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Chapter 1

Curves and Surfaces in R3

The study of curves and surfaces have a long history in mathematics and have been some of the
principal objects of study. In the classical era, we are all familiar with the Euclid’s elements
with its emphasis on parallel lines, straightedge constructions, triangles, and proportions. These
are not very curvy, but perhaps this is because his work on conics (circles, ellipses, parabolas,
and hyperbolas) is lost. But surviving works of Archimedes (Measurement of a Circle, On the
Sphere and Cylinder, Quadrature of the Parabola) and Apollonius show that curves were a topic
of interest and understood in this time.

Though were was some development in the middle ages, particularly in connection with the cubic
equation (Khayyam, Viète), and also indirectly in map making (Mercator), general curves were
not really considered until the arrival of Cartesian coordinates in the 17th century. A notable
early application of this newfound analytical power is seen in the solution to the brachistochrone
curve. This problem, posed by Johann Bernoulli in 1696, challenged mathematicians to find the
curve along which an object influenced only by gravity would travel between two points in the
least amount of time. According to his niece Newton solved the problem literally overnight using
tangents and analysis-type reasoning. In the generations that follow there was an explosion in
the search for finding curves with various special properties.

In the 18th and 19th centuries the tools of calculus were turned to the study of surfaces, notably
with Euler and Gauss exploring different notions of curvatures. A natural question of Lagrange,
asking for the surfaces with the least area, had to wait until non-trivial examples could be found
which gave hints towards general methods.

But perhaps the most important contribution, and the most important for us in this course, was
that of Riemann. All previous mathematicians, as we will do in this first chapter, considered
curves and surfaces inside regular old euclidean three dimensional space. Riemann (1868) gave
the definition for abstract spaces, which he called manifolds. This definition splits the prop-
erties of a space into two type: intrinsic (depending only on the abstract space) and extrinsic
(depending how that object is positioned in space). For example, consider two points on a piece
of paper. The distance between those points along the paper does not depend on whether the
piece of paper is laid flat or bent in an arch, whereas the distance through space clearly does. The
former is an intrinsic property and the latter extrinsic. This program was carried to completion
by the ‘Italians’, who we will meet in later chapters, by around 1900. This was just in time (or
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2 CHAPTER 1. CURVES AND SURFACES IN R3

possibly a precondition) for Einstein to use differential geometry in its mature form as a basis
the general theory of relativity: our universe is a manifold.

That’s enough history; let’s see it in action.

1.1 Space Curves and Length

Remark 1.1. In this chapter, and throughout this script unless otherwise stated, we will assume
that parameterisations are smooth and injective.

Definition 1.2. A curve is a smooth function α : (a, b) →M , for some target space M . A path
is the restriction of a curve to a closed interval [ã, b̃] ⊂ (a, b).

We begin with the example of a helix α : R → R3

(1.3) α(t) = (a cos t, a sin t, bt),

for constants a, b that describe the size and steepness. In this chapter we will generally consider
a parameterised curve α : [a, b] → R3, called a space curve. Sometimes we will distinguish a
parameterised curve α from an un-parameterised curve imgα, but other times not. A suitable
first question for this curve is to determine its length (or more specifically, the length of any
segment of it). In turn, we then must ask how to define the length of a curve. We know
how to calculate the distance between points in R3, so an approximation would be to choose
points on the curve, compute the distance between those points, and then add up to total. This
approximation will be less than the length, because we are ‘cutting corners’. But as we take
more and more points into our approximation, it should approach the true value. This leads to

Definition 1.4. The length of a path α : [a, b] → R3 is

L(α) = sup

{
m−1∑
i=0

dist(α(ti), α(ti+1)) | m ∈ N, a = t0 ≤ t1 ≤ · · · ≤ tm = b

}
.

Let’s see if we can use this definition to compute one turn of the helix, t ∈ [0, 2π]. The key part
of the calculation is the distance between points

dist(α(s), α(t))2 = (a cos s− a cos t)2 + (a sin s− a sin t)2 + (bs− bt)2

= a2(2− 2 cos s cos t− 2 sin s sin t) + b2(s− t)2

= a2(2− 2 cos(s− t)) + b2(s− t)2

= 4a2 sin2 1
2(s− t) + b2(s− t)2.

This only depends on the difference in parameter values s − t. Thus if we break choose the
points ti to be equally space between 0 and 2π in terms of the parameter, each term of the sum
will be the same. For this choice we have

m−1∑
i=0

dist(α(ti), α(ti+1)) = m×
√

4a2 sin2 π
m + b2

(
2π
m

)2
=
√
4a2m2 sin2 π

m + 4π2b2.

Taking the limit as m→ ∞ gives
√
4π2a2 + 4π2b2 = 2π

√
a2 + b2.
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Exercise 1.5. Complete the proof that this is the length, by showing it is an upper bound.

Though the calculation was straightforward from this example, we should a develop a better
method to calculate the length. What we see is that the length will be given by the sum of
many small pieces, which should remind you of an integral. Indeed

Theorem 1.6 (Speed). Let α : [a, b] → R3 be a continuously differentiable function. Then

L(α) =

∫ b

a
∥α′(t)∥ dt .

Although it appears we have a simple way to calculate the length of any path, be aware that this
integral is often not elementary, with the square root in the norm of the vector being the culprit.
This means we must resort to methods to approximate the integral (numerical integration). An
example of these difficulties is the length of an ellipse.

Proof. We first show L(α) ≤
∫ b
a ∥α′(t)∥ dt. Consider therefore a partition a = t0 ≤ t1 ≤ . . . ≤

tm = b of the interval. We have then the inequality

m−1∑
k=0

dist(α(tk), α(tk+1)) =

m−1∑
k=0

∥α(tk+1)− α(tk)∥ =

m−1∑
k=0

∥∥∥∥∫ tk+1

tk

α′(t) dt

∥∥∥∥
≤

m−1∑
k=0

∫ tk+1

tk

∥α′(t)∥ dt =
∫ b

a
∥α′(t)∥ dt.

Because L(α) is the supremum over all partitions, this gives an upper bound for L(α). This
same argument shows that for the restriction of the curve α|[t1,t2] (with a ≤ t1 < t2 ≤ b) we have

(∗) L(α|[t1,t2]) ≤
∫ t2

t1

∥α′(t)∥ dt.

Consider now the following two functions

s : [a, b] → R, t 7→ L(α|[a,t])

s̃ : [a, b] → R, t 7→
∫ t

a
∥α′(u)∥ du .

These are meant to capture the length at the parameter t from the start of the path, measured
in two ways. Our strategy to finish the proof is not to show the reverse inequality directly.
Rather we will show that these two functions are equal. Clearly they are equal at t = a.

Observe that s has the property that L(α|[t1,t2]) = s(t2) − s(t1), and likewise
∫ t
a ∥α

′(u)∥ du =
s̃(t2)− s̃(t1). Inequality (*) above then says s(t2)− s(t1) ≤ s̃(t2)− s̃(t1). It then follows that

∥α(t2)− α(t1)∥ = dist(α(t1), α(t2)) ≤ L(α|[t1,t2]) = s(t2)− s(t1) ≤ s̃(t2)− s̃(t1).

After dividing by t2 − t1, we arrive at∥∥∥∥α(t2)− α(t1)

t2 − t1

∥∥∥∥ ≤ s(t2)− s(t1)

t2 − t1
≤ s̃(t2)− s̃(t1)

t2 − t1
.
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When we take the limit as t2 → t1, the left and right terms both tend to ∥α′(t1)∥, by the
definition of derivative and the fundamental theorem of calculus respectively. By the squeeze
law s′(t) = s̃′(t) and therefore s(t) = s̃(t).

The function s in the above proof (using either definition) is called the arc-length function with
respect to the parameterisation α. We see that its derivative is ∥α′∥, which we call the speed of
the parameterisation. Clearly s is weakly monotonically increasing, since it it the integral of a
non-negative function. If it is strongly monotonically increasing, then it is a bijective function
from [a, b] to [0, L(α)]. In this case we can use it to give a new parameterisation of the same
path. The advantage of this new parameterisation is that to find the length between two points,
we can just subtract their parameter values. For obvious reasons this is called the arc-length
parameterisation of a curve.

Example 1.7 (Helix). In the case of the helix, the speed is

α′(t) = (−a sin t, a cos t, b)

∥α′(t)∥ =
√
a2 + b2,

which is constant. The arc-length function is simply s(t) = t
√
a2 + b2, and the inverse is

t(s) = s/
√
a2 + b2. Hence the helix with arc-length parameterisation is

α(s) =

(
a cos

s√
a2 + b2

, a sin
s√

a2 + b2
,

bs√
a2 + b2

)
.

Note that it is common practice to reuse the name of the curve, even though strictly speaking
it is a new function, α̃ = α ◦ t(s).

Exercise 1.8. Reparameterise the following planar curves by arc-length:

a. The catenary α(t) = (t, cosh t, 0).

b. The astroid α(t) = (cos3 t, sin3 t, 0) for t ∈ (0, π/2).

c. The cardioid α(t) = (2(1− cos t) cos t, 2(1− cos t) sin t, 0).

The arc-length is an intrinsic property of the curve. One can imagine an ant crawling along a
piece of string, counting the distance as it goes. In fact this is the only intrinsic invariant for a
curve, though we do not yet have a clear definition of intrinsic, so we cannot yet prove this.

A sufficient condition that there exists an arc-length parameterisation is that ∥α′(t)∥ ≠ 0 for any
t. We say that a curve with such a parameterisation is regularly parameterised. This condition
also serves to rule out some other curves that have undesirable properties.

Example 1.9. Consider β(t) = (t2, t3). This is called the cusp curve. We have that ∥β′∥2 =
4t2+9t3, and in particular vanishes for t = 0. If you look at a plot of this curve, you see that
it has a cusp singularity at the origin. This is an example of a curve we would like to avoid.
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1.2 Osculating Circles

We have already identified ∥α′∥ with the speed of the parameterisation, but what is α′ itself?
Naturally it is the tangent vector and it spans the tangent line to the curve. Recall the tangent
line is the limit of the line that passes through the points α(t) and α(t + h) as h → 0. Let us
consider the generalisation of this to three points α(t), α(t+ h), α(t− h) as h→ 0. In R3, three
points span a plane, so long as they do not happen to all lie on the same line. The plane which
is the limit of these planes is called the osculating plane of the curve.

The key to describing the osculating plane is to find two linearly independent vectors that lie in
it. Clearly the tangent vector lies in it. The vectors α(t + h) − α(t) and α(t − h) − α(t) lie in
the plane, hence their sum does too. We compute

lim
h→0

α(t+ h)− 2α(t) + α(t− h)

h2
= lim

h→0

α(t+h)−α(t)
h − α(t)−α(t−h)

h

h
= α′′(t).

Thus the osculating plane is spanned by the first and second derivative. Moreover, if we use
the arc-length parameterisation the we know that the tangent vector always has length 1. If we
differentiate the equation α′ · α′ = 1 then we get α′′ · α′ = 0. In words, in this parameterisation
the first and second derivatives are an orthogonal basis of the osculating plane.

In fact we can extract even more information from this three point construction. Three points
determine not just a plane, but a circle within that plane. The limit of this circle as these three
points come together is called the osculating circle. We think of it as the ‘tangent circle’, just
like we have a tangent line.

How should we calculate the osculating circle? As for any circle, we should find its center
and radius. Conceptually we can find the center by considering the chords α(t + h) − α(t)
and α(t − h) − α(t), taking their perpendicular bisectors, and finding the intersection point.
Practically, the difficulty is writing down the perpendicular bisector. Let’s put this difficulty
aside for a moment, and suppose that we have an operator Rh that rotates by a right angle the
plane in spanned by the three points with origin α(t). Then the center is the intersection point:

c = α(t) +
1

2
(α(t+ h)− α(t)) + uh−1Rh(α(t+ h)− α(t))

= α(t) +
1

2
(α(t− h)− α(t))− vh−1Rh(α(t− h)− α(t)).

This is a vector equation in a plane, so u and v are determined by this equation. Really c, u
and v are functions of h, since for every h we have a different plane. Taking the limit h→ 0 we
obtain c(0) = α(t)+u(0)R0α

′(t), so the radius of the osculating circle is u(0)∥α′(t)∥. It remains
to find u(0).

Rearranging the intersection equation gives

α(t+ h)− α(t− h)

2
= −vh−1Rh(α(t− h)− α(t))− uh−1Rh(α(t+ h)− α(t)).

If we just take the limit h→ 0 we see that

0 = −v(0)R0(−α′(t))− u(0)R0(α
′(t)).
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Since α′(t) ̸= 0 it must be that u(0) = v(0) (this justifies the choice of sign and the h−1 in the
equations of the bisectors). If we instead first divide by h and then take the limit, we obtain

α′(t) = − lim
h→0

vRh
α(t− h)− α(t)

h2
+ uRh

α(t+ h)− α(t)

h2

= − lim
h→0

(v − u)Rh
α(t− h)− α(t)

h2
+ uRh

α(t− h)− α(t) + α(t+ h)− α(t)

h2

= − lim
h→0

v − u

h
Rh

α(t− h)− α(t)

h
+ uRh

α(t− h)− 2α(t) + α(t+ h)

h2

= −(v′(0)− u′(0))R0(−α′(t)) + u(0)R0α
′′(t).

Dot product both sides with α′(t):

α′(t) · α′(t) = u(0)α′(t) ·R0α
′′(t)

u(0) =
α′(t) · α′(t)

α′(t) ·R0α′′(t)

Thus we have determined u(0), up to the rotation operator R0. If the curve is parameterised
by arc-length, then ∥α′∥ = 1, so the radius of the osculating circle is u(0). Moreover α′′ is
perpendicular to α′, so α′(t) ·R0α

′′(t) is just the length of α′′. In summary we have proved

Theorem 1.10 (Curvature). For a regular arc-length parameterised curve α, the radius of the
osculating is κ−1, where

κ(s) =

∥∥∥∥d2αds2
∥∥∥∥ ,

a quantity called the curvature. The radius of the osculating circle is also called the radius of
curvature.

Example 1.11 (Helix). Let’s apply this to the helix. We use the arc-length parameterisation

α(s) =

(
a cos

s√
a2 + b2

, a sin
s√

a2 + b2
,

bs√
a2 + b2

)
α′(s) =

1√
a2 + b2

(
−a sin s√

a2 + b2
, a cos

s√
a2 + b2

, b

)
α′′(s) = − a

a2 + b2

(
cos

s√
a2 + b2

, sin
s√

a2 + b2
, 0

)
κ(s) =

a

a2 + b2
.

Consider the special case b = 0, then our helix is a circle and the curvature is a−1. Increasing
a decreases the curvature and vice versa. This matches our intuition, a car driving on a large
circle only needs to turn slowly. For the general case, we see that increasing either a or b
decreases curvature. We also see that α′′ points towards the central axis of the helix.

Exercise 1.12. Notice in the above argument that the rotation operator Rh is defined as a
rotation of the plane spanned by the three points and only applied to vectors that lie that
plane. We could extend Rh to a linear operator on R3 by declaring that it preserves vectors
perpendicular to the plane. Then the operator can be applied to any vector. Simplify the
above calculation by using this observation and the second order Taylor polynomial α(t+ h) =
α(t) + hα′(t) + 1

2h
2α′′(t) +O(h3).
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Exercise 1.13. Suppose that α is a regular curve but do not assume that it is parameterised
by arc-length. Show that the curvature can be calculated with the formula

κ(t) =
∥α′(t)× α′′(t)∥

∥α′(t)∥3
.
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1.3 Frenet-Serret Equations

Let us return to our thought experiment of an ant on a piece of string. The ant cannot see the
curvature of a piece of string. If the string was a helix, but then you straighten it out into a line,
none of the distances along the string have changes. Therefore it must be that curvature is an
extrinsic property of the curve. But the curvature is invariant under proper euclidean motions
(translations and rotations). This is easy to prove, if β(s) = Oα(s) + b where O is a rotation
and b is a vector, then ∥β′(s)∥ = ∥Oα′(s)∥ = 1 shows that β is also parameterised by arc-length
and β′′(s) = Oα′′(s) shows that the curvatures are equal, because rotation does not change the
length of a vector.

