x1, . . . , xn) = (λx1, . . . , λxn),

so dass sie einen Vektorraum úber dem Körper K bildet:

Definition 9.3. Ein K-Vektorraum V ist eine Menge V zusammen mit Abbildungen:

+ :V × V → V, (v, w) 7→ v + w · :K× V → V, (λ, v) 7→ λ · v,

die die Axiome A1 der Addition und für alle λ, µ ∈ K und v, w ∈ V folgendes erfüllt:

λ · (v + w) = λ · v + λ · w, (λ+ µ) · v = λ · v + µ · v,
(λ · µ) · v = λ · (µ · v), 1 · v = v.

Definition 9.4. Eine Norm auf einem reellen bzw. komplexen Vektorraum V ist eine
Abbildung ‖ · ‖ : V → R, x 7→ ‖x‖ mit folgenden drei Eigenschaften:

(i) ‖x‖ ≥ 0 für alle x ∈ V und ‖x‖ = 0 ⇐⇒ x = 0

(ii) ‖λ · x‖ = |λ| · ‖x‖ für λ ∈ K und x ∈ V

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ für alle x, y ∈ V

Satz 9.5. Für jede Norm ist d : V × V → R, (x, y) 7→ d(x, y) = ‖x− y‖ eine Metrik.

Beweis:(i) folgt aus (i) der Definition einer Norm.
(ii) d(y, x) = ‖y − x‖ = ‖(−1)(x− y)‖ = | − 1|‖x− y‖ = ‖x− y‖ = d(x, y)
(iii) d(x, y) = ‖x− y‖ = ‖x− z+ z− y‖ ≤ ‖x− z‖+ ‖z− y‖ = d(x, z) + d(z, y).q.e.d.

Im folgenden werden wir mit der Vorgabe einer Norm auf einem Vektorraum immer
auch die entsprechende induzierte Metrik auf diesem Vektorraum betrachten. Deshalb
fassen wir jeden normierten Vektorraum auch als metrischen Raum auf.

Definition 9.6. (Euklidische Norm und Metrik) Auf Rn definiert

‖(x1, . . . , xn)‖ =
√

|x1|2 + . . .+ |xn|2 =
√
x2
1 + . . .+ x2

n

die euklidische Norm. Die entsprechende Metrik heißt dann euklidische Metrik.

Die Eigenschaft (iii) heißt dabei Minkowski–Ungleichung:

√
(x1 + y1)2 + . . .+ (xn + yn)2 ≤

√
x2
1 + . . .+ x2

n +
√

y21 + . . .+ y2n.

Um diese zu beweisen zeigen wir zuerst die
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Cauchy–Schwarzsche Ungleichung 9.7.

|x1y1|+ . . .+ |xnyn| ≤
√
x2
1 + . . .+ x2

n

√
y21 + . . .+ y2n

Beweis∗: Wegen |xiyi| = |xi| · |yi|, x2
i = |xi|2 und y2i = |yi|2 genügt es offenbar

x1y1 + . . .+ xnyn ≤
√

x2
1 + . . .+ x2

n

√
y21 + . . .+ y2n

zu zeigen. Das ist äquivalent zu

(x1y1 + . . .+ xnyn)
2 ≤ (x2

1 + . . .+ x2
n)(y

2
1 + . . .+ y2n).

Für y = (y1, . . . , yn) = 0 ist die Aussage trivial. Für y 6= 0 gilt
∥∥∥∥‖y‖x− x1y1 + . . .+ xnyn

‖y‖ y

∥∥∥∥
2

=

n∑

ı=1

(
‖y‖xı −

x1y1 + . . .+ xnyn
‖y‖ yı

)2

=

n∑

ı=1

(
‖y‖2x2

ı +
(x1y1 + . . .+ xnyn)

2

‖y‖2 y2ı − 2(x1y1 + . . .+ xnyn)xıyı

)

= ‖y‖2‖x‖2 + (x1y1 + . . .+ xnyn)
2

‖y‖2 ‖y‖2 − 2(x1y1 + . . .+ xnyn)
2

= ‖y‖2‖x‖2 − (x1y1 + . . .+ xnyn)
2.

Weil diese Ausdrücke nicht negativ sind folgt (x1y1 + . . .+ xnyn)
2 ≤ ‖x‖2‖y‖2. q.e.d.

Beweis der Minkowski Ungleichung:

(x1 + y1)
2 + . . .+ (xn + yn)

2 = ‖x‖2 + ‖y‖2 + 2(x1y1 + . . .+ xnyn)

≤ ‖x‖2 + ‖y‖2 + 2‖x‖ · ‖y‖ ≤ (‖x‖ + ‖y‖)2. q.e.d.

Analog definiert ‖(x1, . . . , xn)‖ =
√
x1x̄1 + . . .+ xnx̄n eine Norm auf Cn. Identifizieren

wir C mit R2 (Realteil und Imaginärteil), dann ist Cn ≃ (R2)n ≃ R2n.

Übungsaufgabe 9.8. Die euklidische Norm auf R2n induziert durch diese Identifika-
tion auf Cn die Norm ‖(x1, . . . , xn)‖ =

√
x1x̄1 + . . .+ xnx̄n.

Definition 9.9. Für x = (x1, . . . , xn) ∈ Kn und 1 ≤ p < ∞ sei

‖x‖p = (|x1|p + . . .+ |xn|p)1/p

Wir hatten in einer Übungsaufgabe gesehen, dass ‖x‖p im Grenzwert p → ∞ gegen

‖x‖∞ = max{|x1|, . . . , |xn|}
konvergiert. Das sogenannte hermitische Skalarprodukt wird definiert als

〈
x, y

〉
= x1ȳ1 + . . .+ xnȳn ∈ K, für x, y ∈ Kn.

Für y ∈ Rn setzen wir hierbei (ȳ1, . . . , ȳn) = ȳ = y.
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Satz 9.10. (Höldersche Ungleichung) Seien p ≥ 1 und q ≥ 1 mit 1
p
+ 1

q
= 1.

Dann gilt |〈x, y〉| ≤ |x1y1|+ . . .+ |xnyn| ≤ ‖x‖p · ‖y‖q für alle x, y ∈ Kn.

Für p = q = 2 erhalten wir wieder die Cauchy-Schwarzsche Ungleichung

|x1y1|+ . . .+ |xnyn| ≤ ‖x‖ · ‖y‖.

Beweis: Wenn p = 1 und q = ∞ gilt

|x1y1|+ . . .+ |xnyn| ≤ (|x1|+ . . .+ |xn|)max{|y1|, . . . , |yn|}.

Den Fall p = ∞ und q = 1 erhalten wir durch vertauschen von x und y. Wir können
also 1 < p, q < ∞ annehmen, und dass ‖x‖p 6= 0 6= ‖y‖q gilt, weil die Ungleichung sonst
offensichtlich ist. Dann folgt aus der Youngschen Ungleichung für alle k = 1, . . . , n

|xkyk|
‖x‖p‖y‖q

=
|xk|
‖x‖p

|yk|
‖y‖q

≤ 1

p

|xk|p
‖x‖pp

+
1

q

|yk|q
‖y‖qq

Nach Summation über k = 1, . . . , n erhalten wir

|x1y1|+ . . .+ |xnyn|
‖x‖p‖y‖q

≤ 1

p
+

1

q
= 1. q.e.d.

Satz 9.11. (Minkowski Ungleichung) Sei p ≥ 1 und x, y ∈ Kn, dann gilt

‖x+ y‖p ≤ ‖x‖p + ‖y‖p
Korollar 9.12. Für alle 1 ≤ p ≤ ∞ und n ∈ N ist ‖ · ‖p : Kn → R eine Norm. q.e.d.

Beweis der Minkowski Ungleichung: Für p = 1 oder p = ∞ folgt sie aus der
Dreiecksungleichung. Sei also 1 < p, q < ∞ mit 1

p
+ 1

q
= 1 ⇔ p+q = pq ⇔ p = (p−1)q.

|x1 + y1|p + . . .+ |xn + yn|p = |x1 + y1| · |x1 + y1|p−1 + . . .+ |xn + yn| · |xn + yn|p−1

≤ (|x1|+ |y1|)|x1 + y1|p−1 + . . .+ (|xn|+ |yn|)|xn + yn|p−1

≤ (‖x‖p + ‖y‖p)(|x1 + y1|(p−1)q + . . .+ |xn + yn|(p−1)q)1/q

= (‖x‖p + ‖y‖p)‖x+ y‖p/qp

Die zweite Zeile wurde ausmultipliziert und jeweils die Höldersche Ungleichung benutzt.
Es folgt ‖x+ y‖pp ≤ (‖x‖p + ‖y‖p)‖x+ y‖p/qp . Für ‖x+ y‖p = 0 ist die Aussage trivial.

Aus ‖x+ y‖p 6= 0 folgt ‖x+ y‖p = ‖x+ y‖p(1−
1

q
)

p = ‖x+ y‖(p−
p

q
)

p ≤ ‖x‖p + ‖y‖p.q.e.d.
Definition 9.13. (offener Ball, Umgebung, offene Menge) Ein offener Ball in (X, d)
mit Zentrum x ∈ X und Radius r > 0 ist die Menge B(x, r) = {y ∈ X | d(x, y) < r}.
Eine Umgebung eines Punktes x ∈ X ist eine Menge O ⊂ X, die für ein r > 0 einen
Ball B(x, r) enthält. Eine offene Menge O ⊂ X ist eine Teilmenge, die eine Umgebung
aller ihrer Punkte ist, d.h. für alle x ∈ O gibt es ein ǫ > 0 mit B(x, ǫ) ⊂ O.
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Beispiel 9.14. In R besteht der Ball B(x, r) aus (x− r, x+ r). Im Rn besteht der Ball
B(x, r) aus allen Punkten, deren euklidischer Abstand zu x kleiner ist als r.