It turns out for curves in R3 up to proper euclidean motions there are only two extrinsic prop-
erties: curvature and torsion. The goal of this section is to find the torsion and prove that there
are no other extrinsic invariants.

We have seen that for an arc-length parameterised curve, the first and second derivatives form an
orthogonal basis of the osculating plane. It is customary to normalise them to an orthonormal
basis. T (s) := α′(s) is already unit length and we set N(s) := κ(s)−1α′′(s). They are called the
unit tangent and unit normal vectors respectively. Additionally we define B(s) = T (s)×N(s),
called the unit binormal vector, so that we have an orthonormal basis of R3. This basis is
also known as the Frenet frame. We can also recover a curve given knowledge of this basis by
integrating T (s), up to a translation

α(s) =

∫ s

a
T (u) du+ α(a).

The advantage of using a basis that comes from the curve, is that if the curve is rotated, this
basis is rotated too. If we use this basis to measure the curve, then we are using the curve to
measure itself. We have seen this already in the fact that the curvature can be computed as the
length of the second derivative. Let us then investigate the derivatives of the other basis vectors.
All these vectors are unit length, so they are perpendicular to their derivatives, eg N · N = 1
implies 2N ·N ′ = 0. Further

0 = T ·N ⇒ 0 = T ′ ·N + T ·N ′ = κ+ T ·N ′

0 = T ·B ⇒ 0 = T ′ ·B + T ·B′ = 0 + T ·B′

0 = N ·B ⇒ 0 = N ′ ·B +N ·B′.

From the second equation, we see that B′ is perpendicular to T as well as B. Therefore it is a
scalar of N .

Definition 1.14. The torsion τ of a curve is defined by the formula B′(s) = −τ(s)N(s). The
minus sign is the most common convention, but be aware some authors choose the opposite sign.

The binormal B is perpendicular to the osculating plane and the tangent vector is always in it.
Therefore the torsion tells us how quickly the osculating plane is rotating around the tangent
vector. For a curve that lies entirely in a plane, the torsion is zero.
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Example 1.15 (Helix). For the helix, we already know

T (s) =
1√

a2 + b2

(
−a sin s√

a2 + b2
, a cos

s√
a2 + b2

, b

)
N(s) = −

(
cos

s√
a2 + b2

, sin
s√

a2 + b2
, 0

)
.

Therefore

B(s) =
1√

a2 + b2

(
b sin

s√
a2 + b2

,−b cos s√
a2 + b2

, a

)
.

We should now differentiate this

B′(s) =
b

a2 + b2

(
cos

s√
a2 + b2

, sin
s√

a2 + b2
, 0

)
.

As expected, this is a scalar multiple of the normal vector. We can read off the torsion

τ(s) =
b

a2 + b2
.

Helices with b > 0 and b < 0 are mirror images of one another. Ones that have b > 0 are called
right-handed, in accordance with the ‘right hand rule’. Here we see that our sign convention
of torsion gives right-handed helices positive torsion and left-handed helices negative torsion.

We were not yet done with the derivatives of the basis vectors. From the third equation, we
have N ′ · B = −N · (−τN) = τ and from the first N ′ · T = −κ. Thus N ′(s) = −κT + τB.
Together these derivatives are called the Frenet-Serret formulas

d

ds

TN
B

 =

 κN
−κT + τB

−τN

 =

 0 κ 0
−κ 0 τ
0 −τ 0

TN
B


Theorem 1.16 (Local uniqueness of curves). Let α, β be two smooth regular arc-length pa-
rameterised curves in R3 with the same curvature and torsion. For simplicity assume that the
curvature is always positive. Then there is a proper euclidean motion (translation and rotation)
that takes one to the other.

Proof. Both bases {Tα(0), Nα(0), Bα(0)} and {Tβ(0), Nβ(0), Bβ(0)} are right-handed orthonor-
mal bases of R3. Therefore there is a rotation O that transforms one into the other. Let
b = β(0) − Oα(0). Define γ(s) = Oα(s) + b. It is also arc-length parameterised and γ(0) =
Oα(0) + β(0) − Oα(0) = β(0). Moreover, it has the same curvature and torsion as α and
β. By differentiating, we have Tγ(0) = OTα(0) = Tβ(0) and κγNγ = καONα, which implies
Nγ(0) = ONα(0) = Nβ. By the definition of binormals, Bγ(0) = Bβ(0).

It remains to show that β(s) = γ(s) for all s. We give two proofs of this fact. The first lies in
the observation that the Frenet-Serret formulas are in fact a nine-dimensional system of ODEs
(three coordinates for each of the three vectors). By Picard-Lindelöff we know that the initial
value problem, which both β and γ satisfy, has a unique solution. In particular Tβ(s) = Tγ(s)
for all s. But we can integrate this to see that β(s) = γ(s) + c for some constant c. Evaluation
at s = 0 shows that c = 0.
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We can also use apply the Frenet-Serret formulas directly to show uniqueness

1

2

d

ds

(
∥Tβ − Tγ∥2 + ∥Nβ −Nγ∥2 + ∥Bβ −Bγ∥2

)
= (Tβ − Tγ) · (T ′

β − T ′
γ) + (Nβ −Nγ) · (N ′

β −N ′
γ) + (Bβ −Bγ) · (B′

β −B′
γ)

= (Tβ − Tγ) · κ(Nβ −Nγ) + (Nβ −Nγ) ·
(
− κ(Tβ − Tγ) + τ(Bβ −Bγ)

)
+ (Bβ −Bγ) · (−τ)(Nβ −Nγ)

= 0.

Therefore the sum of squares of the differences is constant. Because it is zero at s = 0, it must
stay zero for all s. In particular, the tangent vectors are equal. The argument can be finished
similarly to the other proof.

This shows that a curve is uniquely determined in R3 up to proper euclidean motion by κ and
τ . This proves our assertion that these are the only two invariants. Thus the only curves whose
curvature and torsion are constant functions are helices. As a special case, the circle is the only
curve in the plane with constant curvature (torsion is zero).

In the first half of this chapter dealing with curves, we have already seen several important
themes. First there is the difference between intrinsic and extrinsic quantities. Second is the
use of special coordinates, in this case arc-length parameterisations. And finally is the idea of
measuring the change of vector fields to learn about a space. All three of these ideas will occur
repeatedly throughout this course.

Exercise 1.17 (Helix). Show for a helix

a =
κ

κ2 + τ2
, b =

τ

κ2 + τ2
.
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1.4 Surfaces

In the second half of this chapter, we consider the example of the helicoid Φ : R2 → R3

(1.18) Φ(u, v) = (u cos v, u sin v, bv).

We see that for any fixed value of u that we have a helix. Conversely, for any fixed value of v we
have a straight line in a plane with z = bv. Surfaces which are ‘made up of’ straight lines are
called ruled surfaces and were a major topic of study in the theory of surfaces, though we will
not go too far down that path. We will also use Φ to represent a general parameterised surface
from an open subset U ⊂ R2 in R3. Again, we blur the distinction between a parameterised
surface Φ and an un-parameterised surface Σ = imgΦ.

We will try to reproduce many of the useful tools for curves in the situation of surfaces. Given
a curve α̃ in U , that is a function α̃ : (a, b) → U , we can compose it with Φ to get a curve on R3

on the surface. We will call this curve α = Φ ◦ α̃ a space curve and α̃ a curve in coordinates if
it necessary to distinguish them. The helices and straight lines of the previous sections are then
α̃v(t) = (t, v) and β̃u(t) = (u, t). The tangent vector of a general curve Φ ◦ α̃ on the surface can
be computed using the chain rule

d

dt
(Φ ◦ α̃) = ∂Φ

∂u

dα̃1

dt
+
∂Φ

∂v

dα̃2

dt
=
(

∂Φ
∂u | ∂Φ

∂v

)
α̃′.

In this way we see that ∂Φ
∂u and ∂Φ

∂v are a basis for the tangent vectors to the surface, called the
coordinate basis vectors.

There are two considerations to make now. Just as we restrict ourselves to regular curves, so
too should we restrict ourselves to regular surfaces.

Definition 1.19. A parameterised surface Φ : U → R3 is called regular if JΦ (the Jacobian of
Φ, the matrix of partial derivatives) has rank two at every point. Equivalently, if the vectors ∂Φ

∂u

and ∂Φ
∂v are linearly independent.

The relation to regular curves should be clear. If the two vectors are linearly dependent at some
point Φ(c1, c2), i.e. w1 ∂Φ

∂u +w2 ∂Φ
∂v = 0, then the curve α̃(t) = (w1t+ c1, w2t+ c2) would produce

a curve α on the surface that was not regular.

The second consideration would be to try to make an ‘arc-length’ parameterisation. However this
is not possible for a surface, for deep reasons that we will explore in the chapter on curvature. For
now we can gain a simple understanding through a thought experiment on the sphere. Suppose
that there existed a parameterisation like longitude-latitude coordinates on the unit sphere, but
instead of angle it used distance. Choose a point on the equator. We can walk the distance π
east along a latitude. This is half-way around the sphere. Then we can go a short distance ε
north, walk distance π west, and then ε south. In the coordinate chart, this is a rectangle and
we are back where we started. But on the sphere, the line of latitude north of the equator is
shorter than the equator, so when we walked a distance π on it, we walked too far. At the end
we ended up west of our starting point. You have probably already experienced this problem,
because no map of the earth can represent the distances correctly to scale. Some maps represent
the distances accurately in one direction (cylindrical equidistant projection preserves distance
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on lines of longitudes, azimuthal equidistant projection preserves distance on radial lines), but
most maps do not try to represent distance at all and instead try to preserve angle or area.

So if we can’t find a parameterisation of a surface that is arc-length in every direction, what data
do we need to be able to calculate angle and distance in a given parameterisation? We know
from Theorem 1.6 that to calculate length of a curve we only need the length of the tangent
vectors. In R3 both the length of vectors and the angle between two vectors is given by the dot
product

∥v∥ =
√
v · v, ang(v, w) =

v · w
∥v∥ ∥w∥

.

Abstractly the dot product is an example of an inner product: a function on pairs of vectors that
is bilinear, symmetric, and positive definite. The restriction of an inner product to a subspace
is again an inner product. Thus we can restrict the inner product of R3 (the dot product)
to an inner product on the tangent space of the surface at any point. This is called the first
fundamental form. It has the symbol I or g. The word ‘form’ is an old fashioned term for a
function from vectors to scalars, which still appears in certain names.

Practically, how can we describe g at some point? We know that every tangent vector to the
surface is in the span of ∂Φ

∂u and ∂Φ
∂v . So we compute

g
(
v1 ∂Φ∂u + v2 ∂Φ∂v , w

1 ∂Φ
∂u + w2 ∂Φ

∂v

)
= v1w1g

(
∂Φ
∂u ,

∂Φ
∂u

)
+ v1w2g

(
∂Φ
∂u ,

∂Φ
∂v

)
+ v2w1g

(
∂Φ
∂v ,

∂Φ
∂u

)
+ v2w2g

(
∂Φ
∂v ,

∂Φ
∂v

)
=
(
v1 v2

)(∂Φ
∂u · ∂Φ

∂u
∂Φ
∂u · ∂Φ

∂v
∂Φ
∂v · ∂Φ

∂u
∂Φ
∂v · ∂Φ

∂v

)(
w1

w2

)
=: vT

(
g1 1 g1 2
g2 1 g2 2

)
w.

This is called writing g with respect to the coordinate basis. The symmetry of the dot product
means that gi j is a symmetric matrix, g1 2 = g2 1. The point here is not that we have some
short-cut to avoid taking dot products; when you are doing an example it will often be fast to
use the dot product in R3. The point is that we only need part of the information of the dot
product of R3, namely how it acts on the tangent space of the surface, to compute lengths and
angles on the surface. We are trying to separate intrinsic information from extrinsic information.
If we allow the point on the surface to vary, then we obtain functions gi j(u, v) : U → R.

Remark 1.20. Observe here that vi and wi have superscripts instead of subscripts: these are
not powers! This is part of a larger notational convention in the field. It’s a little annoying
at first, especially when you have to write (v2)2, but it’s worth it in the long run. Roughly
speaking, coordinates and components of vectors should use superscripts, and forms should use
subscripts.

Example 1.21 (Helicoid). For the helicoid, we have remarked that for constant v we have
straight lines u 7→ (u cos v, u sin v, bv), so

∂Φ
∂u = (cos v, sin v, 0).

Similarly we remarked that for constant u we have helices. We have already computed the
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tangent vector of a helix, though it is simple enough to repeat it

∂Φ
∂v = (−u sin v, u cos v, b).

With respect to this basis, we have

g1 1(u, v) =
∂Φ
∂u · ∂Φ

∂u = 1,

g1 2(u, v) = g2 1(u, v) =
∂Φ
∂u · ∂Φ

∂v = 0,

g2 2(u, v) =
∂Φ
∂v · ∂Φ

∂v = u2 + b2.

Notice that g1 2 is always zero for this example, so the coordinate basis vectors are perpen-
dicular at every point of the surface.

Let us introduce one more tool inspired by the previous sections before we dive into the geometry
of surfaces. We saw how useful the Frenet frame was, and it would be nice to have something
similar for surfaces. We already have two vectors that span the tangent space, although they
are not necessarily unit length or orthogonal. The cross product ∂Φ

∂u × ∂Φ
∂v is perpendicular to

both coordinate basis vectors and is non-zero because these vectors are linearly independent.
We define the surface normal ν to the unit length rescaling of this cross product.

Notice that there are two possible unit length vectors perpendicular to the tangent plane. Per
our definition, which one we choose comes down to which coordinate we call u and which we
call v. This is effectively the choice of an orientation for the surface, and we will refer to this
choice of sign of ν as the orientation. Intuitively this can be thought of as choosing one side of
the surface to be the ‘plus’ side. The choice of sign is determined if we think of ν as a function
in the coordinates, but it is potentially ambiguous if we think of it as a function from the un-
parameterised surface Σ. Fortunately, many definitions using ν do not depend on the sign or do
so only in a trivial way. Mirroring the notation for curves on the surface, we will use ν : Σ → R3

and ν̃ = ν ◦ Φ : U → R3 for the two closely related functions.

Finally, the output of ν is a unit length vector in R3. These are the points of the unit sphere
S2. It is customary therefore to write the target of ν as a sphere and not R3. Particularly when
we think of ν : Σ → S2 it is common to call it the Gauss map.

Example 1.22 (Helicoid). We can compute the surface normal of the helicoid

∂Φ
∂u × ∂Φ

∂v = (b sin v,−b cos v, u)∥∥∂Φ
∂u × ∂Φ

∂v

∥∥2 = b2 + u2

ν̃ =
∂Φ
∂u × ∂Φ

∂v∥∥∂Φ
∂u × ∂Φ

∂v

∥∥ =
1√

b2 + u2
(b sin v,−b cos v, u).

Notice that this is basically the same formula as the binormal B of the helix. This is because
∂Φ
∂u is the negative of the normal of the helix, but we are also taking the cross product in the
other order.

The normal, or rather ∂Φ
∂u × ∂Φ

∂v , also gives a definition of surface area. The example of the
Schwarz lantern shows that for a surface unlike a curve, we cannot make a definition just by



14 CHAPTER 1. CURVES AND SURFACES IN R3

taking straight line approximations. Instead we approximate a surface by the parallelogram
spanned by the coordinate vector basis. The area of this parallelogram is the length of the cross
product. Thus we make the definition that the surface area is

Area =

∫
U

∥∥∂Φ
∂u × ∂Φ

∂v

∥∥ du dv.
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1.5 Curvatures

But let us turn to our main focus: curvature. We want to use curves on the surface to say
something about the curvature of the surface itself. But this is not as simple as it might first
appear. Consider the example of a plane. This is a surface that has no curvature (by any
reasonable definition). But we can take circles of any size in the plane, and therefore there are
curves with any amount of curvature. The question is how to distinguish curvature that arises
because of the choice of curve from curvature that is forced by the surface itself. The answer is
to define the normal curvature of a curve on a surface and prove Meusnier’s theorem.

Definition 1.23. Let α = Φ ◦ α̃ be a curve on a regular surface Σ with normal ν. Suppose that
α is parameterised by arc-length as a curve in R3. The normal curvature is κn := α′′ · ν.

Recall that for an arc-length parameterised curve α′′ = κN , where N is the normal of the curve.
So the normal curvature is κ cos θ for θ the angle between the normal of the curve and the
normal of the surface. This shows that the normal curvature is at most the curvature. There is
also the possibility of a sign, but this depends on the choice of orientation.

Example 1.24. We mentioned already the case of a plane Σ, of which Φ(u, v) = (u, v, 0) is
an example. The normal to the surface is ν = (0, 0, 1), which is constant with respect to the
point on the surface. Since Σ is a plane, it must be the osculating plane of every curve on it.
Hence N is always perpendicular to ν, and the normal curvature of every curve is zero.

Example 1.25. Next we consider a sphere of radius R. Let’s argue geometrically so we don’t
have to do any calculations. Consider the curve which is the equator of the sphere. It is a
circle in the plane z = 0, so this plane is its osculating plane and the circle is its osculating
circle. Its curvature is κ = R−1. The normal of the curve is unit vector that points towards
the center of the sphere. The normal of the surface is the unit vector points either towards or
away from the center of the sphere. Therefore the normal curvature of the equator is ±R−1.
This argument applies not just to the equator, but to any great circle of the sphere.

Example 1.26 (Helicoid). Our main example for this chapter is the helicoid, so of course
we must examine its normal curvatures. We have considered two special sets of curves on the
helicoid: the helices and the radial lines. The radial lines are lines, and so have zero curvature.
Thus their normal curvature is also zero. The helix αu(t) = (u cos t, u sin t, bt) has curvature
u(u2 + b2)−1. But the normal of this curve is −∂Φ

∂u , as we remarked upon in Example 1.22
and therefore the dot product with the surface normal is zero. This shows that the helices
also have zero normal curvature in the helicoid.

Let us examine several curves at once, all of which pass through the point Φ(1, 0) = (1, 0, 0).
Consider

α(t) = Φ(w1t+ 1, w2t) =
(
(w1t+ 1) cos(w2t), (w1t+ 1) sin(w2t), bw2t

)
.
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There is not a nice arc-length parameterisation for this curve. Indeed

α′(t) = w1 ∂Φ
∂u + w2 ∂Φ

∂v

= w1
(
cos(w2t), sin(w2t), 0

)
+ w2

(
− (w1t+ 1) sin(w2t), (w1t+ 1) cos(w2t), b

)
shows that the length of the tangent vector of this curve is quite a complicated function.
However, we are mainly interested in the behaviour at the point with t = 0, where

α′(0) =
(
w1, w2, w2b

)
.

We can simplify the calculations a little if we choose the constants w1, w2 such that this is a
unit length. That means ∥α′(0)∥2 = (w1)2 + (w2)2(1 + b2) = 1. The osculating plane of the
curve is spanned by the first and second derivatives, regardless of the parameterisation, since

(1.27)
d2α

dt2
=

d

dt

(
∥α′∥T

)
=
dt

ds

d

ds

(
∥α′∥T

)
= ∥α′∥

(
d∥α′∥
ds

T + ∥α′∥κN
)
.

In fact, with this formula we almost have the answer, because T is orthogonal to the surface
normal ν. Taking the dot product on both sides

α′′ · ν = ∥α′∥2κN · ν = ∥α′∥2κn.

Thus it only remains to carry out this calculation, using the surface normal N from Exam-
ple 1.22:

α′′(t) = 2w1w2
(
− sin(w2t), cos(w2t), 0

)
− (w2)2

(
(w1t+ 1) cos(w2t), (w1t+ 1) sin(w2t), 0

)
α′′(0) =

(
− (w2)2, 2w1w2, 0

)
ν̃(0, 1) =

1√
1 + b2

(0,−b, 1)

κn = ∥α′(0)∥−2α′′(0) · ν̃(0, 1) = 1√
1 + b2

(
0− 2bw1w2 + 0

)
=

−2b√
1 + b2

w1w2.

This last example shows that the calculation for the normal curvature is not too bad. But we
can simplify the calculation in such a way that we don’t even have to calculate α′′! Consider
any curve α on the surface Σ. Because the surface normal is unit length, if we differentiate
ν(α(t)) · ν(α(t)) = 1 we obtain

2ν · d
dt

(
ν(α(t))

)
= 0.

Therefore the derivative of the surface normal lies in the tangent plane. First we do a little
parameter function shuffle: ν ◦ α = ν ◦ Φ ◦ α̃ = ν̃ ◦ α̃. Now when we apply the chain rule the
‘middle’ stage is the coordinate chart U ⊂ R2:

d

dt

(
ν(α(t))

)
=

d

dt

(
ν̃(α̃(t))

)
=
∂ν̃

∂u

dα̃1

dt
+
∂ν̃

∂v

dα̃2

dt

Likewise we know that along the curve α′(t) · ν(α(t)) = 0, so we can differentiate this relation
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and obtain

κn = ∥α′∥−2 α′′ · ν = −∥α′∥−2 α′ · d
dt

(
ν(α(t))

)
= −∥α′∥−2

(
∂Φ

∂u

dα̃1

dt
+
∂Φ

∂v

dα̃2

dt

)
·
(
∂ν̃

∂u

dα̃1

dt
+
∂ν̃

∂v

dα̃2

dt

)
= ∥α′∥−2

(
dα̃1

dt
dα̃2

dt

)(−∂Φ
∂u · ∂ν̃

∂u −∂Φ
∂u · ∂ν̃

∂v

−∂Φ
∂v · ∂ν̃

∂u −∂Φ
∂v · ∂ν̃

∂v

)(
dα̃1

dt
dα̃2

dt

)
This matrix defines the second fundamental form on the tangent plane of the surface, notated
with II or h. We have proved

Theorem 1.28 (Meusnier). All curves on a regular surface Σ having at some point the same
tangent vector w have at that point the same normal curvature. Their normal curvature is given
by

κn = g(w,w)−1h(w,w).

Because of this theorem it makes sense speak of the normal curvature κn(w) of a surface in a
direction w. For this reason we say that the normal curvature is telling us something about the
curvature of the surface itself, rather than the curves on the surface.

Exercise 1.29. Prove the follow corollaries of Meusnier’s theorem. Try as much as possible to
argue geometrically rather than relying on calculation. Fix a tangent vector w to the regular
surface Σ and let κn be the normal curvature in this direction.

a. Consider the plane P spanned by w and ν. Argue that the intersection Σ ∩ P is a curve
with tangent vector w whose curvature is |κn|.

b. Extend this argument to show that for every κ ≥ |κn| there is a curve ακ with tangent
vector w and curvature κ.

c. Argue that the union of the osculating circles of every curve with tangent vector w form
a sphere with radius κ−1

n .

Let us investigate the second fundamental form a little more. We know that ∂Φ
∂u · ν̃ = ∂Φ

∂v · ν̃ = 0.
Differentiating these with respect to the coordinates u and v give the relations

∂2Φ

∂u∂u
· ν̃ + ∂Φ

∂u
· ∂ν̃
∂u

= 0 h1 1 =
∂2Φ

∂u∂u
· ν̃,

∂2Φ

∂u∂v
· ν̃ + ∂Φ

∂u
· ∂ν̃
∂v

= 0 h1 2 =
∂2Φ

∂u∂v
· ν̃,

∂2Φ

∂v∂u
· ν̃ + ∂Φ

∂v
· ∂ν̃
∂u

= 0 h2 1 =
∂2Φ

∂u∂v
· ν̃ = h1 2,

∂2Φ

∂v∂v
· ν̃ + ∂Φ

∂v
· ∂ν̃
∂v

= 0 h2 2 =
∂2Φ

∂v∂v
· ν̃.

Not only do these relations give an easier method to calculate h, but they show that the second
fundamental form is a symmetric bilinear form. We have already seen in Example 1.26 that the
normal curvature can be both positive and negative for different directions at the same point,
therefore the second fundamental form is not positive definite in general.
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Example 1.30 (Helicoid). We use these formulas to calculate the second fundamental form
of the helicoid. Recall

∂Φ
∂u =

(
cos v, sin v, 0

)
∂Φ
∂v =

(
− u sin v, u cos v, b

)
ν̃ =

1√
b2 + u2

(b sin v,−b cos v, u)

so

∂2Φ
∂u∂u =

(
0, 0, 0

)
∂2Φ
∂u∂v =

(
− sin v, cos v, 0

)
∂2Φ
∂v∂v =

(
− u cos v,−u sin v, 0

)
.

Hence

h1 1 =
∂2Φ

∂u∂u
· ν̃ = 0

h1 2 = h2 1 =
∂2Φ

∂u∂v
· ν̃ =

−b√
b2 + u2

h2 2 =
∂2Φ

∂v∂v
· ν̃ = 0.

The fact that h1 1 = h2 2 = 0 explains the behaviour in Example 1.26 that the normal curvature
in the direction of the coordinate basis vectors was zero. Indeed, we easily reproduce the result
from that example for any point on the helicoid not just (1, 0, 0):

κn = g(w,w)−1h(w,w) = 1
(
w1 w2

)( 0 −b√
b2+u2

−b√
b2+u2

0

)(
w1

w2

)
=

−2b√
b2 + u2

w1w2

for all w with g(w,w) = (w1)2 + (u2 + b2)(w2)2 = 1.

The formula for the normal curvature shows that it is invariant under rescaling of the tangent
vector w. The geometric explanation is of course that the normal curvature was defined using an
arc-length parameterised curve. This motivates us to consider at each point of the surface the
normal curvature as a function of unit-length tangent vectors. The set of unit-length tangent
vectors is a circle in the tangent plane. So we have a continuous function from a circle to R,
hence it must have a maximum and minimum. Actually this function is extremely well-behaved

Theorem 1.31 (Euler). Fix a point on a regular surface Σ and let κ1 be the maximum of
the normal curvatures and κ2 the minimum. Let e1 be a unit-length tangent vector such that
κn(e1) = κ1. Let e2 be a unit-length tangent vector perpendicular to e1. Then for any unit-length
tangent vector w = cosφe1 + sinφe2 the normal curvature is

κn(w) = κ1 cos
2 φ+ κ2 sin

2 φ.

There are some special cases to observe. If the normal curvature is constant at a point, such as
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for the sphere, then this formula still works, as κ1 cos
2 φ + κ1 sin

2 φ = κ1. Points where this is
the case are called umbilic points. For umbilic points, every direction can be chosen for e1. If
the normal curvature is not constant at a point, then we see that the maximum and minimum
occur exactly twice, φ = 0, π for the maximum and φ = π/2, 3π/2 for the minimum. Essentially
there is one maximum and one minimum direction (up to sign) and they are perpendicular to
one another. They are called the principal directions and κ1, κ2 are call the principal curvatures.

Proof. Let e1, e2, w be as in the statement of the theorem. We expand using bilinearity and
symmetry

h(w,w) = κ1 cos
2 φ+ 2h(e1, e2) cosφ sinφ+ h(e2, e2) sin

2 φ.

Taking the derivative with respect to φ gives

dh(w,w)

dφ

∣∣∣∣
φ=0

= 0 + 2h(e1, e2)(0 + 1) + 0.

Thus e1 is a maximum point only if h(e1, e2) = 0. Further

h(w,w) = κ1 cos
2 φ+ h(e2, e2) sin

2 φ ≥ h(e2, e2) cos
2 φ+ h(e2, e2) sin

2 φ = h(e2, e2).

again using that κ1 is the maximum value. This shows that h(e2, e2) = κ2 is the minimum
normal curvature.

Remark 1.32. The proof shows, particularly the part where h(e1, e2) = 0, that in this orthonor-
mal basis e1, e2 that the second fundamental form is diagonalised with the principal curvatures
on the diagonal.

Remark 1.33. Suppose that you have a curve α in a principal direction and you investigate the
derivative of the surface normal ν(α(t)). Then it transpires that this derivative, which must lie
in the tangent plane, is in the principal direction. This is an alternative method of characterising
principal directions, and perhaps the more common one in textbooks.

Example 1.34. For the plane and the sphere of radius R, the normal curvature is constant
and equal at every point, respectively 0 and R−1.

Example 1.35 (Helicoid). For the helicoid we have already computed the normal curvature
function, but we have not determined the principal curvatures and directions. Write a unit-
length vector as w1 = cosϕ,w2 = 1√

u2+b2
sinϕ with respect to the coordinate vector basis.

Then

κn =
−2b

u2 + b2
cosϕ sinϕ =

−b
u2 + b2

sin(2ϕ) =
b

u2 + b2
cos(2φ) =

b

u2 + b2

(
cos2 φ− sin2 φ

)
,

for ϕ = φ − π/4. Therefore we see that the principal curvatures of the helicoid are ± b
u2+b2

,
and the principal directions are half-way between the helix and radial directions.

If this were a course purely about curves and surfaces, we would spend a lot more time here
investigating special surfaces. For example, the only surfaces where every point is umbilic are
(all or parts of) the plane or the sphere. One can also try to find curves on the surface whose
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tangent vector is always a principal direction, a so-called line of curvature. And so on. This
would lead us naturally to the definitions of elliptic and hyperbolic points of a surface, and to
Gauss curvature. Instead we will give definitions and claim some properties before moving on.

From Euler’s theorem, we see that the normal curvatures at a point are completely characterised
by the principal curvatures. From these we define two types of curvature. Conversely, if we know
the Gauss and mean curvatures, it is possible to solve for the principal curvatures. Thus the
normal curvatures at a point are equivalently described by these two quantities.

Definition 1.36. The Gauss curvature of a surface at a point is K = κ1κ2 and the mean
curvature is H = 1

2(κ1 + κ2).

We include a useful formula.

Lemma 1.37. Let v, w are an orthonormal basis for TpM and write h with respect to this basis.
Then the Gauss curvature at p is h1 1h2 2 − h21 2 and the mean curvature is 1

2(h1 1 + h2 2).

Proof. Be careful: this looks like a determinant but the formula is only true for an orthonormal
basis. Although the determinant of the matrix of a linear map is basis-independent, this is not
true of the matrix of a bilinear form.

Any unit-length vector of TpM can be written as v cos θ + w sin θ. Meusnier’s theorem and
bilinearity tells us

κn = h11 cos
2 θ + 2h12 cos θ sin θ + h22 sin

2 θ

= h11
1 + cos 2θ

2
+ h12 sin 2θ + h22

1− cos 2θ

2

=
1

2
(h11 + h22) +

1

2
(h11 − h22) cos 2θ + h12 sin 2θ.

To put this into the simplest form, or the form of Euler’s theorem, we should try to combine
both terms with θ into a single cos. This can be done through polar coordinates: find R and ϕ
such that

(R cosϕ,R sinϕ) =

(
1

2
(h11 − h22), h12

)
.

In particular R2 = 1
4(h11 − h11)

2 + h212. Then

κn =
1

2
(h11 + h22) +R cosϕ cos 2θ +R sinϕ sin 2θ

=
1

2
(h11 + h22) +R cos(2θ − ϕ).

We see that this obtains its maximum and minimum for cos(2θ − ϕ) = ±1. Hence

K = κ1κ2 =
1

4
(h11 + h22)

2 −R2 = h11h22 − h212,

H =
1

2
(κ1 + κ2) =

1

2
(h11 + h22).