Alle offenen Bälle B(x, r) sind tatsächlich offen: Für y ∈ B(x, r) ist d(x, y) < r.
Sei z ∈ B(y, r − d(x, y)). Dann gilt d(x, z) ≤ d(x, y) + d(y, z) < r, also auch B(y, r −
d(x, y)) ⊂ B(x, r). Deshalb sind die offenen Bälle tatsächlich offen.

Offenbar ist die beliebige Vereinigung von offenen Mengen wieder offen. Für zwei
offene Mengen O und O′ und x ∈ O∩O′ gibt es r > 0 und r′ > 0 mit B(x, r) ⊂ O und
B(x, r′) ⊂ O′. Also ist B(x,min{r, r′}) ⊂ B(x, r)∩B(x, r′) ⊂ O∩O′, und O∩O′ offen.
Damit ist auch die Schnittmenge von endlich vielen offenen Mengen wieder offen.

Definition 9.15. (abgeschlossene Mengen, Abschluss) Die Komplemente von offenen
Mengen heißen abgeschlossen. Der Abschluss Ā eine Menge A ist die Schnittmenge
aller abgeschlossenen Mengen, die A enthalten.

Wegen der Regel von de Morgan, sind beliebige Schnitte und endliche Vereinigungen
von abgeschlossenen Mengen wieder abgeschlossen. Deshalb ist eine Menge genau dann
abgeschlossen, wenn sie mit ihrem Abschluss übereinstimmt.

Definition 9.16. Zwei Normen ‖ ‖1 und ‖ ‖2 heißen äquivalent, wenn es Konstan-
ten C1, C2 > 0 gibt, so dass für alle v ∈ V gilt

‖v‖1 ≤ C1‖v‖2 und ‖v‖2 ≤ C2‖v‖1.
Diese Relation zwischen Normen ist eine Äquivalenzrelation, denn aus

‖v‖1 ≤ C1‖v‖2 ‖v‖2 ≤ C2‖v‖1 ‖v‖2 ≤ C3‖v‖3 ‖v‖3 ≤ C4‖v‖2
folgt ‖v‖1 ≤ C1C3‖v‖3 und ‖v‖3 ≤ C4C2‖v‖1.

Beispiel 9.17. Auf den Vektorräumen Kn haben wir für 1 ≤ p ≤ ∞ die Normen

‖ · ‖p : Kn → R, v 7→ ‖v‖p =





(
n∑

i=1

|vi|p
)1/p

für p < ∞

max{|v1|, . . . |vn|} für p = ∞.

eingeführt. Sie sind alle äquivalent, weil für 1 ≤ p < ∞ und v ∈ Kn folgendes gilt:

‖v‖∞ ≤ ‖v‖p ≤ (n‖v‖p∞)1/p = n1/p‖v‖∞.

Äquivalente Normen besitzen offenbar die gleichen offenen Mengen, so dass eine
Folge bezüglich einer Norm genau dann konvergiert, wenn sie bezüglich einer äqui-
valenten Norm konvergiert. Wenn umgekehrt die offenen Mengen von zwei Normen
übereinstimmen, dann müssen sie äquivalent sein, weil dann jeder Ball um die Null
der einen Norm einen Ball um die Null der anderen Norm enthalten muß. Wir werden
sehen, dass auch die stetigen Funktionen von äquivalenten Normen übereinstimmen.
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9.2 Vollständigkeit und Kompaktheit

Zunächst verallgemeinern wir einige Aussagen über Zahlenfolgen auf allgemeine Folgen
in metrischen Räumen.

Definition 9.18. (Folgen und Cauchyfolgen) Eine Folge (xn)n∈N in einem metrischen
Raum (X, d) ist eine Abbildung von N nach X, mit n 7→ xn.

Eine Folge (xn)n∈N in einem metrischen Raum (X, d) konvergiert gegen x ∈ X,
wenn es für jedes ǫ > 0 ein N ∈ N gibt, so dass d(xn, x) < ǫ für alle n ≥ N gilt.

Eine Folge (xn)n∈N heißt Cauchyfolge, wenn es für jedes ǫ > 0 ein N ∈ N gibt, so
dass d(xn, xm) < ǫ für alle n,m ≥ N gilt.

Offenbar konvergiert eine Folge (xn)n∈N genau dann gegen einen Punkt x, wenn
jede Umgebung von x alle bis auf endlich viele Folgenglieder enthält. Deshalb hängt
der Begriff der Konvergenz nur von der Wahl der offenen Mengen ab.

Ein Punkt x gehört genau dann zu dem Abschluss Ā, wenn es keine offene Menge
gibt, die x enthält und einen leeren Schnitt mit A hat. Dies ist wiederum äquivalent
dazu, dass es für jedes n ∈ N ein Element an in dem Ball B(x, 1

n
) ∩ A gibt, oder auch

dazu, dass es eine Folge in A gibt, die gegen x konvergiert. Damit haben wir gezeigt:

Lemma 9.19. Der Abschluss einer Teilmenge eines metrischen Raumes besteht aus
allen Grenzwerten von Folgen innerhalb der Teilmenge, die in dem metrischen Raum
konvergieren. Und eine Teilmenge ist genau dann abgeschlossen, wenn die Grenzwerte
von allen konvergenten Folgen in der Teilmenge auch zu der Menge gehören. q.e.d.

Wenn die Folge (xn)n∈N gegen x konvergiert, dann gibt es für jedes ǫ > 0 ein
N ∈ N, so dass d(xn, x) <

ǫ
2
und d(xm, x) <

ǫ
2
für alle n,m ≥ N gilt. Dann gilt auch

d(xn, xm) ≤ d(xn, x) + d(x, xm) < ǫ. Damit haben wir gezeigt:

Satz 9.20. In einem metrischen Raum sind konvergente Folgen Cauchyfolgen. q.e.d.

Definition 9.21. Ein metrischer Raum (X, d) heißt vollständig, wenn auch jede Cau-
chyfolge konvergiert.

Definition 9.22. Ein vollständiger normierter Vektorraum heißt Banachraum.

Wegen dem Vollständigkeitsaxiom sind Rn und Cn für alle n ∈ N Banachräume.
Wegen Lemma 9.19 ist eine Teilmenge eines vollständigen metrischen Raumes genau
dann ein vollständiger metrischer Raum, wenn sie abgeschlossen ist.

Definition 9.23. (kompakt) Eine Teilmenge der Menge der offenen Teilmengen von
(X, d) heißt offene Überdeckung von X, wenn jedes Element von X in mindestens
einer der offenen Mengen enthalten ist. Der metrische Raum heißt kompakt, wenn jede
offene Überdeckung eine endliche Teilüberdeckung besitzt, d.h. jede Menge von offenen
Teilmengen von X, die X überdeckt, enthält eine endliche Teilmenge, die X überdeckt.
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Satz 9.24. Für einen metrischen Raum (X, d) sind folgende Aussagen äquivalent:

(i) (X, d) ist kompakt.

(ii) Jede Folge in (X, d) besitzt eine konvergente Teilfolge.

(iii) (X, d) ist vollständig und für jedes ǫ > 0 besitzt (X, d) eine endliche Überdeckung
mit offenen Bällen vom Radius ǫ.

Beweis: (i)⇒(ii): Sei (xn)n∈N eine Folge ohne Häufungspunkte und Fn = {xm | m ≥ n}
für alle n ∈ N. Für m ∈ N und x ∈ F̄m \Fm gilt d(x, xm) > 0. Wegen Lemma 9.19 folgt
zuerst x ∈ F̄m+1 \Fm+1 und dann x ∈ ⋂

n∈N(F̄n \ Fn). Weil dann x ein Häufungspunkt
von (xn)n∈N wäre, ist Fm abgeschlossen. Weil auch

⋂
n∈N Fn nur Häufungspunkte von

(xn)n∈N enthält, ist (X \ Fn)n∈N eine offene Überdeckung von X . Die Schnittmenge
von endlich vielen der Mengen (Fn)n∈N ist nicht leer. Also besitzt die Überdeckung
(X \ Fn)n∈N keine endliche Teilüberdeckung, und (X, d) ist nicht kompakt.

(ii)⇒(iii): Sei also (X, d) ein metrischer Raum, der (ii) erfüllt. Dann besitzt jede
Cauchyfolge (xn)n∈N einen Häufungspunkt x. Für jedes ǫ > 0 gibt es also eine natürliche
ZahlN ∈ N, so dass d(xn, xm) <

ǫ
2
für alle allem,n ≥ N gilt. Weil x ein Häufungspunkt

ist, gilt d(xm, x) <
ǫ
2
für ein ein m ≥ N . Dann folgt

d(xn, x) ≤ d(xn, xm) + d(xm, x) < ǫ für alle n ≥ N.

Also konvergiert (xn)n∈N gegen x. Damit ist (X, d) vollständig. Sei jetzt ǫ > 0 und
x1 ∈ X . Induktiv wählen wir xn+1 aus X\⋃n

m=1B(xm, ǫ), solange B(x1, ǫ), . . . , B(xn, ǫ)
nicht X überdecken. Wenn das für alle n ∈ N gelten würde, dann wäre (xn)n∈N eine
Folge, die d(xn, xm) ≥ ǫ für alle n > m ∈ N erfüllt. Sie besäße keine Teilfolge, die eine
Cauchyfolge ist, und damit auch keinen Häufungspunkt im Widerspruch zu (ii).

(iii)⇒(i): Wir nehmen an (X, d) erfüllt Bedingung (iii) und (Uλ)λ∈L sei eine offene
Überdeckung von (X, d), die keine endliche Teilüberdeckung besitzt. Wir definieren
induktiv eine Folge (xn)n∈N, so dass die Bälle B(xn, 2

−n) nicht durch endlich viele
(Uλ)λ∈L überdeckt werden und B(xn+1, 2

−(n+1)) und B(xn, 2
−n) für alle n ∈ N nicht

disjunkt sind. Weil (X, d) für alle n ∈ N0 durch endliche viel Bälle vom Radius 2−(n+1)

überdeckt wird, können wir falls B(xn, 2
−n) für n ∈ N nicht durch endlich viele (Uλ)λ∈L

überdeckt wird, einen B(xn+1, 2
−(n+1)) davon auswählen, der nicht durch endlich viele

(Uλ)λ∈L überdeckt wird, und für n ∈ N nichtleeren Schnitt mit B(xn, 2
−n) hat. Wegen

d(xn, xn+1) < 2−n + 2−(n+1) =
3

2 · 2n und

∞∑

n=m

3

2 · 2n =
3

2 · 2m · 1

1− 1
2

=
3

2m

ist (xn)n∈N eine Cauchyfolge. Für ein λ ∈ L enthält Uλ den Granzwert x und für ein
m ∈ N sogar B(x, 22−m). Das widerspricht wegen d(xm, x) ≤ 3

2m
der Konstruktion:

B(xm, 2
−m) ⊂ B(x, 2−m + 3 · 2−m) = B(x, 22−m) ⊂ Uλ.
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Also gibt es keinen metrischen Raum (X, d), der (iii) erüllt aber nicht (i). q.e.d.

Dieser Satz hat einige wichtige Folgerungen:

Korollar 9.25. (i) Kompakte Mengen eines metrischen Raums sind abgeschlossen.

(ii) Abgeschlossene Teilmengen einer kompakten Menge sind wieder kompakt.

Beweis:(i) Kompakte Mengen sind wegen (iii) des vorangehenden Satzes vollständig,
und stimmen wegen Lemma 9.19 mit ihrem Abschluss überein.
(ii) Abgeschlossene Teilmengen einer kompakten Menge erfüllen wegen Lemma 9.19
wieder die Bedingung (ii) des vorangehenden Satzes. q.e.d.

Definition 9.26. Eine Teilmenge A eines metrischen Raumes (X, d) heißt beschränkt,
wenn für ein x ∈ X, die Menge der Abstände {d(x, y)|y ∈ A} beschränkt ist.

Wegen der Dreiecksungleichung ist diese Bedingung äquivalent dazu, dass für alle
x ∈ X die Mengen {d(x, y) | y ∈ A} beschränkt sind, aber nicht uniform in x ∈ X .

Der zweite Teil des Beweises vom Satz 5.9 zeigt dass alle kompakten Teilmengen
eines metrischen Raumes beschränkt sind. Von einer beschränkten Folge im Kn können
wir mit dem Auswahlprizip von Bolzano Weierstraß induktiv Teilfogen auswählen, so
dass der Reihe nach erst die erste, dann zusätzlich die zweite und zuletzt all Kompo-
nenten konvergieren. Deshalb überträgt sich der gesamte Beweis des Satzes 5.9:

Satz 9.27. In jedem metrischen Raum ist eine kompakte Teilmenge beschränkt.
In Kn ist eine Teilmenge bezüglich einer der äquivalenten Normen ‖ · ‖p mit p ∈

[1,∞] genau dann kompakt, wenn sie abgeschlossen und beschränkt ist.

Beispiel 9.28. (i) Die Intervalle [a, b] sind kompakt.
(ii) N̄ aus Beispiel (vi) ist kompakt.
(iii) Sei (an)n∈N konvergent mit Grenzwert a. Dann ist {a} ∪ {an|n ∈ N} kompakt.

9.3 Stetigkeit

Definition 9.29. Eine Abbildung f : X → Y, x 7→ f(x) von einem metrischen Raum
(X, d) in den metrischen Raum (Y, d) heißt stetig in x ∈ X, wenn es für jedes ǫ > 0
ein δ > 0 gibt, so dass alle y ∈ B(x, δ) ⊂ X auch f(y) ∈ B(f(x), ǫ) ⊂ Y erfüllen. Die
Abbildung f heißt stetig, wenn sie in allen Punkten von X stetig ist.

Stetig im Punkt x heißt also, dass alle Punkte, die hinreichend nahe bei x liegen,
auf Werte abgebildet werden, die beliebig nahe bei f(x) liegen.

Satz 9.30. Für eine Abbildung f : X → Y, x 7→ f(x) zwischen den metrischen
Räumen (X, d) und (Y, d) ist folgendes äquivalent:



9.3. STETIGKEIT 115

(i) f ist stetig in x.

(ii) Das Urbild jeder Umgebung von f(x) ist eine Umgebung von x.

(iii) Für jede Folge (xn)n∈N in (X, d), die gegen x konvergiert, konvergiert auch die
Folge (f(xn))n∈N gegen f(x).

Beweis:(i)⇔(ii) Die Umgebungen von x sind gerade die Mengen, die einen δ-Ball um
x enthalten. Also ist (ii) äquivalent zu der Aussage, dass das Urbild jedes ǫ-Balles um
f(x) einen δ-Ball um x enthält. Diese Aussage ist nur eine Umformulierung von (i).
(ii)⇔(iii) Die Folgen (xn)n∈N und (f(xn))n∈N konvergieren genau dann gegen x bzw.
f(x), wenn jede Umgebung von x bzw. f(x) alle bis auf endlich viele Folgenglieder
enthält. Wenn also (xn)n∈N gegen x konvergiert und f (ii) erfüllt, dann konvergiert
auch (f(xn))n∈N gegen f(x). Also folgt (iii) aus (ii). Wenn es umgekehrt einen ǫ-Ball
von f(x) gibt, dessen Urbild keinen δ-Ball von x enthält, dann gibt es für alle n ∈ N ein
xn ∈ B

(
x, 1

n

)
, so dass f(xn) nicht in diesem ǫ-Ball von f(x) liegt: f(xn) 6∈ B(f(x), ǫ.

Dann konvergiert (xn)n∈N gegen x aber (f(xn))n∈N nicht gegen f(x). q.e.d.

Korollar 9.31. Für eine Abbildung f : X → Y zwischen den metrischen Räumen
(X, d) und (Y, d) ist folgendes äquivalent:

(i) f ist stetig.

(ii) Das Bild (f(xn))n∈N jeder konvergenten Folge (xn)n∈N ist konvergent und es gilt

lim
n→∞

f(xn) = f
(
lim
n→∞

xn

)
.

(iii) Das Urbild jeder offenen Menge ist offen.

(iv) Das Urbild jeder abgeschlossenen Menge ist abgeschlossen.

Beweis: Wegen dem vorangehenden Satz sind (i) und (ii) äquivalent. Weil eine Menge
genau dann offen ist, wenn sie eine Umgebung von allen ihren Punkten ist, zeigt der
vorangehende Satz, dass aus (i) bzw. (ii) auch (iii) folgt. Weil jede Umgebung eines
Punktes auch eine offene Umgebung des Punktes enthält, folgt wieder wegen dem
vorangehenden Satz aus (iii) auch (i) bzw. (ii). Weil nun die abgeschlossenen Mengen
gerade die Komplemente der offenen Mengen sind und das Urbild eines Komplementes
gerade gleich dem Komplement des Urbildes ist, ist (iii) zu (iv) äquivalent. q.e.d.

Korollar 9.32. Die Komposition zweier stetiger Abbildungen ist stetig. Die analoge
punktweise Aussage gilt auch.

Beweis: Benutze die Äquivalenz zwischen (i) und (iii) im vorangehenden Korollar und
die Gleichung

(f ◦ g)−1[A] = g−1[f−1[A]].
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Beispiel 9.33. (i) Auf jedem metrischen Raum ist die identische Abbildung 1X stetig.

(ii) Die konstante Abbildung, die alle x ∈ X auf einen Punkt y abbildet ist stetig.

(iii) Wegen der Dreiecksungleichung gilt

d(x, y) ≤ d(x, u) + d(u, y) ≤ d(x, u) + d(u, v) + d(v, y).

Also gilt auch d(x, y)− d(u, v) ≤ d(x, u) + d(v, y). Durch vertauschen (x, y) ↔
(u, v) und unter Benutzung der Symmetrie erhalten wir

d(u, v)− d(x, y) ≤ d(x, u) + d(v, y) ⇒ |d(x, y)− d(u, v)| ≤ d(x, u) + d(v, y).

Mit der Metrik aus dem Beispiel 9.2 (v) auf X×X ist d : X×X → R also stetig.