What we have effectively done is to deduce the angle between our orthonormal basis and the
principal directions, and make a change of basis for the second fundamental form. The principal
direction with highest normal curvature is v cosϕ/2 + w sinϕ/2, for example, because θ = ϕ/2
makes κn maximum.
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Despite the fact that these our formulas for these quantities depend on the first and second
fundamental form, it turns out that it is possible to calculate the Gauss curvature using only
the first fundamental form. We say that the Gauss curvature is intrinsic to the surface, whereas
the mean curvature is extrinsic. This is known as Gauss’ Theorem Egregium (the extraordinary
theorem) and we will prove a generalisation of it in Chapter 5. In fact, we are finally in a
position where we can give good definitions of intrinsic and extrinsic.

Definition 1.38. Suppose we have two parameterised regular surfaces Φ and Φ̃ from the same
open subset U ⊂ R2 to R3. If both first fundamental forms gi j , g̃i j, considered as functions on
U , are equal, then we say that the surfaces are isometric. Geometrically, this means that the
distances between corresponding points on both surfaces are equal. Quantities that depend only
on the first fundamental form are said to be intrinsic.

Example 1.39. The classic example of an isometric transformation is rolling a sheet of paper
into a cylinder. Consider U = (−π, π) × R and the two parameterisations Φ(u, v) = (1, u, v)
and Φ̃(u, v) = (cosu, sinu, v). The domain has been chosen so that both parameterisations
are injective, as we require. We compute the first fundamental forms

∂Φ
∂u = (0, 1, 0), ∂Φ

∂v = (0, 0, 1) g1 1 = 1, g1 2 = g2 1 = 0, g2 2 = 1,

∂Φ̃
∂u = (− sinu, cosu, 0), ∂Φ̃

∂v = (0, 0, 1) g̃1 1 = 1, g̃1 2 = g̃2 1 = 0, g̃2 2 = 1.

So these are indeed isometric surfaces.

From Example 1.24 we know that the normal curvature of the plane is identically zero. Thus
so too are the Gauss and mean curvatures.

For the cylinder, we compute the normal and second fundamental form

ν = (cosu, sinu, 0), ∂2Φ̃
∂u2 = (− cosu,− sinu, 0), ∂2Φ̃

∂v∂u = ∂2Φ̃
∂v2

= 0

h̃1 1 = −1, h̃1 2 = h̃2 2 = 0.

This is already diagonalised, so we see that the principal curvatures are −1 and 0. (The minus
sign is because our cylinder has the outward pointing normal ν but the curve in the surface
have an inward pointing normal N .) The Gauss curvature is everywhere zero, same as the
plane, but the mean curvature is everywhere −1

2 .
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1.6 Minimal Surfaces

In the final section of this chapter we will indulge my tastes and look at a class of special surfaces
related to my own research. A minimal surface is one that has the smallest surface area for a
given boundary. To simplify matters, we will consider only graphs. Let U be a bounded region
of the plane with smooth boundary, and let g : ∂U → R be a continuous function. We consider
the set of functions

Fg = {f ∈ C2(U) | f |∂U = g},
and their graphs Φf (u, v) = (u, v, f(u, v)). Graphs are always regular surfaces. The area is

Area(f) =

∫
U
∥∂Φ
∂u × ∂Φ

∂v ∥ du dv =

∫
U
∥
(
∂f
∂u ,

∂f
∂v , 1

)
∥ du dv =

∫
U

√(
∂f
∂u

)2
+
(
∂f
∂v

)2
+ 1 du dv.

If a surface is a minimal surface, then it must be a critical point for the area. That means, for
all variations that don’t change the boundary h ∈ F0 we have

d

ds
Area(f + sh)

∣∣∣∣
s=0

= 0.

We compute

d

ds
Area(f + sh)

∣∣∣∣
s=0

=

∫
U

d

ds

√
(∂uf + s∂uh)2 + (∂vf + s∂vh)2 + 1

∣∣∣∣
s=0

du dv

=

∫
U

∂uf∂uh+ ∂vf∂vh√
(∂uf)2 + (∂vf)2 + 1

du dv

=

∫
U

∂uf√
(∂uf)2 + (∂vf)2 + 1

∂uh du dv +

∫
U

∂vf√
(∂uf)2 + (∂vf)2 + 1

∂vh du dv

= −
∫
U

∂

∂u

(
∂uf√

(∂uf)2 + (∂vf)2 + 1

)
h du dv −

∫
U

∂

∂v

(
∂vf√

(∂uf)2 + (∂vf)2 + 1

)
h du dv,

using partial integration and the fact that h is zero on the boundary. The only way that this
can be zero for all h ∈ F0 is if

∂

∂u

(
∂uf√

(∂uf)2 + (∂vf)2 + 1

)
+

∂

∂v

(
∂vf√

(∂uf)2 + (∂vf)2 + 1

)
= 0.

This can also be written in vector notation as

(1.40) ∇ ·
(

∇f
∥∇f∥2 + 1

)
= 0.

This is called the minimal graph equation, which is treated in the course Partial Differential
Equations. If you expand out the derivatives you obtain

∂2uf + ∂2vf√
(∂uf)2 + (∂vf)2 + 1

− 1

2

∂uf (2∂uf∂
2
uf + 2∂vf∂u∂vf) + ∂vf (2∂uf∂u∂vf + 2∂vf∂

2
vf)√

(∂uf)2 + (∂vf)2 + 1
3

=
(∂2uf + ∂2vf)((∂uf)

2 + (∂vf)
2 + 1)− ∂uf (∂uf∂

2
uf + ∂vf∂u∂vf)− ∂vf (∂uf∂u∂vf + ∂vf∂

2
vf)√

(∂uf)2 + (∂vf)2 + 1
3

=
∂2uf((∂vf)

2 + 1) + ∂2vf((∂uf)
2 + 1)− 2∂uf∂vf∂u∂vf√

(∂uf)2 + (∂vf)2 + 1
3 .
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We pause our calculation here to compute the mean curvature of a graph. As in the previous
section, we need the second derivatives of the parameterisation

∂2f
∂u2 = (0, 0, ∂2uf),

∂2f
∂u∂v = (0, 0, ∂u∂vf),

∂2f
∂v2

= (0, 0, ∂2vf),

h =
1√

(∂uf)2 + (∂vf)2 + 1

(
∂2uf ∂u∂vf
∂u∂vf ∂2vf

)
Unfortunately, there is no reason that this will be a diagonal matrix in general, so how should
we find the principal curvatures? We will use a little bit of linear algebra. We define a linear
transformation A on the tangent space using the formula h(v, w) = g(v,Aw). This is well-defined
because g is positive definite. If we use the basis e1, e2 of principal directions then we have

0 = h(e1, e2) = g(e1, Ae2), 0 = h(e2, e1) = g(e2, Ae1).

We conclude that Ae2 is orthogonal to e1. Therefore it must be a multiple λ2 of e2. Likewise
Ae1 = λ1e1. Further

κi = h(ei, ei) = g(ei, Aei) = λig(ei, ei) = λi.

In other words, the principal curvatures are the eigenvalues of this matrix A. Hence the mean
curvature is H = 1

2(κ1 + κ2) = 1
2 trA. In terms of the coordinate basis, the matrix A is the

product of the inverse of g with h.

A =

(
1 + (∂uf)

2 ∂uf∂vf
∂uf∂vf 1 + (∂vf)

2

)−1
1√

(∂uf)2 + (∂vf)2 + 1

(
∂2uf ∂u∂vf
∂u∂vf ∂2vf

)
=

1

det(g)
√

(∂uf)2 + (∂vf)2 + 1

(
1 + (∂vf)

2 −∂uf∂vf
−∂uf∂vf 1 + (∂uf)

2

)(
∂2uf ∂u∂vf
∂u∂vf ∂2vf

)
=

1

∗

(
(1 + (∂vf)

2)∂2uf − ∂uf∂vf∂u∂vf ∗
∗ −∂uf∂vf∂u∂vf + (1 + (∂uf)

2)∂2vf

)
,

where we have used ∗ to abbreviate expressions that are too long and not important. Hence

H =
1

2
trA =

(1 + (∂vf)
2)∂2uf − 2∂uf∂vf∂u∂vf + (1 + (∂uf)

2)∂2vf

det(g)
√
(∂uf)2 + (∂vf)2 + 1

.

But notice, the numerator of H is exactly the same as the numerator in the minimal graph
equation. Thus one is zero if and only if the other is too. In summary, a surface solves the
minimal graph equation if and only if it has zero mean curvature.

We can turn this around to give a geometric characterisation of mean curvature: it is a measure
of how far a surface deviates from being locally area minimising. For example, the plane has
zero mean curvature because if you draw a loop on the plane, the least area surface with that
boundary is a plane. The same is true if you draw a small circle on a sphere: a flat circle would
have less area then the spherical cap. This is a geometric argument that a sphere has non-zero
mean curvature.

Remarkably, the helicoid is a minimal surface! We have seen in Example 1.35 that the principal
curvatures are ± b

u2+b2
. Therefore the mean curvature is zero. Minimal surfaces have a rich and

fascinating theory. Just one example would be that the helicoid along with the catenoid belongs
to a family of minimal surfaces, all of which are (locally) isometric to one another.

https://commons.wikimedia.org/wiki/File:Helicatenoid.gif#/media/File:Helicatenoid.gif


Chapter 2

Manifolds

In this chapter we give the ‘patchwork’ definition of manifolds. Manifolds are geometrically
nice spaces and a natural generalisation of Rn. The most common way to define a manifold is
as a special type of topological space, namely a ‘second-countable Hausdorff locally-euclidean
topological space with an atlas’1. Because students usually encounter differential geometry
before abstract topology, the lecturer then gives a speed run of all the definitions in topology.
I think this approach is better suited to the second time you encounter manifolds. Then you
already know a little bit about what makes manifolds nice, and you can appreciate the interesting
but weird topological spaces that need to be excluded from the definition. The standard approach
in effect defines a manifold by saying what a manifold isn’t. In the approach below we avoid
defining general topological spaces and instead use concrete gluing construction of open sets of
Rn. After this construction we will still need to impose certain conditions, so topology cannot
be avoided completely, but hopefully they are suitable for a new-commer to manifolds.

Before we dive into theory, we define a concept that you probably know but have never had
a word for. A partial function from X to Y is a function from a subset S ⊂ X to Y . In the
context of partial functions, a function with S = X is called a total function. Many common
functions are really partial functions: 1

x and
√
x are partial functions from R to R, with S being

respectively R \ {0} and [0,∞). There doesn’t seem to be good standard terminology to talk
about X and S, though S is often called the natural domain. Let’s call X the source of the
function and S the domain, with the symbols src f = X and dom f = S. You are no doubt
familiar with the difference between the codomain codom f = Y (also called the target) and
the image img f = f [S] (also called the range). We will use f : X⇀Y for partial functions
(harpoon arrow), in contrast to f : X → Y for total functions.

Many students in Analysis I are confused about the relationship between injective and surjective,
and those students are correct to be confused. Just as surjective means that the image is equal to
the codomain, total means that the domain is equal to the source; they are the true counterparts
to one another. In fact a partial function that is injective has an inverse partial function. If
f : X⇀Y is injective then

f−1(y) = x if y = f(x)

is a perfectly valid definition of a partial function f−1 : Y ⇀X with dom f−1 = img f and

1Sources differ: some use second-countable, others use the ‘Lindelöff’ property, which is equivalent in this
context, and others use the more general ‘paracompact’

24
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img f−1 = dom f .

Besides inverses, many of the usual definitions for functions carry over with sensible modifica-
tions. For example, partial functions from X to Y are equal if they have the same domains
and are equal on all inputs. Likewise the composition of two partial functions f : X⇀Y and
g : Y ⇀Z is a partial function g ◦ f : X⇀Z, but the domain of g ◦ f will be smaller than of
the domain of f if the image of f lies partly outside the domain of g. We should also think
about the ‘empty’ partial function. According to the set theory definition of a function, there
is exactly one function from the empty set to any other set. This is usually considered a quirk
in the definition. But the composition of partial functions where img f ∩ dom g = ∅ results in
the empty function, so we cannot ignore it.

Remark 2.1. In this course, functions and partial functions will always have open sets as their
sources and their domains will be open subsets, unless specifically noted otherwise. This is
needed so that derivatives can be defined.

2.1 Manifolds

Fix a dimension n. To keep track of the pieces we will glue together, let us introduce an index
set I. In our examples this will usually be a finite set, but we do not make this assumption
generally. For every i ∈ I let Ui be an open subset of Rn. Ui is called a chart. These are the
pieces we will glue together.

For two charts, we describe how to glue them together using a partial function. A gluing function
φi j : Ui⇀Uj is a partial function that is a homeomorphism from its domain to its image. This
means it is a homeomorphism (bijective, continuous, continuous inverse) between open subsets
Vi ⊂ Ui and Vj ⊂ Uj . The idea is that the point x ∈ Vi is glued to φi j(x) ∈ Vj . Note the order
of the subscripts: “from i to j”. The points of Ui \ Vi are not glued to any points of Uj . Other
names for gluing functions include ‘transition functions’, ‘change of coordinate functions’, and
‘overlap functions’. We allow here the possibility that Vi = Vj = ∅ and φi j : ∅ → ∅ is the empty
function, this represents the situation that Ui and Uj are not glued together at all. To avoid
having too many named sets, we will mostly use domφi j instead of Vi.

This information tells how to glue the pieces together, but how should we represent the completed
glued object? First we define the disjoint union∐

i∈I
Ui = {(i, x) | i ∈ I, x ∈ Ui},

which is a set of pairs. We think of this as saying that even if a point is common to both Ui and
Uj , in the disjoint union we consider it as two separate points. For example, if U1 = (−1, 1) and
U2 = (0, 2) then the normal union is U1 ∪ U2 = (−1, 2) but the disjoint union is two intervals.
We often do not write the index i if it is clear, and even when it is not clear we tend to write it
as a subscript. Continuing the example, U1

∐
U2 has two points that might both be called 0.5,

namely 0.51 ∈ U1 and 0.52 ∈ U2. Formally these points should be written (1, 0.5) and (2, 0.5)
respectively.

We want to create an equivalence relation on the disjoint union of all the charts such that
x ∈ Ui ∼ y ∈ Uj iff φi j(x) = y. If this is to be an equivalence relation, the set of gluing
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functions is required to have certain properties. To get reflexivity of ∼, we need φi i = idUi .
Symmetry of the relation holds if and only if φj i = φ−1

i j . These are simple enough, but expressing
the condition for transitivity is more difficult. The usual way to express the transitivity condition
is that y ∼ x, x ∼ z ⇒ y ∼ z, but if we have symmetry then this is equivalent to x ∼ y, x ∼
z ⇒ y ∼ z. That means for all x ∈ domφi j ∩ domφi k we need y = φi j(x) ∈ domφj k and
z = φi k(x) = φj k(y). In the language of partial functions

φi k = φj k ◦ φi j .

If a set of gluing functions have these three properties, and thus defines an equivalence relation,
we say that fulfill the cocycle conditions.

Definition 2.2. An atlas is a tuple A = (n, I, {Ui}i∈I , {φi j}i,j∈I), where {φi j}i,j∈I fulfills the
cocycle conditions. We have included n in our definition of atlas to make all the charts have the
same dimension (some authors allow spaces with a mix of dimensions). We call M =

∐
Ui/ ∼

the glued space.2 Each ‘point’ in M is an equivalence class of points in different Ui.

Example 2.3 (Euclidean Space). Take any open subset U ⊂ Rn. We can construct the trivial
atlas for U as follows. Let the index set I = {0} and U0 = U the only chart. Then φ0 0 = idU
is a gluing function. The cocycle condition is fulfilled, so (n, I, {U}, {φ0 0}) is an atlas. The
corresponding equivalence relation ∼ is the weakest equivalence relation on U , namely x is
equivalent to itself but no other points. Therefore we say M = U .