(iv) Auf jedem normierten Vektorraum V zeigt der Beweis von Korollar 2.20 auch
folgende Ungleichung, aus der die Stetigkeit von ‖ · ‖: V → R, v 7→ ‖v‖ folgt:

|‖v‖ − ‖w‖| ≤ ‖v − w‖ für alle v, w ∈ V

(v) Wegen der Dreiecksungleichung sind für jeden normierten Vektorraum V

+ : V × V → V, (v, w) 7→ v + w · : K× V → K, (λ, v) 7→ λ · v

stetige Abbildungen. Das gilt auch für die Abbildungen

− : K → K, x 7→ −x und −1 : K \ {0} → K \ {0}, x 7→ x−1.

(vi) Eine Folge (xn)n∈N in einem metrischen Raum (X, d) läßt sich genau dann zu
einer stetigen Abbildung von N̄ nach X fortsetzen, wenn sie konvergiert. Dann
wird ∞ auf lim

n→∞
xn abgebildet.

Korollar 9.34. Das Bild einer kompakten Menge unter einer stetigen Abbildung ist
kompakt.

Beweis: Sei f : X → Y, x 7→ f(x) eine stetige Abbildung und A ⊂ X eine kompakte
Menge. Dann ist das Urbild einer beliebig offenen Überdeckung von dem Bild

f [A] = {y ∈ Y | ∃x ∈ A mit f(x) = y}

eine offene Überdeckung von A. Diese besitzt, wenn A kompakt ist, eine endliche
Teilüberdeckung. Also besitzt jede offene Überdeckung von f [A] eine endliche Teilüber-
deckung und f [A] ist kompakt. q.e.d.

Korollar 9.35. Das Bild einer kompakten Menge unter einer stetigen Abbildung ist
beschränkt. Das Bild einer solchen reellen Funktion besitzt Minimum und Maximum.
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Beweis: Sei (X, d) kompakt und f : X → Y, x 7→ f(x) stetig. Wegen Korollar 9.34
ist f [X ] kompakt und wegen Satz 9.27 beschränkt. Wegen Korollar 5.11 besitzen die
kompakten Teilmengen von R sowohl ein Minimum als auch ein Maximum. q.e.d.

Eine bijektive stetige Abbildung f : X → Y zwischen metrischen Räumen (X, d)
und (Y, d) heißt homöomorph oder Homöomorphismus, wenn f−1 stetig ist.

Korollar 9.36. Auf kompaktem X ist jedes stetige bijektive f : X → Y homöomorph.

Beweis: Wegen Korollar 9.34 ist das Bild f [X ] = Y kompakt. Wegen Korollar 9.25 ist
eine Teilmenge eines kompakten metrischen Raumes genau dann abgeschlossen, wenn
sie kompakt ist. Weil das Urbild unter der Umkehrabbildung gleich dem Bild unter f
ist, folgt die Aussage aus Korollar 9.34 und Korollar 9.31 (iv). q.e.d.

Satz 9.37. Auf Kn sind alle Normen paarweise äquivalent.

Beweis: Es genügt zu zeigen, dass alle Normen äquivalent sind zu ‖ · ‖1. Sei also ‖ · ‖
eine beliebige Norm. Sei e1, . . . , en die Basis von Kn, deren i–tes Element nur an der
i–ten Stelle eine nicht verschwindende Komponente hat, die dann jeweils gleich Eins
ist. Wegen der Dreiecksungleichung gilt dann für jedes v = (v1, . . . , vn) ∈ Kn

‖v‖ ≤ |v1| · ‖e1‖+ . . .+ |vn| · ‖en‖ ≤ max{‖e1‖, . . . , ‖en‖}‖v‖1.

Aus der Dreiecksungleichung folgt dann für alle v, w ∈ Kn

|‖v‖ − ‖w‖| ≤ ‖v − w‖ ≤ max{‖e1‖, . . . , ‖en‖}‖v − w‖1.

Also ist die Abbildung v 7→ ‖v‖ stetig bezüglich der Norm ‖ · ‖1, und wegen dem
Satz 9.27 von Heine-Borel ist die Teilmenge {v ∈ Kn | ‖v‖1 = 1} mit der von ‖ · ‖1
induzierten Metrik kompakt. Wegen Korollar 9.35 nimmt diese Funktion auf dieser
Menge das Minimum C an. Wegen der Positivität von ‖ · ‖ gilt C > 0. Daraus folgt

C‖v‖1 ≤
∥∥∥∥

v

‖v‖1

∥∥∥∥ ‖v‖1 = ‖v‖ ≤ max{‖e1‖, . . . , ‖en‖}‖v‖1 für alle v ∈ Kn\{0}.q.e.d.

Definition 9.38. (Gleichmäßige Stetigkeit, Lipschitzstetigkeit) Eine Abbildung f :
X → Y zwischen metrischen Räumen heißt gleichmäßig stetig, wenn es für alle ǫ > 0
ein δ > 0 gibt, so dass d(f(x), f(y)) < ǫ für alle x, y ∈ X mit d(x, y) < δ gilt.

Die Abbildung heißt lipschitzstetig auf A, wenn es eine Konstante L > 0 (Lip-
schitzkonstante) gibt, so dass für alle x, y ∈ A gilt d(f(x), f(y)) ≤ Ld(x, y).

Offenbar ist jede lipschitzstetige Abbildung auch gleichmäßig stetig und jede gleich-
mäßig stetige Abbildung auch stetig. Es gilt auch folgende Umkehrung:

Satz 9.39. Sei f : X → Y, x 7→ f(x) eine stetige Abbildung zwischen metrischen
Räumen und A ⊂ X kompakt. Dann ist f auf A auch gleichmäßig stetig.
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Auf kompakten Mengen sind also gleichmäßige und einfache Stetigkeit äquivalent.
Beweis: Wegen der Stetigkeit gibt es für jedes ǫ > 0 und jedes x ∈ A ein δ(x), so dass
f(y) ∈ B(f(x), ǫ

2
) aus y ∈ B(x, 2δ(x)) folgt. Wir wählen eine endliche Teilüberdeckung

von der offenen Überdeckung {B(x, δ(x)) | x ∈ A} von A. Sei δ das Minimum der
Radien dieser endlichen Teilüberdeckung. Dann gibt es für alle y, z ∈ A mit d(y, z) < δ
einen Ball B(x, δ(x)) der endlichen Teilüberdeckung mit y ∈ B(x, δ(x)). Dann folgt

d(x, z) ≤ d(x, y) + d(y, z) < δ(x) + δ ≤ 2δ(x) also z ∈ B(x, 2δ(x)).

Daraus folgt d(f(y), f(z)) ≤ d(f(y), f(x)) + d(f(x), f(z)) < ǫ. q.e.d.

Übungsaufgabe 9.40. In dieser Aufgabe konstruieren wir R als die Vervollständigung
von dem angeordneten Körper Q. Sei dazu C die Menge der Cauchyfolgen in Q.

Für zwei Cauchyfolgen (xn)n∈N, (x̃n)n∈N ∈ C definieren wir die Relation

(xn) ∼ (x̃n)n∈N ⇐⇒ (xn − x̃n)n∈N ist Nullfolge in Q.

(i) Zeige, dass ∼ eine Äquivalenzrelation auf C ist.

(ii) Wir bezeichnen die Menge der Äquivalenzklassen C/ ∼ suggestiv mit R. Zeige,
dass die folgendermaßen definierte Addition und Multiplikation

[(xn)n∈N] + [(yn)n∈N] := [(xn + yn)n∈N], [(xn)n∈N] · [(yn)n∈N] := [(xn · yn)n∈N]

jeweils wohldefiniert sind, d.h. dass erstens die Addition und die Multiplikati-
on von zwei Cauchyfolgen selbst eine Cauchyfolge ist und zweitens, dass diese
Verknüpfungen nicht von den jeweiligen Repräsentanten (xn) und (yn) der Äqui-
valenzklassen abhängen. (Tipp: Benutze: Cauchyfolgen sind beschränkt)

(iii) Zeige, dass R = C/ ∼ mit diesen Verknüpfungen die Körperaxiome A1–A3 erfüllt.
(Tipp: Benutze, dass Q die Axiome A1–A3 erfüllt.)

(iv) Zeige, dass folgende Relation auf R eine wohldefinierte Ordnungsrelation ist, die
das Axiom A4 erfüllt:

[(xn)n∈N] > [(yn)n∈N] ⇐⇒ ∃N ∈ N : xn − yn ≥ 1
N

∀n ≥ N.

(v) Definiere die Einbettungsabbildung,

Φ : Q →֒ R, q 7→ [q],

wobei für jedes q ∈ Q, [q] die konstante Folge qn = q bezeichnet. Diese Abbildung
ist offenbar injektiv. Zeige, dass R archimedisch ist. Hierbei kann ohne Beweis
benutzt werden, dass die natürlichen Zahlen in R das Bild von N ⊂ Q unter Φ
sind. Zeige in einem zweiten Schritt, dass das Bild Φ[Q] dicht in R liegt.
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(vi) Zeige, dass R vollständig ist. (Tipp: Nimm eine Cauchyfolge (ξn)n∈N in R als
gegeben an. Da das Bild Φ[Q] dicht in R liegt, existiert für jedes n ∈ N jeweils
ein xn ∈ Q mit Φ(− 1

n
) < Φ(xn)−ξn < Φ( 1

n
). Zeige, dass (xn)n∈N eine Cauchyfolge

in Q ist, und (ξn)n∈N in R gegen das entsprechende ξ := [(xn)n∈N] konvergiert.)

9.4 Funktionenräume

In diesem Abschnitt sei (Y, d) ein metrischer Raum, ein normierter Vektorraum oder
eine normierte Algebra und später auch (X, d) ein metrischer Raum:

Definition 9.41. Eine normierte Algebra ist ein normierter Vektorraum V mit einer
assoziativen und distributiven Multiplikation · : V × V → V , die folgendes erfüllt:

(v + v′′) · v′ = v · v′ + v′′ · v (λv) · v′ = λ(v · v′) ‖v · v′‖ ≤ ‖v‖ · ‖v′‖
v · (v′ + v′′) = v · v′ + v · v′′ v · (λv′) = λ(v · v′) für alle v, v′, v′′ ∈ V, λ ∈ K.

Wenn V vollständig ist, heißt V Banachalgebra.

Wir betrachten in diesem Abschnitt Mengen von Abbildungen von X nach Y . Wenn
Y ein normierter Vektorraum ist, können wir solche Abbildungen punktweise mitein-
ander addieren und mit Elementen von K multiplizieren, und wenn Y eine Algbera ist,
auch punktweise miteinander multiplizieren:

f + g :X → Y, x 7→f(x) + g(x), λf :X → Y, x 7→λf(x)

f · g :X → Y, x 7→f(x) · g(x).

Die Addition erfüllt die Axiome A1 und mit der Skalarmultiplikation das Distributiv-
gesetz. Dadurch wird die Menge aller Abbildungen in einen Vektorraum Y zu einem
Vektorraum, und zu einer Algebra, wenn Y eine Algebra ist. Das Inverse einer Funktion
f in eine Algebra mit Eins 1 ∈ Y existiert nur, wenn f(x) für alle x ∈ X invertier-
bar ist. Indem wir die Elemente von K mit den entsprechenden Vielfachen der Eins
identifizieren, wird die Skalarmultiplikation zu einem Spezialfall der Multiplikation.

Definition 9.42. Eine Folge von Funktionen (fn)n∈N von X nach Y heißt

punktweise konvergent, wenn die Folgen (fn(x))n∈N für jedes x ∈ X konvergieren.
Die Grenzwerte definieren wieder eine Funktion f : X → Y, x 7→ limn→∞ fn(x).

gleichmäßig konvergent, wenn es eine Funktion f : X → Y, x 7→ f(x) gibt, und
für alle ǫ > 0 ein N ∈ N, so dass d(fn(x), f(x)) < ǫ für n ≥ N und x ∈ X gilt.

Offenbar ist jede gleichmäßige konvergente Folge (fn) auch punktweise konvergent,
aber nicht umgekehrt (siehe Beispiel 5.24).
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Definition 9.43. Eine Abbildung f : X → Y in einen metrischen Raum Y heißt
beschränkt, wenn das Bild f [X ] in Y beschränkt ist. B(X, Y ), bezeichne die Menge aller
beschränkten Abbildungen von X nach Y . Auf B(X, Y ) bezeichne d folgende Abbildung:

d : B(X, Y )× B(X, Y ) → R, (f, g) 7→ d(f, g) = sup{d(f(x), g(x)) | x ∈ X}.

Wenn Y ein normierter Vektorraum ist, dann bezeichne ‖ · ‖∞ folgende Abbildung:

‖ · ‖∞ : B(X, Y ) → R, f 7→ ‖f‖∞ = sup{‖f(x)‖ | x ∈ X}.

Satz 9.44. (i) Für einen metrischen Raum Y ist d eine Metrik auf B(X, Y ).

(ii) Wenn Y ein normierter Vektorraum (Algebra) ist, ist B(X, Y ) ein normierter
Vektorraum (Algebra) mit Norm ‖ · ‖∞, die die Metrik aus (i) induziert.

(iii) Wenn Y ein vollständiger metrischer Raum ist, dann auch (B(X, Y ), d).

Beweis:(i) und (ii) folgen aus den Eigenschaften der Metrik bzw. Norm ‖ · ‖ von Y ,
und weil wegen der Dreiecksungleichung und wegen ‖v · w‖ ≤ ‖v‖ · ‖w‖ die Summe
und das Produkt zweier beschränkter Abbildungen wieder beschränkt ist.
(iii) Sei (fn)n∈N eine Cauchyfolge in B(X, Y ). Für alle ǫ > 0 gibt es ein N ∈ N mit

d(fn(x), fm(x)) ≤ d(fn, fm) <
ǫ
2

für alle n,m ≥ N und alle x ∈ X.

Dann sind für alle x ∈ X die Folgen (fn(x))n∈N Cauchyfolgen. Also konvergieren sie
punktweise gegen eine Funktion f : X → Y, x 7→ f(x). Für obiges ǫ und alle x ∈ X
gibt es ein M(x) ∈ N, so dass d(fm(x), f(x)) <

ǫ
2
für alle m ≥ M(x) gilt. Damit folgt

d(fn(x), f(x)) ≤ d(fn(x), fmax{N,M(x)}(x)) + d(fmax{N,M(x)}(x), f(x)) < ǫ

für alle x ∈ X und n ≥ N . Also konvergiert (fn)n∈N gleichmäßig gegen f . Aus
sup{d(fN(x), f(x)) | x ∈ X} ≤ ǫ und fN ∈ B(X, Y ) folgt f ∈ B(X, Y ). q.e.d.

Definition 9.45. Cb(X, Y ) sei der Unterraum von B(X, Y ) aller stetigen und be-
schränkten Funktionen von X nach Y .

Satz 9.46. (i) Für metrische Räume X und Y ist Cb(X, Y ) abgeschlossen in B(X, Y ).

(ii) Wenn Y vollständig ist, dann auch Cb(X, Y ).

(iii) Wenn Y ein normierter Vektorraum (Algebra) ist, dann auch Cb(X, Y ).

Beweis: Wegen dem vorangehenden Satz und Lemma 9.19 folgen (i) und (ii), wenn
für jede Folge in Cb(X, Y ), die als Folge in B(X, Y ) konvergiert, der Grenzwert in
Cb(X, Y ) liegt. Sei (fn)n∈N eine Folge in Cb(X, Y ), die in B(X, Y ) gegen f konvergiert.
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Dann gibt es für jedes ǫ > 0 ein n ∈ N mit d(fn, f) <
ǫ
3
. Weil fn stetig bei x ∈ X ist

gibt es ein δ > 0, so dass d(fn(x), fn(y)) <
ǫ
3
für alle y ∈ B(x, δ) gilt. Dann folgt

d(f(x), f(y)) ≤ d(f(x), fn(x)) + d(fn(x), fn(y)) + d(fn(y), f(y)) < ǫ.

Also ist f bei x ∈ X stetig. (iii) folgt aus der Stetigkeit der Operationen von Y und
der Abbildung X → Y × Y , x 7→ (f(x), g(x)) für f, g ∈ Cb(X, Y ). q.e.d.

Die gleichmäßige Konvergenz der Folge (fn)n∈N ist notwendig (siehe Beispiel 5.24).
Wenn Y ein Banachraum ist, dann sind sowohl B(X, Y ) als auch Cb(X, Y ) Banachräu-
me. Wenn Y eine Banachalgebra ist wie z.B. K, dann sind auch B(X, Y ) und Cb(X, Y )
Banachalgebren. Der Fall Y = K wird im folgenden noch öfter vorkommen. Jetzt
können wir die Vervollständigungen aller metrischen Räume leicht konstruieren:

Satz 9.47. Sei X ein metrischer Raum und x0 ∈ X. Für alle x ∈ X gehört dann

I(x) : X → R y 7→ d(x, y)− d(x0, y) zu Cb(X,R).

Die Abbildung I : X → Cb(X,R) x 7→ I(x)

ist isometrische Abbildung, d.h. es gilt d(I(x), I(y)) = d(x, y) für alle x, y ∈ X. Für
jede gleichmäßig stetige Abbildung f von X in einen vollständigen metrischen Raum
Y , gibt es eine gleichmäßige stetige Abbildung g : I[X ] → Y auf dem Abschluss des
Bildes von I in Cb(X,R), so dass f gleich g ◦ I ist (vergleiche Übungsaufgabe 9.40).

Beweis: Wegen Beispiel 9.33 (iii) sind die reellen Funktionen I(x) für alle x ∈ X stetig.
Wegen der Dreiecksungleichung gilt für x, y, z ∈ X

|d(x, z)− d(y, z)| = max{d(x, z)− d(y, z), d(y, z)− d(x, z)} ≤
≤ max{d(x, y) + d(y, z)− d(y, z), d(y, x) + d(x, z)− d(x, z)} = d(x, y) und

d(x, y) = d(x, y)−d(y, y) ≤ d(I(x), I(y)) = sup{|d(x, z)−d(y, z)| | z ∈ X} ≤ d(x, y).