Example 2.4 (Polar Coordinates). Next we consider an example with two charts: I = {1, 2}.
Consider the plane U1 = R2 and the half-strip U2 = (0,∞)× (−π, π) ⊂ R2. To give an atlas it
is sufficient to describe φ2 1, because the cocycle condition requires φ1 1 = idU1 and φ2 2 = idU2 ,
as well as φ1 2 = φ−1

2 1 . Set

φ2 1 : U2 → U1, (r, θ) 7→ (r cos θ, r sin θ).

This is a homeomorphism from U2 to imgφ2 1 = R2 \ {(x, 0) | x ≤ 0}. Therefore A =
(2, I, {U1, U2}, {φ1 1, φ1 2, φ2 1, φ2 2}) is an atlas. This example shows why φi j is sometimes
called a change of coordinates function.

Every point of U2 is glued to some point of U1, but not every point of U1 is glued to some
point of U2. This leads to the points of the glued space M are of two types: either they
are an equivalence class with two points {(r cos θ, r sin θ), (r, θ)} for (r cos θ, r sin θ) ∈ U1 and
(r, θ) ∈ U2, or they are an equivalence class with a single point {(x, 0)} for (x, 0) ∈ U1 with
x ≤ 0. Every equivalence class in M contains an element of U1, so we might say casually
M = U1.

Example 2.5 (Glued Circle). Consider n = 1, I = {1, 2} and U1 = (−1, 1), U2 = (−1, 1). As
in the previous example, it is sufficient to give φ1 2. Set V1 = U1 \ {0} and V2 = U2 \ {0} and
give the gluing function φ1 2 : V1 → V2 by the formula

φ1 2(x) =

{
x+ 1 for x ∈ (−1, 0),

x− 1 for x ∈ (0, 1).

2If you are familiar with topology, the quotient topology makes M a locally euclidean topological space.
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For example, this tells us that we should glue −0.51 ∈ U1 to φ1 2(−0.5) = 0.52 ∈ U2 and
0.31 ∈ U1 to φ1 2(0.3) = −0.72 ∈ U2. Here the glued space M is a circle, which you can see by
cutting two strips of paper of the same length, drawing a number line from −1 to 1 on each
of them, and then gluing as instructed. Every point of M is equivalent to a point of U1 or to
02.

Example 2.6. Consider everything the same as in Example 2.5, but this time give φ1 2 the
formula

φ1 2(x) = x, x ∈ (−1, 0) ∪ (0, 1).

The space M is a called an interval with two origins. This is because every point of M is
either {x1, x2} for x ̸= 0, or 01, or 02.

The interval with two origins might seem like a harmless curiosity, but in fact it is a weird
topological space that we want to avoid. Let us say that a sequence pn in M converges to a
point p if the sequence ϕi(pn) converges to ϕi(p) in the chart Ui. In Example 2.6 consider the
sequence n−1 for n ∈ N+. We can view this sequence in U1 or U2. In U1 it has the limit 01, but
in U2 is has the limit 02. Therefore in M this sequence has two different limits!

There are other ways that this space is badly behaved. It is not a metric space, because the
distance between the two origins is zero. So although every point has a neighbourhood that
is homeomorphic to an open subset of euclidean space (locally euclidean), it is not really like
euclidean space. We therefore want to exclude such pathological spaces. It turns out that the
above example is the only way a gluing can cause non-unique limits.

Lemma 2.7 (Non-unique Limits). A glued space M has non-unique limits if and only if there is
a sequence xn ∈ domφ1 2 ⊂ U1 such that xn converges to a point x ∈ U1 \ domφ1 2 and φ1 2(xn)
converges to a point y ∈ U2, for some charts U1, U2.

Proof. Suppose first we have a sequence xn ∈ domφ1 2 ⊂ U1 such that xn converges to a point
x ∈ U1 \ domφ1 2 and φ1 2(xn) converges to a point y ∈ U2. By definition, x and y are both
limits of the sequence xn. But x is outside the domain of the gluing function, so by definition is
it not glued to any point of U2. Therefore x and y are distinct points in M .

Conversely suppose a glued space M has a sequence with two distinct limits. In euclidean space
limits are unique, so if there are two limits then they must come from two charts U1 and U2. Let’s
use the notation xn, x ∈ U1 and yk, y ∈ U2 with yn = φ1 2(xn). Suppose x were in the domain
of the gluing function. The gluing function by definition is a continuous function, so we would
have φ1 2(x) = limφ1 2(xn) = lim yn = y. But φ1 2(x) = y means exactly that x ∼ y and this
contradicts our assumption that the limits are distinct inM . Therefore x is not in the domain of
φ1 2, but it is the limit of a sequence in the domain. We have shown that x ∈ U1 \ domφ1 2.

Definition 2.8. We say that an atlas has the unique limit property if it does not not satisfy
the condition of Lemma 2.7. That is, if for every i, j ∈ I and every sequence xn ∈ domφi j that
converges to some x ∈ U1 \ domφi j, the sequence φi j(xn) does not converge in U2.

Observe why this is not an issue with Example 2.5. Consider the sequence xn = n−1 in U1. It
has the limit 01. On the other hand, the sequence yn = φ1 2(xn) = n−1 − 1 converges to −1 in
R, but −1 is not in U2. Therefore this ‘other’ limit point is not in the space M .

https://en.wikipedia.org/wiki/Non-Hausdorff_manifold
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The other way that gluing can produce a topologically bad space is if we glue too many charts
together. We will not provide an example of this; interested students may search for the ‘long
line’ or the ‘long ray’, which are standard examples of this phenomenon.

Definition 2.9. A manifold is an atlas with the unique limit property and such that the index
set is countable.

Exercise 2.10. For students who know topology: show that this is equivalent to the standard
definition of a manifold.

It is very common to talk about the glued space M as the manifold without explicitly stating
the atlas. This is similar to talking about a vector space as the set of vectors, when in fact it is
the operations of addition and scalar multiplication that make a vector space interesting.

There are different sorts of manifolds, based on additional conditions on the gluing functions.
We will use the notation that a function is Cℓ when it is ℓ-times continuously differentiable.
By convention, C0 means that the function is continuous, and C∞ means that the function is
smooth. An atlas (or a manifold) is called Cℓ when all of the gluing functions are Cℓ. Probably
the most common type of manifold that is studied, and the one we will study in this course, are
smooth manifolds. Henceforth, when we say manifold we mean smooth manifold.

Because we have given a non-standard definition of manifolds, we should explain how this
compares to the standard definition. We do this using the example of a sphere and stereographic
projection, which seems to be the first non-trivial example in every book on manifolds.

Example 2.11 (Stereographic Projection). The circle is commonly defined as the set S1 =
{p ∈ R2 | ∥p∥ = 1}, and we name the north pole N = (0, 1) and the south pole S = (0,−1).
If one draws chooses a point p other than the north pole, and considers the line through p
and N , there is a unique intersection point ϕN (p) on the x-axis. This is a bijective function
ϕN : S1 → R called stereographic projection. A nice geometry exercise using similar triangles
gives the formula

ϕN : (p1, p2) 7→ p1

1− p2
.

Likewise stereographic projection from the south pole is

ϕS : S1 \ {S} → R, (p1, p2) 7→ p1

1 + p2
.

Notice that these constructions are ill-defined when applied to the pole itself, because a single
point does not determine a line, so it is naturally a partial function on the circle.

The inverses of the these functions,

ϕ−1
N : R → S1 \ {N}, x 7→ 1

x2 + 1
(2x, x2 − 1),

and

ϕ−1
S : R → S1 \ {S}, y 7→ 1

y2 + 1
(2y, 1− y2),

are regular parametrisations of (parts of) the circle in the sense of Section 1.1. So given a
point p on the sphere, we can apply ϕN to get a point x in R, called its coordinate with

https://en.wikipedia.org/wiki/Long_line_(topology)
https://en.wikipedia.org/wiki/Long_line_(topology)
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respect to ϕN , and putting the coordinate into the parameterisation ϕ−1
N gives back the point

p. If we know the coordinate x with respect to ϕN then y = ϕS ◦ ϕ−1
N (x) is the coordinate

with respect to ϕS . For this reason ϕS ◦ ϕ−1
N : R \ {0} → R \ {0} is the change of coordinates

function. In this example, one can calculate

ϕS ◦ ϕ−1
N (x) = ϕS

(
2x

x2 + 1
,
x2 − 1

x2 + 1

)
=

2x
x2+1

1 + x2−1
x2+1

=
2x

x2 + 1 + x2 − 1
=

1

x
.

Notice that it is not possible to cover the circle by a single regular parameterisation (param-
eterisations must be injective). Thus to deal with spaces generally we must consider multiple
overlapping parameterisations and change of coordinate functions.

In this example we have presented the standard approach to manifolds through coordinate
functions and parameterisations. Let us connect it now with our definition. The index set is
I = {N,S}. The image of the coordinate functions are the charts, UN = R and US = R. And
the gluing function from UN \ {0} to US \ {0} is φN S(x) = x−1. This data forms an atlas.

But what does this atlas have to do with the circle? We indeed see that the equivalence
classes of points are S = {0N}, N = {0S}, or {x, y} for x ∈ UN \ {0} and y = x−1 ∈ US \ {0}.
That is, there are in one-to-one correspondence with the points of S1. The glued space M is
a space that has all the same points as S1 and the same topology, but it is not a subset of a
euclidean space. Whatever we can describe on M must be intrinsic to the circle, independent
of its relationship to R2.

Exercise 2.12 (Stereographic Projection). Repeat the above construction for the n-sphere
Sn = {p ∈ Rn+1 | ∥p∥ = 1}. We choose3 our coordinates on Rn+1 such that the north pole is
N = (0, . . . , 0, 1) and the south pole is S = (0, . . . , 0,−1). Show that stereographic projection
have the formulas

ϕN : Sn \ {N} → Rn, p 7→ 1

1− pn+1
(p1, . . . , pn),

ϕS : Sn \ {S} → Rn, p 7→ 1

1 + pn+1
(p1, . . . , pn),

and inverse stereographic projection is

ϕ−1
N : Rn → Sn \ {N}, x 7→ 1

∥x∥2 + 1
(2x1, . . . , 2xn, ∥x∥2 − 1),

ϕ−1
S : Rn → Sn \ {S}, y 7→ 1

∥y∥2 + 1
(2y1, . . . , 2yn, 1− ∥y∥2).

Finally, show that the transition function is

φN S(x) = ϕS ◦ ϕ−1
N (x) = ∥x∥−2x.

In the standard definition of a manifold you begin withM and coordinate functions ϕi :M⇀Rn.
The procedure in Example 2.11 to go from this data to our definition of a manifold is fully general:
define the charts to be Ui = img ϕi and the gluing functions as φi j = ϕj ◦ ϕ−1

i .

3Another common convention is to zero-index the components the have the ±1 in the zeroth component
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Conversely, if you begin with a manifold in our sense then M is the glued space
∐
Ui/ ∼. There

is of course the canonical projection πM :
∐
Ui →M that sends every element to its equivalence

class, but this is too coarse. We call the restriction Φi := πM |Ui : Ui → M a parameterisation
of πM [Ui] ⊂ M . It sends a point of Ui to its equivalence class in M . We really should think of
this as a parameterisation because an ordinary set Ui in euclidean space is describing part of a
complicated objectM . In the other direction ϕi := (Φi)

−1 : πM [Ui] → Ui ⊂ Rn is the coordinate
function. It sends an equivalence class to its representative that lies in Ui. We usually write ϕ−1

i

for the parameterisation rather than Φi, as it is unnecessary to have two symbols. Thus the two
approaches to manifolds give equivalent information.

Let us summarise our terminology and the relations between the objects. Charts are open sets
of Rn. An atlas is set of charts and gluing functions with the cocycle property. A gluing function
can also be called a change of coordinate function or a transition function. The information of
an atlas allows us to glue the charts together to get a manifold M . Functions from the charts
to the manifold are called parametrisations and functions from the manifold to the charts are
coordinates. The composition of a parameterisation and a coordinate is a transition function.
One of the drawbacks of differential geometry being an old and widely practised field is that
notation and terminology has been around for a long time and is not completely standardised.
Different authors use the word chart to describe ϕi, ϕ

−1
i , Ui, or ϕ

−1
i [Ui].
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2.2 Functions

Next we want to define functions between manifolds. On one hand, there is nothing to do. If
we have manifolds M and M̃ , they are sets, and a function f :M → M̃ is defined in the normal
way. But manifolds are more than sets of points, they have atlases. Let

A = (n, I, {Ui}i∈I , {φi,j}i,j∈I), Ã = (ñ, Ĩ, {Ũi}i∈Ĩ , {φ̃i,j}i,j∈Ĩ)

be atlases for M and M̃ respectively. Then we can look at f ‘in charts’. This means we look at
the partial functions

fi k := ϕ̃k ◦ f ◦ ϕ−1
i : Ui⇀Ũk for i ∈ I and k ∈ Ĩ.

These are functions between euclidean spaces, so we can ask whether they are Cℓ.

Definition 2.13. A function f : M → M̃ is Cℓ at a point p ∈ M if there is a chart Ui ∋ ϕi(p)
and chart Ũk ∋ ϕ̃j(f(p)) such that fi k is Cℓ, and it obeys a further technical condition.4 We say
that f is Cℓ on M if it is Cℓ at every point of M .

The definition of Cℓ uses a chart. But we know that a point may belong to more than one chart.
This opens the possibility that f is Cℓ at p according to one chart, but not Cℓ according to
another chart. However, because of the relation

fj l = ϕ̃l ◦ f ◦ ϕ−1
j = (ϕ̃l ◦ ϕ̃−1

k ◦ ϕ̃k) ◦ f ◦ (ϕ−1
i ◦ ϕi ◦ ϕ−1

j )

= φ̃k,l ◦ (ϕ̃k ◦ f ◦ ϕ−1
i ) ◦ φj,i = φ̃k,l ◦ fi k ◦ φj,i,

the definition does not depend on the which charts are used.

Example 2.14 (Euclidean Space). We have already seen that open subsets of euclidean space
are manifolds in a particularly simple way, namely the coordinates and parametrisations are
the identity function. Therefore a function in charts is the same thing as a function. This
shows that a function between euclidean spaces is Cℓ according to the manifold definition if
and only if it is Cℓ according to the ordinary definition.

Example 2.15 (Stereographic Projection). Consider the circle S1 and the function f : S1 → R
given by f(p1, p2) = p2. This is the height function. We can look at this function in charts

fN 0 : UN → R fN 0(x) = ϕ̃0 ◦ f ◦ ϕ−1
N (x) = idR ◦f

(
2x

x2 + 1
,
x2 − 1

x2 + 1

)
=
x2 − 1

x2 + 1
,

and likewise

fS 0 : US → R fS 0(y) =
1− y2

y2 + 1
.

It may help to understand this if we calculate it for a few points. Consider the south pole
S = (0, 0,−1), which has a height f(0, 0,−1) = −1. In ϕN -coordinates the south pole is
0 ∈ UN and fN 0(0) = −1 as expected. Now consider the point p = (0.65, 0.76) ∈ S2. Clearly

4It is necessary to require that ϕi(p) has an open neighbourhood U ⊂ Ui such that f [U ] ⊂ Ũj . If you omit
this condition, it is possible to make an example where f is continuous in every chart but is not continuous on
M as a whole. See Lee “Introduction to Smooth Manifolds” Problem 2-1 for an example.



32 CHAPTER 2. MANIFOLDS

is has f(p) = 0.76. In ϕN -coordinates it is 2.7 ∈ UN and in ϕS-coordinates it is 0.37 ∈ US .
So then we compute

fN 0(2.7) =
7.3− 1

7.3 + 1
= 0.76, fS 0(0.37) =

1− 0.137

0.137 + 1
= 0.76.

In conclusion, f in charts is nothing other than a manipulation of the formula for f to use
coordinates; it gives the same result.

Perhaps not unexpectedly, this is a smooth function in the sense of manifolds because both
fN 0 and fS 0 are smooth functions in the usual sense.

Example 2.16 (Glued Circle). We can give a function f that embeds M into euclidean space
R2. It is easier to write the formulas in charts. We define

f1 1(x) = (cosπx, sinπx) ,

f2 1(y) = (cosπ(y + 1), sinπ(y + 1)) .

We can see that this is well-defined in the following way. Take a point x ∈ domφ1 2. Then

f2 1(φ1 2(x)) = (cosπ(φ1 2(x) + 1), sinπ(φ1 2(x) + 1))

=

{
(cosπ(x+ 1 + 1), sinπ(x+ 1 + 1)) for x ∈ (−1, 0)

(cosπ(x− 1 + 1), sinπ(x− 1 + 1)) for x ∈ (0, 1)

=

{
(cos(πx+ 2π), sin(πx+ 2π)) for x ∈ (−1, 0)

(cosπx, sinπx) for x ∈ (0, 1)

= (cosπx, sinπx)

= f1 1(x).

What we have shown is that if x ∈ U1 ∼ y ∈ U2 then f1 1(x) = f2 1(y). This means that it
doesn’t matter which chart you use, the result is the same. In other words we have defined a
function f that doesn’t depend on charts, f is defined on M .

This example shows us how to embed Example 2.5 into R2 to get what we would normally think
of as the circle. But please keep in mind that manifolds are defined as the gluing of charts; they
are defined as an abstract space that does not need live in a bigger space. There are many ways
to embed the circle into euclidean space. Even when we define a manifold starting with a subset
of euclidean space, we leave the embedding behind.
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2.3 Vectors

Our definition of manifolds makes it easy to define (tangent) vectors and vector fields. At any
point x ∈ U1 ⊂ Rn we have the tangent vectors {(v1, . . . , vn) ∈ Rn} and a vector field on U1 is
a function X : U1 → Rn. To make this into a definition on a manifold, however, we need a way
to make this independent of the chart. Alternatively, we need a way to compare vectors that
are defined using different charts. There are essentially two equivalent ways to do this: using
curves and using directional derivatives. We first give an example using curves as motivation.

Example 2.17 (Polar Coordinates). Consider the plane R2 with cartesian coordinates (x1, x2),
but also polar coordinates (y1, y2) = (r, θ), as in Example 2.4. The transition function from
polar to cartesian is φ(r, θ) = (r cos θ, r sin θ). We consider vectors at the point p with
(r, θ) = (1/

√
2, π/4), which is equivalent to (x1, x2) = (0.5, 0.5).

Let α(t) = (t + 1/
√
2, π/4), a curve in U2 with α(0) = p. In the U2 chart it is a horizontal

line with tangent vector α′(0) = (1, 0). But we can also view this curve in the U1 chart. It
has the formula

β(t) = φ2 1(α(t)) =
(
(t+ 1√

2
) cos π

4 , (t+
1√
2
) sin π

4

)
=
(

1√
2
t+ 1

2 ,
1√
2
t+ 1

2

)
.

At p it has the tangent vector β′(0) = (1/
√
2, 1/

√
2).

But these two charts represent the same points of manifold; the curves α and β have the same
points under the gluing equivalence relationship. Likewise we should think of the two tangent
vectors, v = α′(0) = (1, 0) at (1/

√
2, π/4) in the U2 chart and w = β′(0) = (1/

√
2, 1/

√
2) at

(0.5, 0.5) in the U1 chart, as equivalent.

Both methods have the same setup. Let U1, U2 ⊂ Rn be two charts and φ : U1⇀U2 the
transition (we leave off the subscripts for this explanation to simplify notation). Let x be a
point in domφ, y = φ(x), and v = (v1, . . . , vn) be a vector on U1 and w = (w1, . . . , wn) be a
vector on U2.

Curve method: Consider the curve α(t) = x+vt ∈ U1. This curve has α(0) = x and α′(0) = v.
Using the transition, we also have a curve β = φ ◦ α in U2 with β(0) = φ(x) = y. The idea is
that v in the first chart is transformed to w = β′(0) in the second chart. Using the chain rule

w = β′(0) = (Jxφ)α
′(0) = (Jxφ) v,

where Jxφ is the matrix of partial derivatives of φ, also called the Jacobian matrix, evaluated
at the point x.

Directional derivative method: Take any function h : U2 → R. We can use the transition
function to write h as a function on U1, at least near x, namely h◦φ. We compute the derivative
in the direction of v at the point x and apply the chain rule

n∑
j=1

vj
∂(h ◦ φ)
∂xj

(x) =
n∑

i,j=1

vj
∂h

∂yi
(φ(x))

∂yi

∂xj
(x) =

n∑
i,j=1

vj
∂h

∂yi
(y)(Jxφ)ij =

n∑
i=1

(Jxφv)i
∂h

∂yi
(y).

We see that the derivative of h ◦ φ at x in the direction of v is equal to the derivative of h at y
in the direction w = Jxφv. From both of these methods we get the same answer:
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Definition 2.18. The vector v at x ∈ U1 is equivalent to the vector w at y ∈ U2 when w = Jxφv.
This formula is called the change of coordinates for vectors. We denote the set of equivalence
classes of vectors at a point p ∈M by TpM , called the tangent space to M at p.

Because of the second method, it is common to write a tangent vector as
∑n

i=1 v
i ∂
∂xi

∣∣
p
. This

notation has two advantages. First that the change of coordinates is built into the notation via
the chain rule, as above. And second, if we leave out the point at which we should evaluate the
derivative then ∂

∂xi is a vector field. In fact it gives a basis of the vector fields. Every vector
field on U1 can be written as a function

X : x 7→
n∑

i=1

vi(x)
∂

∂xi

for functions vi : U1 → R. Because vector fields thought of this way can be evaluated at a point
to give a tangent vector as well as act on a function, the notation X(x) is potentially ambiguous.
We will use X|p for evaluation and X(f) for action on a function.

Example 2.19 (Stereographic Projection). Let’s see how the coordinate vector fields trans-
form between the two charts of stereographic projection on S1. In particular y = φN S(x) =
x−1 has the Jacobian matrix

Jφ =
(
∂y
∂x

)
=
(
−x−2

)
.

Therefore

∂

∂x
=
∂y

∂x

∂

∂y
= −x−2 ∂

∂y
= −y2 ∂

∂y
.

We should note that this equality, which is really equivalence of vectors as per Definition 2.18,
holds on the overlap between the two charts, namely away from the north and south poles.
In particular, the vector ∂

∂x is not defined at the north pole, this expression only has meaning
on the chart UN . If we were to define a vector field by the formula

X =

{
∂
∂x for x ∈ UN ,

−y2 ∂
∂y for y ∈ US

then this is a well-defined vector field on all of S1, because it gives a vector at every point
and on overlaps the two cases give equivalent vectors. Observe that X|y=0 is the zero vector.

On the other hand, if we consider the vector field x3∂x on U1 then it corresponds to the vector
field

x3
∂

∂x
= (y−3)

(
−y2 ∂

∂y

)
= −y−1 ∂

∂y

on U2 \ {y = 0}. This has no continuous extension to all of S1.

The main lesson of this example is that what looks like the ‘same vector’ at two different points
in one chart look like completely different vectors in another chart. From the above example,



2.3. VECTORS 35

∂
∂x

∣∣
x=1

and ∂
∂x

∣∣
x=2

look the same in the UN chart, but in the US chart these two vectors are

− ∂

∂y

∣∣∣∣
y=1

and − 1

4

∂

∂y

∣∣∣∣
y=0.5

respectively. This is because the Jacobian Jxφ has a dependence on x, on the point in the
manifold. Hence the equivalence relation is different at different points. The consequence is
that there is no easy way to identity tangent vectors at different points of a manifold. We will
examine how this problem can be overcome in the next chapter, which concerns ‘connections’
between different points of a manifold.

Example 2.20 (Stereographic Projection). Let us continue Example 2.19 to see that equiv-
alent vectors give the same directional derivatives. Consider how the vector field

X =

{
∂
∂x for x ∈ UN ,

−y2 ∂
∂y for y ∈ US

acts on the height function f from Example 2.15. In the chart UN we have

(Xf)N =
∂fN
∂x

=
∂

∂x

(
x2 − 1

x2 + 1

)
=

2x(x2 + 1)− 2x(x2 − 1)

(x2 + 1)2
=

4x

(x2 + 1)2
.

Likewise in the chart US we have

(Xf)S = −y2∂fS
∂y

= −y2 ∂
∂y

(
1− y2

y2 + 1

)
= −y2

(
− 4y

(y2 + 1)2

)
=

4y3

(y2 + 1)2

So in the UN chart for the point x = 0.5 we have that the function f is changing in the
direction X by (Xf)N (0.5) = 1.28. And in the US chart for the corresponding point y = 2 we
have that the function f is changing in the direction X by (Xf)S(2) = 1.28. The directional
derivatives in the two charts agree. This is a demonstration that everything is all well-defined.

Example 2.21 (Glued Circle). Because the Jacobian of the transition function is just the
constant 1, the following is a well-defined vector field:

X =

{
∂
∂x for x ∈ U1,
∂
∂y for y ∈ U2

We can act this vector field on the function f : S1 → R defined in charts as

f1 1(x) = cosπx, f2 1(y) = cosπ(y + 1),

which is just the first component of the function from Example 2.16. We get

(Xf)1 1(x) =
∂

∂x
cosπx = −π sinπx, (Xf)2 1(y) =

∂

∂y
cosπ(y + 1) = −π sinπ(y + 1).

This is a well-defined function on S1, which we know because it is −π multiplied by the second
component from Example 2.16.
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These two examples illustrate that a vector field X applied in a chart to a function fi is another
function (Xf)i. The fact that we used the chain rule to define equivalence of vectors is precisely
the condition to ensure that the resulting functions in charts piece together to give a well-defined
function Xf on the whole manifold.

If we have a function between two manifolds f : M → M̃ , the tangent map or pushforward of
f at p is a function between the tangent spaces Tpf : TpM → TpM̃ . We will define it in two
ways. The easiest definition is using the curve method of vectors. If we have a vector v ∈ TxM
then in a chart Ui the curve α(t) = x + vt is a representative of this vector. Observe that
f ◦α : (a, b) → M̃ is a curve in M̃ . We define Tpf(v) to be the tangent vector of the curve f ◦α
at t = 0.

We also give a practical formula for calculating the tangent map. The curve f ◦ α must lie in
some chart Ũj of M̃ . In charts we have αi : (a, b) → Ui and fi j : Ui⇀M̃j . So the tangent vector
of the curve is

d

dt
fi j(α(t))

∣∣∣∣
t=0

= (Jα(t)fi j)α
′(t)
∣∣∣
t=0

= (Jα(0)fi j)α
′(0) = (Jxfi j) v,

using the chain rule and the fact that α(0) = x, α′(0) = v. Thus we see in charts that the
tangent map is the Jacobian of fi j .

We could have also given a definition of the pushforward based on the directional derivative
idea. If w = Tpf(v) ∈ Tf(p)M̃ is the pushforward of a vector v ∈ TpM , then we can ask how w

acts on a function g : M̃ → R. The observation is that g ◦ f :M → R and

w(g) = Tpf(v)(g) = v(g ◦ f).

Example 2.22 (Stereographic Projection). Consider the inclusion map ι : S1 → R3. As a
formula it is just identity, but we consider it as a function between manifolds. We can ask how
the vector ∂x

∣∣
0
∈ TSS1, a coordinate vector of the UN chart, is pushed forward by this map

to a vector in T(0,−1)R2, since 0 ∈ UN = S ∈ S1 is mapped to ι(S) = (0,−1). Let us calculate

the tangent map in the chart UN . As per above, this is Jacobian of ιN 0 = idR3 ◦ι◦ϕ−1
N = ϕ−1

N :

Jxϕ
−1
N =

(
∂(ϕ−1

N )1

∂x
∂(ϕ−1

N )2

∂x

)
=

 ∂
∂x

(
2x

x2+1

)
∂
∂x

(
x2−1
x2+1

)
=

2

(x2 + 1)2

(
−x2 + 1

2x

)
and at x = 0 we have

J0ϕ
−1
N =

(
2
0

)
In coordinates, the vector ∂x

∣∣
0
is just 1, so its pushforward in coordinates is

(TSι)(∂x
∣∣
0
) = (J0ϕ

−1
N )(1) =

(
2
0

)(
1
)
=

(
2
0

)
= 2

∂

∂p1

∣∣∣∣
(0,−1)

+ 0
∂

∂p2

∣∣∣∣
(0,−1)

.
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Note that this vector is tangent to S1 in the usual sense.

An important observation should be made about the previous example. We were careful to
stress that the tangent map was applied to a vector at a particular point and not a vector field.
That is because the tangent map does not, as students sometimes assume, take vector fields to
vector fields. There are two ways it fails to do this. We could easily generalise this example to
∂x at any point of UN , which would then give a vector on R2. But not every point of R2 gets a
vector. Only the points in the image of ϕ−1

N get a vector. Therefore the result is not a vector
field on R2.

The other way that the tangent map can fail to transform a vector field into another vector field,
which does not apply to the above example, is if the function is not injective. In that case some
points in the image get multiple vectors from the tangent map. Since a vector field is a certain
type of function, and functions must have exactly one output, the pushforward of a vector field
may not be a function.

Exercise 2.23 (Stereographic Projection). Verify the following formula for the tangent map of
ι : S2 → R3 in the UN chart.

Jx(ϕ
−1
N ) =

2

(∥x∥2 + 1)2

−(x1)2 + (x2)2 + 1 −2x1x2

−2x1x2 (x1)2 − (x2)2 + 1
2x1 2x2

 .

We end this section by highlighting a distinction that we have elided until now. A tangent
vector is an intrinsic concept on a manifold, it does not require the manifold to be immersed in
euclidean space. And yet in the previous chapter we repeatedly talked about tangent vectors to
surfaces as a vector in R3 that was tangent in the geometrical sense. The connections between
these two ideas is exactly the idea of immersion and pushforward.

Definition 2.24. A function f :M → M̃ is an immersion at p ∈M if Tpf is injective.

We commented on this at the end of Example 2.22. Another possible example would be Ex-
ample 2.16. We saw that a manifold can be mapped into a euclidean space by a function. The
pushforward of its tangent vectors by this function are exactly the tangent vectors in the intu-
itive picture. Thus for an immersion, it is possible to consider the elements of TpM as certain
elements of TpM̃ , and this is unambiguous because by definition Tpf is injective.
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2.4 Vector Bundles

This section will not be used later in the script. It exists just to flex how natural the construction
of the tangent bundle is in our approach to manifolds.

Above we have defined the tangent space TpM to a manifold M at a point p ∈M and discussed
how the vectors of TpM and TqM should be thought of as distinct, even if p and q are in the
same chart. But we also worked with examples of vector fields, whose values are vectors at
different points. We can reconcile this tension by putting all the vectors of a manifold together
into a new manifold:

Definition 2.25. Let M be a manifold with atlas A = (n, I, {Ui}i∈I , {φi j}i,j∈I). We construct
a new atlas TA = (2n, I, {TUi}i∈I , {Tφi j}i,j∈I), where TUi = Ui × Rn and

Tφi j : domφi j × Rn → imgφi j × Rn, (x, v) 7→ (φi j(x), (Jxφi j)v).

The corresponding manifold is called the tangent bundle TM . There is a function π : TM →M
in charts by

πi i(x, v) = x.

We tend to think of the tangent bundle ofM as all the vectors ofM , with the understanding that
vectors at different points are distinct from one another. The function π is called the canonical
projection of the bundle. Intuitively it takes a tangent vector to its base point. Hence π−1[{p}]
are all the vectors which live at the same point, in other words TpM .

The tangent bundle allows us to speak and reason formally about tangent vectors as a whole.
We can define a vector field on M as a function X from M to TM with the property that
π ◦X = idM . This property says that for every point p ∈M the vector X|p must have the base
point π(X|p) = p, which is exactly what a vector field is.