Mit I(x0) = 0 und y = x0 folgt ‖I(x)‖∞ = d(x, x0) und I(x) ∈ Cb(X,R). Also ist
I eine isometrische Abbildung. Sei J ∈ I[X ] und f : X → Y eine gleichmäßig stetig
Abbildung in einen vollständigen metrischen Raum Y . Für jedes ǫ > 0 gibt es ein
δ > 0, so dass d(f(x), f(y)) < ǫ

2
aus d(x, y) < 2δ folgt. Insbesondere haben alle

Elemente von {f(x) ∈ Y | x ∈ X mit d(I(x), J) < δ} paarweise einen Abstand kleiner
als ǫ. Deshalb bildet f alle Folgen in X , deren Bilder unter I gegen J konvergieren,
auf Cauchyfolgen in Y ab, die alle gegen das gleiche Element von Y konvergieren.
Dieses definiert g(J). Für K ∈ B(J, δ)∩ I[X ] gibt es x ∈ I−1[B(J, δ

2
)]∩f−1[B(g(J), ǫ

4
)]

und y ∈ I−1[B(K, δ
2
)] ∩ f−1[B(g(K), ǫ

4
)]. Wegen d(x, y) < 2δ und d(g(J), g(K)) ≤

d(g(J), f(x)) + d(f(x), f(y)) + d(f(y), g(K)) < ǫ ist g gleichmäßig stetig. q.e.d.

Satz 9.48. (Satz von Stone–Weierstraß) Sei (X, d) ein kompakter metrischer Raum
und A ⊂ Cb(X,R) eine Unteralgebra, die die konstanten Funktionen enthält und die
Punkte trennt, d.h. für alle x 6= y ∈ X gibt es f ∈ A mit f(x) 6= f(y). Dann ist der
Abschluss von A gleich Cb(X,R).
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Lemma 9.49. Auf [0, 1] ⊂ R konvergiert die induktiv definierte Folge von Polynomen
pn+1(x) = pn(x) +

1
2
(x− p2n(x)) mit p0 = 0, gleichmäßig gegen die Funktion x 7→ √

x.

Beweis : Wir zeigen zunächst mit vollständiger Induktion, dass 0 ≤ pn(x) ≤ pn+1(x)
und 0 ≤ p2n(x) ≤ x für x ∈ [0, 1] und alle n ∈ N0 gilt. Beides ist für n = 0 offensichtlich.

x− p2n+1(x) = x− p2n(x)− pn(x)
(
x− p2n(x)

)
− 1

4

(
x− p2n(x)

)2

= (x− p2n(x))
(
1− pn(x)− 1

4
(x− p2n(x))

)

= (x− p2n(x))
((

1− 1
2
pn(x)

)2 − x
4

)

Aus der Induktionsvoraussetzung folgt 0 ≤ pn(x) ≤ 1, also 1
2
≤ 1 − pn(x)

2
≤ 1 und

(1 − pn(x)
2

)2 ≥ 1
4
≥ x

4
. Das zeigt die Induktion. Also ist (pn(x))n∈N0

für x ∈ [0, 1]

monoton wachsend mit 0 ≤ p2n(x) ≤ x. Dann gilt (1− pn(x)
2

)2 − x
4
≤ 1− x

4
und deshalb

0 ≤ x − p2n(x) ≤ x ·
(
1− x

4

)n
. Wegen 1

1−x

4

=
∑∞

n=0(
x
4
)n ≥ 1 + x

4
folgt dann aus der

Bernoulli Ungleichung 1
(1−x

4
)n

≥ 1+ nx
4
und 0 ≤ x−p2n(x) ≤ x

1+nx

4

< 4
n
. Also konvergiert

(p2n(x))n∈N auf x ∈ [0, 1] gleichmäßig gegen x. Die Funktion [0, 1] → [0, 1], x 7→ √
x ist

die Umkehrfunktion von [0, 1] → [0, 1], x 7→ x2. Weil die zweite Funktion stetig ist,
ist wegen Korollar 5.18 die erste stetig und wegen Satz 5.22 sogar gleichmäßig stetig.
Dann konvergiert die Folge (pn(x) =

√
p2n(x))n∈N gleichmäßig gegen

√
x. q.e.d.

Beweis des Satzes von Stone–Weierstraß: Wegen Lemma 9.49 gibt es eine Folge
(pn)n∈N von Polynomen, die auf [0, 1] gleichmäßig gegen x 7→ √

x konvergieren. Für

jedes f ∈ A \ {0} konvergiert dann (pn(
f2

‖f‖2
∞

))n∈N in Cb(X,R) gegen
√

( f
‖f‖∞

)2. Also

gehört |f | = ‖f‖∞
√

( f
‖f‖∞

)2 zu dem Abschluss Ā von A. Aus Korollar 2.20 folgt mit

‖|f |− |g|‖∞ ≤ ‖f − g‖∞ für alle f, g ∈ Cb(X,R) die Stetigkeit von f 7→ |f |. Wegen der
Stetigkeit von + und · ist Ā eine Algebra mit |f | ∈ Ā für f ∈ Ā. Für f, g ∈ Ā folgt

max(f, g) = 1
2
(f + g + |f − g|) ∈ Ā und min(f, g) = 1

2
(f + g − |f − g|) ∈ Ā.

Weil A die Punkte von X trennt, gibt es für alle x 6= y ∈ X ein g ∈ A mit g(x) 6= g(y).
Dann nimmt f = α+ β−α

g(y)−g(x)
(g− g(x)) bei x und y zwei beliebige Werte α, β ∈ R an.

Sei jetzt f ∈ Cb(X,R) eine fest vorgegebene Funktion und ǫ > 0. Dann gibt es
für alle x, y ∈ X eine Funktion gx,y ∈ Ā die bei x und y mit f übereinstimmt. Sei
δx,y > 0 so gewählt, dass gx,y(z) < f(z) + ǫ für alle z ∈ B(y, δx,y) gilt. Nach Übergang
zu einer endlichen Teilüberdeckung von {B(y, δx,y) | y ∈ X} und dem Minimum der
entsprechenden Funktionen gx,y ∈ Ā gibt es für alle x ∈ X eine Funktion gx ∈ Ā,
die gx(x) = f(x) und gx < f + ǫ erfüllt. Wegen der Stetigkeit von f und gx gibt
es für alle x ∈ X ein δx > 0, so dass f(y) − ǫ < gx(y) für alle y ∈ B(x, δx) gilt.
Durch Übergang zu einer endlichen Teilüberdeckung von {B(x, δx) | x ∈ X} und dem
Maximum der entsprechenden Funktionen gx finden wir schließlich eine Funktion g in
Ā, die f − ǫ < g < f + ǫ auf X erfüllt. Weil ǫ beliebig ist folgt f ∈ Ā. q.e.d.
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Für jeden metrischen Raum X besitzt die Algebra Cb(X,C) folgende komplexe
Konjugation, die jedes f ∈ Cb(X,C) auf f̄ ∈ Cb(X,C, mit f̄(x) = f(x) abbildet. Diese
Abbildung ist ein Algebrahomomorphismus, d.h. sie ist linear und erhält das Produkt.

Korollar 9.50. Sei (X, d) ein kompakter metrischer Raum und A ⊂ Cb(X,C) eine
Unteralgebra, die die konstanten Funktionen und für jedes f ∈ A auch die komplex
konjugierte Funktion f̄ ∈ A enthält und die Punkte trennt, d.h. für alle x 6= y ∈ X gibt
es f ∈ A mit f(x) 6= f(y). Dann ist der Abschluss von A gleich Cb(X,C).

Beweis∗: Jedes f ∈ A ist die Summe einer reellen Funktion 1
2
(f + f̄) ∈ A und des

Produktes von ı mit einer reellen Funktion ı
2
(f̄ − f) ∈ A. Also folgt die Aussage aus

dem Satz von Stone-Weierstraß. q.e.d.

Satz 9.51.∗(Satz von Dini) Auf einem kompakten metrischen Raum (X, d) konvergiert
eine monotone Funktionenfolge (fn)n∈N von stetigen reellen Funktionen gleichmäßig,
wenn sie punktweise gegen eine stetige Funktion f konvergiert.

Beweis∗: Sei (fn)n∈N eine monoton wachsende Folge in Cb(X,R), die punktweise gegen
f ∈ Cb(X,R) konvergiert. Dann gibt es zu jedem ǫ > 0 und x ∈ X ein n(x) ∈ N, so
dass f(x)− fn(x)(x) <

ǫ
3
gilt. Da fn(x) und f stetig sind gibt es ein δ(x), so dass

|fn(x)(x)− fn(x)(y)| < ǫ
3

und |f(x)− f(y)| < ǫ
3

für alle y ∈ B(x, δ(x)) gilt.

Dann gilt dort auch f(y) − fn(x)(y) < ǫ. Wähle eine endliche Teilüberdeckung von
{B(x, δ(x)) | x ∈ X}. Dann gilt für m ≥ Maximum der entsprechenden n(x)

f(y)− fm(y) ≤ f(y)− fn(x)(y) < ǫ

auf den Mengen der Teilüberdeckung. Das zeigt die gleichmäßige Konvergenz. q.e.d.

Definition 9.52. (relativkompakt) Eine Teilmenge eines metrischen Raumes heißt re-
lativkompakt, wenn der Abschluss kompakt ist.

Lemma 9.53.∗ Eine Teilmenge A eines metrischen Raumes (X, d) ist genau dann
relativkompakt, wenn jede Folge in A eine in X konvergente Teilfolge besitzt.

Beweis∗:Wenn A relativkompakt ist, dann besitzt wegen Satz 9.24 jede Folge in A eine
konvergente Teilfolge, deren Grenzwert in Ā liegt. Hat umgekehrt jede Folge in A eine
konvergente Teilfolge, dann gibt es wegen Lemma 9.19 für jede Folge (xn)n∈N in Ā auch
eine Folge (an)n∈N in A mit d(xn, an) < 1

n
. Dann konvergiert die jeder konvergenten

Teilfolge von (an)n∈N entsprechende Teilfolge von (xn)n∈N gegen den gleichen Grenzwert
wie die entsprechende Teilfoge von (an)n∈N. Wegen Satz 9.24 ist dann Ā kompakt.q.e.d.

Satz 9.54. (Arzela–Ascoli) Sei X ein kompakter und Y ein vollständiger metrischer
Raum. Eine Teilmenge F ⊂ Cb(X, Y ) ist genau dann relativkompakt, wenn
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(i) für jedes x ∈ X die Menge {f(x) | f ∈ F} relativkompakt ist, und

(ii) für jedes x ∈ X die Menge F gleichgradig stetig ist in x, d.h. für jedes x ∈ X und
jedes ǫ > 0 gibt es ein δ > 0 mit f(x′) ∈ B(f(x), ǫ) für alle x′ ∈ B(x, δ), f ∈ F .

Beweis∗: Zunächst zeigen wir, dass aus (i) und (ii) folgt, dass F relativkompakt ist.
Dafür zeigen wir zuerst, dass F wegen (ii) sogar gleichmäßig gleichgradig stetig ist. Für
jedes ǫ > 0 und jedes y ∈ X gibt es wegen (ii) ein δy > 0, so dass d(f(x), f(y)) < ǫ

2
für

alle f ∈ F aus d(x, y) < 2δy folgt. Wegen der Kompaktheit von X hat die Überdeckung
{B(y, δy) | y ∈ X} eine endliche Teilüberdeckung X = B(y1, δ1) ∪ . . . ∪ B(yN , δN). Sei
δ das Minimum von δ1, . . . , δN . Dann enthält für alle Paare x, x′ ∈ X mit d(x, x′) < δ
einer der Bälle B(y1, δ1), . . . , B(yN , δN ) den einen Punkt x. Damit sind beide in einem
der Bälle B(y1, 2δ1), . . . , B(yN , 2δN) enthalten. Daraus folgt d(f(x), f(x′)) < ǫ

2
+ ǫ

2
= ǫ

für alle f ∈ F . Also ist F auf ganz X gleichmäßig gleichgradig stetig.
Wir zeigen jetzt, dass eine Folge (fn)n∈N in F eine in Cb(X, Y ) konvergente Teifolge

besitzt. Sei (xl)l∈N eine Abzählung der Zentren von Überdeckungen von X durch Bälle
mit Radien ( 1

m
)m∈N. Wegen (i) ist für alle l ∈ N der Abschluss Al = {fn(xl) | n ∈ N}

kompakt. Wir definieren induktiv eine Teilfolge von (gn)n∈N von (fn)n∈N und eine Folge
(al)l∈N in Y . Zuerst wählen wir einen Häufungspunkt a1 und eine Teilfolge (gn)n∈N von
(fn)n∈N, so dass d(gn(x1), a1) ≤ 1

n
für alle n ∈ N gilt. Induktiv wählen wir für jedes

L ∈ N \ {1} einen Häufungspunkt aL von (gn(xL))n∈N und ersetzen alle Folgenglieder
von (gn)n∈N mit Indizes ≥ L durch eine Teilfolge von (gn)n≥L, so dass d(gn(xL), aL) <

1
n

für alle n ≥ L gilt. Dann gilt d(gn(xl), al) <
1
n
für alle l = 1, . . . , L und n ≥ l.

Weil F gleichmäßig gleichgradig stetig ist, gibt es für jedes ǫ > 0 ein δ > 0, so dass
d(gn(x), gn(x

′)) < ǫ
3
für alle n ∈ N und x, x′ ∈ X mit d(x, x′) < δ gilt. Die Zentren der

Bälle (B(xl, δ))l∈N sind so gewählt, dass die Bälle X überdecken. Sei L das Maximum
der Indices einer endlichen Teilüberdeckung. Für alle m,n ≥ max{6

ǫ
, L} folgt zuerst

d(gm(xl), gn(xl)) ≤ d(gm(xl), al) + d(al, gn(xl)) <
ǫ
3
, und dann

d(gm(x), gn(x)) ≤ d(gm(x), gm(xl))+d(gm(xl), gn(xl))+d(gn(xl), gn(x))<
ǫ
3
+ ǫ

3
+ ǫ

3
=ǫ

für alle x ∈ X und dem entsprechnden xl. Also ist (gn)n∈N in Cb(X, Y ) eine Cauchyfolge,
die wegen (i) in B(X, Y ) konvergiert. Wegen Satz 9.46 liegt der Grenzwert in Cb(X, Y ).

Wenn umgekehrt F relativkompakt ist, dann besitzt wegen Lemma 9.53 mit jeder
Folge in F für jedes x ∈ X auch die Folge der entsprechenden Funktionswerte eine
konvergente Teilfolge. Also erfüllt F die Bedingung (i).

Außerdem gibt es für jedes x ∈ X und ǫ > 0 endlich viele f1, . . . , fk im Abschluss
von F , so dass B(f1,

ǫ
3
)∪ . . .∪B(fk,

ǫ
3
) den Abschluss von F überdeckt. Weil f1, . . . , fk

stetig sind, gibt es δ1, . . . , δk > 0, so dass fi(x
′) ∈ B(fi(x),

ǫ
3
) für i = 1, . . . , k aus

x′ ∈ B(x, δi) folgt. Für alle x′ ∈ B(x,min{δ1, . . . , δk}) und f ∈ F gibt es ein fi mit

d(f(x′), f(x)) ≤ d(f(x′), fi(x
′))+d(fi(x

′), fi(x))+d(fi(x), f(x)) <
ǫ
3
+ ǫ

3
+ ǫ

3
= ǫ. q.e.d.



9.5. LINEARE OPERATOREN 125

9.5 Lineare Operatoren

Die Ableitung einer Funktion von mehreren Veränderlichen ist eine lineare Abbildung.
Zur Vorbereitung der Differentialrechnung von Funktionen mehrerer Veränderlicher
behandeln wir in diesem Abschnitt solche linearen Abbildungen zwischen normierten
Vektorräumen. Dabei betrachten wir wieder Vektorräume über dem Körper K.

Definition 9.55. Eine Abbildung A : V → W von einem Vektorraum V in einen
Vektorraum W heißt linear, wenn für alle v, w ∈ V und λ ∈ K gilt

A(v + w) = Av + Aw und A(λv) = λAv.

Satz 9.56. Seien V und W normierte Vektorräume und A : V → W eine lineare
Abbildung. Dann ist folgendes äquivalent:

(i) A ist stetig in 0.

(ii) A ist stetig.

(iii) A ist gleichmäßig stetig.

(iv) Es gibt ein C > 0, so dass für alle v ∈ V gilt ‖Av‖ ≤ C‖v‖.

(v) A ist auf B(0, 1) beschränkt, d.h. ‖Av‖ ≤ C für alle ‖v‖ < 1 mit 0 < C < ∞.

Beweis:(i)⇒(v):Wenn A in 0 stetig ist, dann enthält das Urbild jedes Balles B(0, ǫ) ⊂
W einen Ball B(0, δ) ⊂ V . Also gibt es ein δ > 0, so dass ‖Av‖ < 1 aus ‖v‖ < δ folgt.
Wegen der Linearität folgt dann ‖Av‖ = 1

δ
‖Aδv‖ < 1

δ
aus ‖v‖ < 1. Also ist (v) erfüllt.

(v)⇒(iv): Wegen der Linearität folgt aus (v), dass für alle v ∈ V gilt

‖Av‖ = A

(
2‖v‖ · v

2‖v‖

)
= 2‖v‖ · A

(
v

2‖v‖

)
≤ 2C‖v‖.

(iv)⇒(iii): Für v, w ∈ V folgt ‖Av − Aw‖ = ‖A(v − w)‖ ≤ C‖v − w‖ aus (iv). Also
ist A sogar lipschitzstetig mit Lipschitzkonstante C. Dann gilt auch (iii).
(iii)⇒(ii) und (ii)⇒(i): Sind offensichtlich. q.e.d.

Satz 9.57. Jede lineare Abbildung A von Kn in einen normierten Vektorraum ist stetig.

Beweis: Wir benutzen wieder die Basis e1, . . . , en von Kn. Dann gilt für alle v ∈ Kn

‖Av‖ ≤ |v1| · ‖Ae1‖+ . . .+ |vn| · ‖Aen‖ ≤ ‖v‖1max{‖Ae1‖, . . . , ‖Aen‖}.

Also folgt die Aussage aus Satz 9.37 und Satz 9.56. q.e.d.
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Definition 9.58. Seien V,W normierte Vektorräume. Dann sei L(V,W ) die Menge
aller linearen stetigen Abbildungen von V nach W zusammen mit den Abbildungen:

+ : L(V,W )×L(V,W ) → L(V,W ), (A,B) 7→ A+B : V → W, v 7→ Av +Bv

· : K×L(V,W ) → L(V,W ), (λ,A) 7→ λA : V → W, v 7→ λAv

‖ · ‖ : L(V,W ) → R, A 7→ ‖A‖ = sup{‖Av‖ | v ∈ B(0, 1)} = sup{‖Av‖ | v ∈ B(0, 1)}.