Exercise 2.26. Check that the tangent bundle is a manifold. In particular you must check the
unique limit condition.

Example 2.27 (Euclidean Space). Since the trivial atlas for an open subset U ⊂ Rn has
only one chart U0 = U , so too does its tangent bundle TU0 = U ×Rn. Therefore the tangent
bundle is just the cartesian product. The only difference between TU and usual way we think
about vectors in euclidean space is that the base point of the vector is important for the
tangent bundle.

Example 2.28 (Glued Circle). We saw in Example 2.21 that there was a vector field X on
S1 that was never zero. Because TpS1 is one dimensional, every vector in it must be a scalar
multiple of X|p. This means we can define a function from TpM to R

v 7→ a, where v = aX|p.

Allowing p to change gives us a function from TS1 to S1 ×R. Thus the tangent bundle of the
circle is also a product. Tangent bundles that a products are called trivial.
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Example 2.29. In this example we want to show a non-trivial tangent bundle, but it’s
actually somewhat difficult to prove non-triviality. Instead we will try to convey the idea.
The tangent bundle of S2 is non-trivial. If it were trivial, that would mean there would exist a
smooth bijective correspondence between TS2 and S2×R2. We could use this correspondence
to write any vector field X on S2 as (p, X̃(p)) with X̃(p) ∈ R2. Conversely there would exist
a vector field with the form (p, (1, 0)). This vector field is never zero.

But it is a theorem that every vector field on the sphere has at least one zero. This is called
the hairy ball theorem or the hedgehog theorem. There are many intuitive interpretations of
this theorem; one is that there must be somewhere on earth where the wind is not blowing.
Try imagining different wind maps, and perhaps you will convince yourself of the truth of this
theorem. This is one reason that the tangent bundle of S2 cannot be trivial.

The tangent map takes its nicest form when expressed with the tangent bundle. We can collect
together all the tangent maps Tpf : TpM → TpN into a single map Tf : TM → TN . Using the
formula in charts in terms of the Jacobian we get

(Tf)i j(x, v) =
(
fi j(x), (Jxfi j) v

)
∈ Vj × Rn = TVj .

This formula shows that the tangent map is the generalisation of the Jacobian, and all local
properties of the Jacobian carry over to the tangent map.

Exercise 2.30. Prove that the above formula for the tangent map is well-defined (in different
charts) by using the chain rule for Jacobians: for y = φM,i,j(x) and z = fj k(y)

Jx(φN,k,l ◦ fj k ◦ φM,i,j) = (JzφN,k,l)(Jyfj k)(JxφM,i,j).

Exercise 2.31 (Glued Circle). Calculate the tangent map for f from Example 2.16. Use
this to give an alternative description of the tangent bundle TS1 by locating it as a set inside
TR2 = R2 × R2.

https://en.wikipedia.org/wiki/Hairy_ball_theorem
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2.5 Summation Convention

As you have seen, when working with vectors in charts, there are many Σ summations, but all of
them are just from i = 1 to n. There is a convention, called the Einstein summation convention
or the Einstein rule, that allows us to omit all these sigmas.

Definition 2.32 (Einstein Summation). We apply the following notational rule: when an index
occurs twice in a term, once as an upper index and once as a lower index, we sum that index
over its range. For the purposes of this rule ∂

∂xi = ∂i counts as a lower index.

In this notation, the chain rule reads

∂

∂x1
=
∂y1

∂x1
∂

∂y1
+
∂y2

∂x1
∂

∂y2
=

2∑
i=1

∂yi

∂x1
∂

∂yi
=
∂yi

∂x1
∂

∂yi
.

A vector field X that has coefficients Xi with respect to a chart can neatly be written as
X = Xi∂i, and its expression with respect to a second chart y might be written using the
equivalences of vectors as

X = Xi ∂

∂xi
= Xi∂y

j

∂xi
∂

∂yj
.

This convention is useful for even ordinary linear algebra. If you have a matrix A we would
normally write the entries Ai j . However if we instead write it Ai

j with a mix of upper and lower
indices then we can write matrix multiplication in the following way

Av =
(
Ai

j

)(
vj
)
=

n∑
j=1

Ai
jv

j = Ai
jv

j .

Likewise matrix multiplication AB would be (AB)ik = Ai
jB

j
k. The saying to turn matrix algebra

into index algebra with summation convention is “Upper indices go up to down; lower indices
go left to right”.

We know that bilinear functions can also be represented as a matrix; in usual matrix notation:

g(v, w) = vT
(
gi j

)
w =

n∑
i,j=1

vigi jw
j .

In summation convention we write this as gi jv
iwj , with the vector components having upper

indices, which forces g to have two lower indices. This is actually an advantage of index notation
over matrix notation. Though linear transforms and bilinear transforms can both be represented
as a matrix, those matrix representations behave differently under change of basis. We can see
that they are different in index notation, but not in matrix notation.

Some authors do not have the condition that you need one upper and one lower index, and allow
summation over any repeated index. I do not like this, because it makes it impossible to talk
about the diagonal elements gi i. If you need to sum over two indices on the same level, you can
of course use a summation sign. Alternatively you can use an identity matrix, whose entries are
usually called δi j . For example

tr
(
gi j

)
=

n∑
i=1

gi i = δi,jgi j .
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Finally, some useful rules of calculation are

∂xi

∂yj
∂yj

∂xk
= δik and viδji = vj .
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2.6 The Lie Bracket

We have seen examples of how vectors are a type of directional derivative of functions and that
a vector field applied to a function gives another function. A natural question is to ask whether
we can also differentiate a vector field using a vector field. The answer is yes: in fact vector
fields can differentiate many objects on manifolds using a process called the Lie derivative LX ,
but the process complicated and we won’t explain it here. We show with the following example
why the ‘obvious’ way to differentiate vector fields doesn’t work.

Example 2.33 (Polar Coordinates). You might guess that you can differentiate a vector field
just by differentiating its coefficient functions:

Y (X)

?︷︸︸︷
:=

n∑
i=1

Y (Xi)
∂

∂xi
,

but this doesn’t produce a well-defined vector field, because in different charts it produces
inequivalent vectors.

Let us give an example. Consider the vector fields

X = x1
∂

∂x1
+ x2

∂

∂x2
, Y = x2

∂

∂x1
− x1

∂

∂x2
,

on U1 = R2. For example, if we act Y on X with this definition, in U1 we have[
x2
∂x1

∂x1
− x1

∂x1

∂x2

]
∂

∂x1
+

[
x2
∂x2

∂x1
− x1

∂x2

∂x2

]
∂

∂x2
= x2

∂

∂x1
− x1

∂

∂x2
= Y.

But in U2, polar coordinates, we have

r
∂

∂r
= r

∂xi

∂r

∂

∂xi
= r cos θ

∂

∂x1
+ r sin θ

∂

∂x2
= X,

− ∂

∂θ
= −∂x

i

∂θ

∂

∂xi
= r sin θ

∂

∂x1
− r cos θ

∂

∂x2
= Y.

So the same calculation in polar coordinates gives[
−∂r
∂θ

]
∂

∂r
= 0.

Hence this operation depends on which coordinates one uses. It is not well-defined on the
manifold.

It turns out the correct way to differentiate vector fields is to take the commutator of the above
guess.

Definition 2.34. The Lie derivative of a vector field Y with respect to a vector field X, also
called the Lie bracket, acts on a function f by

(LXY )(f) = [X,Y ](f) := X(Y (f))− Y (X(f)).
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From this definition we can ask how to write it in charts:

[X,Y ](f) = X(Y (f))− Y (X(f)) = X

(
Y j ∂f

∂xj

)
− Y

(
Xi ∂f

∂xi

)
= Xi ∂

∂xi

(
Y j ∂f

∂xj

)
− Y j ∂

∂xj

(
Xi ∂f

∂xi

)
= Xi∂Y

j

∂xi
∂f

∂xj
+XiY j ∂2f

∂xi∂xj
− Y j ∂X

i

∂xj
∂f

∂xi
− Y jXi ∂2f

∂xj∂xi

=

[
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

]
∂f

∂xi
=
[
X(Y i)− Y (Xi)

] ∂f
∂xi

.

So even though the definition of [X,Y ] appears to have second derivatives of f , these cancel out
and what remains is indeed a (first order) vector field acting on f .

Example 2.35 (Polar Coordinates). Let us take the vector fields from the previous example
and compute their Lie bracket. In the U1 chart

[X,Y ] =

[(
x1

∂

∂x1
+ x2

∂

∂x2

)
(x2)−

(
x2

∂

∂x1
− x1

∂

∂x2

)
(x1)

]
∂

∂x1

+

[(
x1

∂

∂x1
+ x2

∂

∂x2

)
(−x1)−

(
x2

∂

∂x1
− x1

∂

∂x2

)
(x2)

]
∂

∂x2

=
[
x2 − x2

] ∂

∂x1
+
[
−x1 + x1

] ∂

∂x2
= 0.

and in the U2 chart

[X,Y ] =

[(
r
∂

∂r
+ 0

∂

∂θ

)
(0)−

(
0
∂

∂r
− ∂

∂θ

)
(r)

]
∂

∂r

+

[(
r
∂

∂r
+ 0

∂

∂θ

)
(−1)−

(
0
∂

∂r
− ∂

∂θ

)
(0)

]
∂

∂θ
= 0.

Whenever we have an expression in charts, it is good to check that in different charts it produces
equivalent vectors. We do so in the following lemma. This is not strictly necessary, because the
[X,Y ](f) = X(Y (f))− Y (X(f)) definition doesn’t use charts, but good practice none-the-less.

Lemma 2.36. The above chart expression gives a vector field that is independent of the choice
of chart.

Proof. If X = Xi(x) ∂
∂xi and Y = Y i(x) ∂

∂xi are the expressions of two vector fields in the x-chart,
then the expression of these fields in the y-chart is

X = Xj ∂y
i

∂xj
∂

∂yi
, Y = Y j ∂y

i

∂xj
∂

∂yi
.
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In this chart, the ith component of [X,Y ] is

X(Ỹ i)− Y (X̃i) = X l ∂y
k

∂xl
∂

∂yk

(
Y j ∂y

i

∂xj

)
− Y j ∂y

k

∂xj
∂

∂yk

(
X l ∂y

i

∂xl

)
= X l ∂y

k

∂xl
∂

∂yk

(
Y j ∂y

i

∂xj

)
− Y j ∂y

k

∂xj
∂

∂yk

(
X l ∂y

i

∂xl

)
= X l ∂

∂xl

(
Y j ∂y

i

∂xj

)
− Y j ∂

∂xj

(
X l ∂y

i

∂xl

)
= X l ∂Y

j

∂xl
∂yi

∂xj
+X lY j ∂nyi

∂xl∂xj
− Y j ∂X

l

∂xj
∂yi

∂xl
− Y jX l ∂nyi

∂xj∂xl

= X l ∂Y
j

∂xl
∂yi

∂xj
− Y l ∂X

j

∂xl
∂yi

∂xj
=

[
X l ∂Y

j

∂xl
− Y l ∂X

j

∂xl

]
∂yi

∂xj
.

In total then, in the vector field [X,Y ] in the y-chart is

[X,Y ] =

[
X l ∂Y

j

∂xl
− Y l ∂X

j

∂xl

]
∂yi

∂xj
∂

∂yi
.

But we see that this is equivalent to the expression in the x-chart. Therefore the definition
produces a well-defined vector field.

There are of course many things that can be said about the Lie bracket. The first observation is
that it is R-bilinear and antisymmetric: [aX+ bX̃, Y ] = a[X,Y ]+ b[X̃, Y ] and [X,Y ] = −[Y,X].
If you have two coordinate vector fields, then their Lie bracket is zero. Thus one interpretation of
the Lie bracket is that it is a measurement of how far two vector fields are from being coordinate
vector fields. The final property that we will give is a product rule: if f is a function, then

[X, fY ] = X(f)Y + f [X,Y ],

[fX, Y ] = −[Y, fX] = −Y (f)X − f [Y,X] = f [X,Y ]− Y (f)X.

Example 2.37 (Euclidean Space). We give some euclidean examples. Consider the plane
R2. Let X = ∂1 and Y = ∂2. Then plugging in the definitions

[X,Y ] = X(Y i)∂i − Y (Xi)∂i = X(1)∂2 − Y (1)∂1 = 0.

Next consider V = (1 + x2)∂1. Then

[V, Y ] = V (1)∂2 − Y (1 + x2)∂1 = −∂1.

Finally, set W = x2∂1 − x1∂2. then

[V,W ] = V (x2)∂1−V (x1)∂2−W (1+x2)∂1 = 0−(1+x2)∂2−(0−x1)∂1 = −(1+x2)∂2+x
1∂1.



Chapter 3

Metrics and Connections

3.1 Riemannian Metrics

Finally we come to the definition of a Riemannian metric, the object that gives this field its name.
Let us dispel a common misunderstanding: a Riemannian metric is not a distance function, which
goes against modern terminology (a la metric spaces). Instead it is a generalisation of an inner
product. As we saw for surfaces, an inner product allows us to define a notion of length, so
there is a close relation between distance functions and inner products on manifolds. But a new
student to the field must get used to the change in terminology.

Definition 3.1. A Riemannian metric g on a manifold M is a choice of inner product for every
tangent space TpM . If U is a chart of M , then we can express g in charts using the coordinate
basis vectors:

gi j(p) = g

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
.

A Riemannian metric should be smooth in the sense that the functions gi j are smooth in any
chart. A manifold with a Riemannian metric is called a Riemannian manifold. Length of and
angle between vectors X,Y ∈ TpM is defined in the usual way

∥X∥g :=
√
g(X,X), cos θ =

g(X,Y )

∥X∥ ∥Y ∥

The functions gi j are sufficient to determine the inner product of any two vectors by bilinearity:

g

(
Xi ∂

∂xi
, Y j ∂

∂xj

)
= XiY jg

(
∂

∂xi
,
∂

∂xj

)
= XiY jgi j .

The symmetry and positive definiteness of g imply that the matrix (gi j) is symmetric and
positive definite.

Example 3.2 (Euclidean Space). We have seen in Example 2.3 that any open subset of
euclidean space is a manifold with one chart. It is also a Riemannian manifold with the usual
dot product

gi j = g

(
∂

∂xi
,
∂

∂xj

)
=

∂

∂xi
· ∂

∂xj
= δi j .

45
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Notice that the matrix of the metric in charts is symmetric and positive definite. This is also
called the standard metric on Rn.

Example 3.3 (Helicoid). In fact we have seen Riemannian metrics already, namely the first
fundamental form of a surface. For the helicoid, in Example 1.21, in the chart U = R2 we
had coordinates x1 = u, x2 = v and

g1 1(u, v) = 1, g1 2(u, v) = g2 1(u, v) = 0, g2 2(u, v) = u2 + b2.

For this example we see that gi j are non-constant functions (at least, g2 2 is non-constant).
We understand that the length coordinate basis vector∥∥∥∥∥ ∂

∂v

∣∣∣∣
(u,v)

∥∥∥∥∥ =
√
u2 + b2

is different at different points of the helicoid.

We can ask how the functions gi j in a chart U are related to those g̃i j in an overlapping chart
Ũ . We know that the inner product should be independent of basis, so we compute it in two
ways:

g̃i j = g

(
∂

∂yi
,
∂

∂yj

)
= g

(
∂xk

∂yi
∂

∂xk
,
∂xl

∂yj
∂

∂xl

)
=
∂xk

∂yi
∂xl

∂yj
g

(
∂

∂xk
,
∂

∂xl

)
=
∂xk

∂yi
∂xl

∂yj
gk l.

Notice the subtle contrast to the equivalence relation for vectors:

vi
∂

∂xi
= vi

∂yj

∂xi
∂

∂yj
= ṽj

∂

∂yj
⇒ ṽj = vi

∂yj

∂xi
.