Für w ∈ B(0, 1) gilt nämlich ‖Aw‖=lim
λ↑1

λ‖Aw‖=lim
λ↑1

‖Aλw‖≤sup{‖Av‖|v∈B(0, 1)}.

Satz 9.59. L(V,W ) ist ein normierter Untervektorraum von Cb(B(0, 1),W ).

Beweis: Wegen Satz 9.56 L(V,W ) ist die Menge aller linearen Abbildungen A : V →
W , deren Einschränkungen A|B(0,1) in Cb(B(0, 1),W ) liegen. Aus der Linearität zweier
solcher Abbildungen A und B folgt die Linearität von A+B und λ ·A für λ ∈ K. Für
jeden linearen Operator A ∈ L(V,W ) und v ∈ V \ {0} gilt Av = ‖v‖ · A( v

‖v‖
). Also

ist A durch seine Werte auf B(0, 1) eindeutig bestimmt und die Norm von L(V,W )
ist einfach die Supremumsnorm der stetigen Abbildung von B(0, 1) nach W . Also ist
L(V,W ) ein normierter Untervektorraum von Cb(B(0, 1),W ). q.e.d.

Offenbar gilt ‖A‖ = sup
{‖Av‖

‖v‖
| v ∈ V \ {0}

}
für A ∈ L(V,W ) und ‖Av‖ ≤

‖A‖ · ‖v‖ für alle v ∈ V . Aus der Konvergenz einer Folge (An)n∈N in L(V,W ) folgt also
die gleichmäßige Konvergenz auf B(0, 1) und die punktweise Konvergenz auf V . Für
V = Kn ist der Abschluss der Einheitskugel B(0, 1) = {v ∈ Kn | ‖v‖ ≤ 1} kompakt.

Deshalb gibt es also für jedes A ∈ L(Kn,W ) ein v ∈ Kn\{0}mit ‖A‖ = ‖A v
‖v‖

‖ = ‖Av‖
‖v‖

.

Satz 9.60. Seien V ein normierter Vektorraum und W ein Banachraum. Dann ist
L(V,W ) ein Banachraum.

Beweis: Wir müssen wegen Satz 9.46 (ii)-(iii) und Satz 9.59 nur zeigen, dass L(V,W )
in Cb(B(0, 1),W ) abgeschlossen ist. Sei (An)n∈N eine Cauchyfolge in L(V,W ). Für jedes
v ∈ V ist (Anv)n∈N wegen ‖(An − Am)v‖ ≤ ‖An − Am‖ · ‖v‖ eine Cauchyfolge in W .
Der Grenzwert von (An)n∈N in Cb(B(0, 1),W ) setzt sich zu folgender Abbildung fort:

A : V → W, v 7→ Av = lim
n→∞

Anv für alle v ∈ V.

Wir müssen nur noch zeigen, dass A linear ist. Aus der Linearität von An folgt

‖A(v + w)− (Av + Aw)‖ ≤
≤ ‖(A− An)(v + w)− (A− An)v − (A−An)w))‖+ ‖An(v + w)− (Anv + Anw)‖

≤ ‖(A−An)(v + w)‖+ ‖(A−An)v‖+ ‖(A− An)w‖, und

‖λAv − A(λv)‖ ≤ ‖λ(A− An)v − (A−An)(λv)‖+ ‖λAnv − An(λv)‖
≤ |λ|‖(A− An)v‖+ ‖(A−An)(λv)‖.

für alle n ∈ N und alle v, w ∈ V . Im Grenzwert n → ∞ konvergieren die rechten Seiten
für alle v, w ∈ V und λ ∈ K punktweise gegen Null, so dass A linear ist. q.e.d.
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Satz 9.61. Seien U, V und W normierte Vektorräume und A ∈ L(U, V ) und B ∈
L(V,W ), dann ist B ◦A ∈ L(U,W ) und es gilt ‖B ◦A‖ ≤ ‖B‖ · ‖A‖. Insbesondere ist
die Abbildung ◦ : L(U, V )×L(V,W ) → L(U,W ), (A,B) 7→ B ◦ A stetig.

Beweis: Für alle u ∈ U gilt ‖(B ◦ A)u‖ ≤ ‖B‖ · ‖Au‖ ≤ ‖B‖ · ‖A‖ · ‖u‖. Also folgt
die Ungleichung ‖B ◦A‖ ≤ ‖B‖ · ‖A‖ aus Satz 9.56. Für zwei normierte Vektorräume
V,W mit Normen ‖ · ‖V und ‖ · ‖W ist

‖ · ‖V×W : V ×W → R, (v, w) 7→ ‖v‖V + ‖w‖W
eine Norm auf V ×W und induziert die Metrik des kartesischen Produktes der metri-
schen Räume V und W . Für (A,B), (A′, B′) ∈ L(U, V )×L(V,W ) gilt dann

‖B ◦ A− B′ ◦ A′‖ = ‖B ◦ A− B ◦ A′ +B ◦ A′ − B′ ◦ A′‖
= ‖B ◦ (A− A′) + (B −B′) ◦ A′‖
≤ ‖B‖ · ‖A− A′‖+ ‖B − B′‖ · ‖A′‖
≤ (‖A−A′‖+ ‖B −B′‖)(‖B‖+ ‖A′‖)
≤ (‖A−A′‖+ ‖B −B′‖)(‖B‖+ ‖A‖+ ‖A′ −A‖)
≤ (‖(A,B)− (A′, B′)‖(‖B‖+ ‖A‖+ ‖(A,B)− (A′, B′)‖).

Also ist diese Abbildung im Punkt (A,B) ∈ L(U, V )×L(V,W ) stetig. q.e.d.
Wir bezeichnen die Komposition B ◦A von linearen Operatoren auch mit BA.

Definition 9.62. Auf einem normierten Vektorraum V ist L(V ) = L(V, V ) mit

◦ : L(V )×L(V ) → L(V ), (A,B) 7→ AB und ‖ · ‖ : L(V ) → R, A 7→ ‖A‖

eine normierte Algebra mit Eins 1V und eine Banachalgebra für einen Banachraum V .

Satz 9.63. (Neumannsche Reihe) Sei A eine Banachalgebra mit Eins 1 und A ∈ A
ein Operator mit ‖A‖ < 1. Dann ist 1−A invertierbar und es gilt (1−A)−1 =

∞∑
n=0

An.

Beweis: Wegen ‖An‖ ≤ ‖A‖n ist (
∑

An)n∈N0
für ‖A‖ < 1 eine Cauchyfolge mit

∥∥∥∥∥

N∑

n=M

An

∥∥∥∥∥ ≤
N∑

n=M

‖A‖n =
‖A‖M − ‖A‖N+1

1− ‖A‖ ≤ ‖A‖M
1− ‖A‖ für 0 ≤ M ≤ N.

Also konvergiert diese Reihe gegen ein B ∈ A. Wie im Satz 9.61 ist wegen ‖B · A‖ ≤
‖B‖ · ‖A‖ die Multiplikation · : A×A → A stetig und es gilt

(1− A)B =

∞∑

n=0

An −
∞∑

n=1

An = 1 und B(1− A) =

∞∑

n=0

An −
∞∑

n=1

An = 1.
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Also ist
∑∞

n=0A
n das Inverse von 1−A mit

∥∥(1− A)−1
∥∥ ≤ 1

1− ‖A‖ . q.e.d.

Jede Potenzreihenfunktion f(x) =
∑

n∈N0
anx

n mit Konvergenzradius R > 0 defi-
niert also auf jeder Banachalgebra A eine Abbildung

f : {A ∈ A | ‖A‖ < R} → A, A 7→ f(A) =
∞∑

n=0

anA
n.

Viele der Aussagen, die wir für Potenzreihenfunktionen auf K gezeigt haben, lassen sich
auf Potenzreihenfunktionen auf Banachalgebren A ausdehnen. Aber weil im allgemei-
nen AB 6= BA für A,B ∈ A, gilt im allgemeinen auch exp(A) exp(B) 6= exp(A+B).

Definition 9.64. Eine Derivation einer Algebra A ist eine lineare Abbildung D : A →
A, die D(A · B) = D(A) · B + A ·D(B) für alle A,B ∈ A erfüllt.

Übungsaufgabe 9.65. (i) Zeige, dass jedes Element A einer Algebra A folgende De-
rivation definiert:

DA : A → A, B 7→ AB − BA

(ii) Sei A eine Banachalgebra und D ∈ L(A) eine Derivation von A. Zeige dass
exp(D) ein Algebraisomorphismus von A ist, d.h. ein invertierbares Element von

{C ∈ L(A) | C(A · B) = C(A) · C(B) für alle A,B ∈ A} .

(iii) Zeige exp(DA)B = exp(A) ·B · exp(−A) für alle A,B in einer Banachalgebra A.

In der Vorlesung Analysis III wird gezeigt, dass die Derivationen der Algebra C∞(R)
von der Form f 7→ gf ′ für ein g ∈ C∞(R) sind. Außerdem werden die entsprechenden
Algebraisomorphismen bestimmt, soweit sie existieren.

In dem Buch L. Gillman, M. Jerison:“Rings of continuous functions” wird gezeigt,
dass für jeden kompakten metrischen Raum X die einzigen Algebraisomorphismen von
C(X,R) von der Form f 7→ f ◦Φ für einen Homöomorphismus Φ : X → X sind. Daraus
lässt sich folgern, dass L(C(X,R)) nur die triviale Derivation von C(X,R) enthält.