The term for objects that transform with ∂xk

∂yi
, like gi j , is covariant, whereas those that transform

with ∂yj

∂xi , like the coefficients of vectors, are called contravariant. The convention is to use
lower indices for covariant things, and upper indices for contravariant things. Historically this

convention came before the summation convention. Because ∂xi

∂yj
∂yj

∂xi = 1 by the chain rule, when
covariant and contravariant objects are ‘multiplied’, as in the above formula for g, then the
result is independent of charts. This explains why there are so many sums of upper index with
lower index, and was the motivation of the summation convention.

Clearly one can endow a manifold with functions gi j that satisfy the necessary properties and
thereby make it a Riemannian manifold. But this is not usually how we construct Riemannian
manifolds. It is far more common to ‘inherit’ a metric from a bigger Riemannian manifold. This
is how we got a metric on the helicoid. In general, we use the tangent map to move vectors on
one manifold into the tangent space of another.

Definition 3.4. LetM be a manifold, N a Riemannian manifold with metric g. Let f :M → N
be an immersion. That means that Tpf is injective at every point. Then we define a metric f∗g
on M , called the pullback metric or the induced metric, by

f∗g(v, w) := g (Tpf(v), Tpf(w))

for any v, w ∈ TpM .
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Exercise 3.5. The formula for f∗g is well-defined for all smooth functions f :M → N , so why
is it necessary that f is an immersion?

Let’s go through how the definitions of Section 1.4 fit with the definitions in this section. First
we have the definition of a regular parameterised surface Φ : U → R3, Definition 1.19. Φ is a
function between euclidean spaces, so the tangent map is just the Jacobian TpΦ = JpΦ. The
condition that the Jacobian is rank two is equivalent to it being injective by the rank-nullity
theorem of linear algebra. Therefore regular and immersed are equivalent.

The first fundamental form is exactly the standard metric on R3 pullbacked by Φ. In the
coordinate basis vectors, we have

gi j = Φ∗gR
3

(
∂

∂xi
,
∂

∂xj

)
= gR

3

(
(JpΦ)

k
i

∂

∂xk
, (JpΦ)

l
j

∂

∂xl

)
= (JpΦ)

k
i (JpΦ)

l
jg

R3

(
∂

∂xk
,
∂

∂xl

)
= (JpΦ)

k
i (JpΦ)

l
jδk l =

∂Φk

∂xi
∂Φl

∂xj
δk l =

∂Φ

∂xi
· ∂Φ
∂xj

,

which is the definition of the first fundamental form.

Example 3.6 (Stereographic Projection). What does the induced metric from R2 look like in
stereographic coordinates on S1? Well, we need to compute the pushforward of the coordinates
vector fields and take the dot product. The pushforward was already computed for the UN

chart in Example 2.22:

(Jxϕ
−1
N )(

∂

∂x
) =

2

(x2 + 1)2

(
−x2 + 1

2x

)(
1
)
=

2

(x2 + 1)2

(
−x2 + 1

2x

)
.

Therefore

g1 1 =
4

(x2 + 1)4
[
(−x2 + 1)2 + (2x)2

]
=

4

(x2 + 1)4
[
x4 − 2x2 + 1 + 4x2

]
=

4

(x2 + 1)4
[
x2 + 1

]2
=

4

(x2 + 1)2
.

The matrix of the metric has only one entry because the dimension of the manifold is one.

Using this we can calculate the lengths of vectors. For example ∂x
∣∣
0
has length

∥∂x
∣∣
0
∥2 =

(
1
)T (

g1 1(0)
) (

1
)
= 4.

This is because we saw in Example 2.22 that it pushes forward to (2, 0).

On the other hand ∂x
∣∣
1
has length

∥∂x
∣∣
1
∥2 =

(
1
)T (

g1 1(1)
) (

1
)
= 1.

So although the vector field ∂x appears to be constant in the UN chart, its length is in fact
changing.

Exercise 3.7 (Stereographic Projection). Compute g̃i j in the chart US ⊂ S1 and verify the
change of chart formula for the metric.
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Exercise 3.8 (Stereographic Projection). For the UN chart of S2 verify

g1 1 = g2 2 =
4

(∥x∥2 + 1)2
, g1 2 = g2 1 = 0.

Finally, consider the notion of isometry in Definition 1.38. It says that two parameterised
surfaces are isometric if their parametrisations induce equal metrics. We give the following more
general definition.

Definition 3.9. Let M,N be Riemannian manifolds and let f :M → N be an immersion. We
call f an Riemannian immersion if gM = f∗gN . In words, if the metric on M induced by the
immersion is equal to the existing metric on M . If additionally f is a diffeomorphism (bijective,
smooth, smooth inverse) then we call f an isometry. Two Riemannian manifolds are isometric
if there is a isometry between them.

As above, if M is just a manifold and we have an immersion f : M → N to a Riemannian
manifold, then we can endow M with the pullback metric. Then f becomes a Riemannian
immersion by definition.

Example 3.10. Suppose that we have an Riemannian immersion f : M → R3 and let
R : R3 → R3 be a rotation. Define R ◦ f : M → R3; this is also a Riemannian immersion,
as we will now prove. The essential step of the calculation is to notice that TR = R because
R is a linear transformation, and that R a rotation doesn’t change the inner product gR

3
.

Therefore

(R ◦ f)∗gR3
(v, w) = gR

3
(T (R ◦ f)v, T (R ◦ f)w) = gR

3
((TR ◦ Tf)v, (TR ◦ Tf)w)

= gR
3
(R(Tf(v)), R(Tf(w))) = gR

3
(Tf(v), T f(w))

= f∗gR
3
(v, w) = gM (v, w).

In the last line we used that f is a Riemannian immersion.

Exercise 3.11. Generalise the above example to prove: the composition of two Riemannian
immersions is a Riemannian immersion.

A weaker condition to isometry is that of a conformal map.

Definition 3.12. Let M,N be Riemannian manifolds and let f : M → N be an immersion.
We say that f is conformal if there exists a smooth function λ :M → R such that gM = λf∗gN .

A conformal map does not preserve lengths or distances, but it does preserve angles since

gN (Tf(X), Tf(Y )) = f∗gN (X,Y ) = λgM (X,Y )

implies
gN (Tf(X), Tf(Y ))

∥Tf(X)∥gN ∥Tf(Y )∥gN
=

λgM (X,Y )√
λ∥X∥gM

√
λ∥Y ∥gM

=
gM (X,Y )

∥X∥gM ∥Y ∥gM
.
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Example 3.13 (Stereographic Projection). Consider inverse stereographic projection Φ =
ϕ−1
N as a function between UN = Rn with the standard metric and the sphere Sn with the

induced metric of Rn+1.

For n = 1, and indeed on any one-dimensional manifold, all metrics are conformally equivalent
because there is only one metric coefficient g1 1.

For n = 2, Exercise 3.8 shows us that Φ is not a Riemannian immersion, because the pullback
metric Φ∗gS

2
is not equal to the standard metric δi j . However, Φ is conformal because

Φ∗gS
2
=

4

(∥x∥2 + 1)2
δi j .

Notice for example, that in stereographic coordinates the lines through the origin are lines
of longitude and circles centered at the origin are lines of latitude, and these are always
perpendicular to one another.

A calculation similar to the n = 2 case shows that sterographic projection is conformal for
all n. Therefore stereographic charts have the advantage that the angle between vectors as
naively calculated in the chart is the same as in Rn+1.

Example 3.14 (Helicoid). We have seen the pullback metric of the helicoid in Example 3.3.
It is a metric on U = R2. On the other hand we could give the plane the standard metric δi j .
With these metrics, the immersion Φ is not conformal.

We could use a different parameterisation of the helicoid Φ̃ : R2 → R3

Φ̃(u, v) = (sinhu cos v, sinhu sin v, v).

The pushforwards of the coordinate vectors are

∂Φ̃

∂u
= (coshu cos v, coshu sin v, 0)

∂Φ̃

∂v
= (− sinhu sin v, sinhu cos v, 1).

The pullback of the standard metric on R3 by this map is

(Φ̃∗gR
3
)1 1 = gR

3

(
∂Φ̃

∂u
,
∂Φ̃

∂u

)
= cosh2 u,

(Φ̃∗gR
3
)1 2 = (Φ̃∗gR

3
)2 1 = gR

3

(
∂Φ̃

∂u
,
∂Φ̃

∂v

)
= 0,

(Φ̃∗gR
3
)2 2 = sinh2 u+ 1 = cosh2 u.

That is to say
(Φ̃∗gR

3
)i j = cosh2 u δi j = cosh2 u gR

2

i j

Therefore Φ̃ is a conformal map between R2 and R3 with the standard metrics.
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3.2 Quaternions and S3

In this section we introduce the quaternions as a means to understand the rotations of S3. The
3-sphere is a beautiful manifold because it is also a group. A manifold that is also a group is
called a Lie group. We will not go into the general theory of Lie groups, but they come with a
natural way to move vectors around, something we are trying to achieve in this chapter. The
example of Lie groups is therefore very instructive for us.

The quaternions are a four dimensional real vector space {a0+a1i+a2j+a3k}. A quaternion has
a real part Re a = a0 and an imaginary part Im a = a1i+a2j+a3k. Unlike for complex numbers,
the imaginary part of a quaternion is not real. The quaternionic conjugate is ā = Re a − Im a.
Clearly Re ā = Re a and Im ā = − Im a. Elements of the subspace {a1i + a2j + a3k} are called
imaginary.

Famously the quaternions have an associative but non-commutative multiplication, defined by
i2 = j2 = k2 = ijk = −1 and 1 is the identity. We also use the notation e = 1 to aid clarity.
For example ij = k because we multiply ijk = −1 on the right by k to get ijk2 = −k and use
k2 = −1. On the other hand ji = −k: from ijk = −1 we get 1 = kji and now multiply on the
left by k. This doesn’t mean that every multiplication of quaternions is anti-commuting:

(1 + i)(1 + j) = 1 + 1j+ i1 + ij = 1 + i+ j+ k,

(1 + j)(1 + i) = 1 + 1i+ j1 + ji = 1 + i+ j− k.

According to legend on Monday 16 October 1843, as Hamilton was walking to the Royal Irish
Academy, he had the idea that to define a multiplication on R4 it must be non-commutative,
whereupon he carved the above equations into the side of Brougham Bridge. I have been to
the bridge but was unable to find the carving, so instead I offer the following simple trick
to remember the multiplication rule. Draw i, j,k on a directed circle. Multiplication of two
elements gives the third, with a plus sign if they are in the correct direction and a minus sign if
they are in the reverse direction. This is of course the same rule as for the cross product in R3.

A direct computation shows that aā = āa = a20 + a21 + a22 + a23 is always real and non-negative.
Thus we can define the norm |a| =

√
aā. The norm shows that every non-zero quaternion has a

two-sided inverse, namely a−1 = |a|−2ā. Therefore the quaternions are a non-commutative field.

Exercise 3.15. Prove the following:

a. The dot product can be calculated as a · b = Re(āb),

b. aā = āa = a20 + a21 + a22 + a23,

c. Conjugation is order reversing ab = b̄ ā,

d. The norm is multiplicative |ab| = |a| |b|.

This norm is plainly the same as the usual norm on R4. The unit quaternions (those with norm
1) are as a set S3 ⊂ R4. Therefore the 3-sphere is a Lie group, because we can multiply two
elements of it together in a way that can be undone. This is rather special, the only spheres
that are Lie groups are S0 (S0 = {±1} in R1), S1 (add the angles), and S3.
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If we choose a ∈ S3 we can look at the function La : S3 → S3 defined by La(q) = aq This is
a bijective function, because the inverse is La−1 . And La(e) = ae = a. Therefore the tangent
map of La takes TeS3 to TaS3. Moreover, the tangent map is also bijective: from the chain rule

idTeS3 = T (La ◦ La−1) = TLa ◦ TLa−1

Indeed, this inverse has the property that it takes a to the identity La−1(a) = a−1a = e. This
gives us a way to move any tangent vector of S3 to TeS3. Just as in Example 2.28, this shows us
that TS3 is trivial. The function TaLa−1 : TaS3 → TeS3 is called the left trivialisation. Likewise
we can define Ra(q) = qa and we have the right trivialisation TaRa−1 : TaS3 → TeS3

Example 3.16 (3-Sphere). Let us compute the trivialisations for the point a = i = (0, 1, 0, 0) ∈
S3. The inverse of a is a−1 = −i, since i(−i) = 1. If we have any point q = q0+q1i+q2j+q3k
then

La−1(q) = (−i)(q0 + q1i+ q2j+ q3k) = q1 − q0i+ q3j− q2k.

This does indeed have the property that La−1(a) = 1− 0 + 0− 0 = 1 = e. Next we use some
geometry to avoid using charts. We know that the tangent vectors in TaS3 are perpendicular
to a, because this is a sphere. We write

TaS3 = {v1e+ v2j+ v3k | v1, v2, v3 ∈ R}.

Because La−1(q) is linear in q, we know

TaLa−1(v1e+ v2j+ v3k) = −v1i+ v3j− v2k.

For the right trivialisation

Ra−1(q) = (q0 + q1i+ q2j+ q3k)(−i) = q1 − q0i− q3j+ q2k,

TaRa−1(v1e+ v2j+ v3k) = −v1i− v3j+ v2k.

So these two trivialisations on S3 are different from one another.

Example 3.17. We can generalise the previous example to work for any point a ∈ S3. Just
like i is a right-angle rotation of the complex plane, i, j,k are all right-angle rotations of the
quaternions. Therefore ai, aj, ak is an orthonormal basis of TaS3. Alternatively, since

La(q) = a(q0 + q1i+ q2j+ q3k) = q0a+ q1ai+ q2aj+ q3ak

and i, j,k is a basis for TeS3 we know that

TeLa(v
1i+ v2j+ v3k) = v1ai+ v2aj+ v3ak

is all of TaS3. This shows us that identifying TaS3 with TeS3 is the same as writing it with
respect to the pushforward of a basis. If v ∈ TaS3 then we get

TaLa−1v = a−1v.

We call the vector field on S3 a left-invariant field when it has the form

X|a = av
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for v ∈ TeS3, because every vector X|a corresponds to v using the left trivialisation. Ditto we
have the right-invariant vector fields

Y |a = va.

Example 3.18 (3-Sphere).

X|a = ai = −a1e+ a0i+ a3j− a2k

is a left-invariant vector field on S3. We recognise X|i = −e as a vector in TiS3.
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3.3 Covariant Derivatives

We have seen numerous examples thus far of how we cannot simply move vectors around in a
chart like we can in euclidean space. If you take a tangent vector at one point of the sphere
and translate it in R3 to another point of the sphere, it may not be tangent anymore. As we
observed below Example 2.19, a vector might have the same coordinates at different points in
one chart, but not in another. And in Example 3.3 we saw that one coordinate basis vector
changed its length as you moved around, while the other stayed the same length.

There is also a common thought experiment. Suppose that you are standing on the equator
facing east. You walk forward without turning, until you have walked half way around the
Earth. Then, still without turning, you begin to sidestep to the north. You sidestep all the
way to the north pole, but keep going until you have returned to your original position. The
remarkable fact is, even though at no stage did you turn, you are now facing west.

Exercise 3.19. Can you modify the journey so that you end up facing other directions? What
is the connection between the area your journey encompasses and the final rotation angle?

However, the naive definition of the derivative of a vector field

lim
h→0

1

h
(X|p+h −X|p)

asks us to subtract two vectors at different points. Indeed, any non-trivial definition of a deriva-
tive of a vector field is going to require us to compare vectors at different points. Geometrically,
thinking about a surface, what we want to do is to ‘roll’ the tangent plane along the surface
to another point. This idea is called development and the relation between two tangent planes
was called an affine connection, because it was an affine transformation of one plane to another.
In modern terminology it is more common to call this a parallel transport operator, for reasons
that will be explained in Section 3.4. Already from the above thought experiment we see that
a parallel transport operator will depend not just on the two start and end points, but on the
path between those points.

The modern approach, which we will ultimately take, uses a different point of view. It asks: how
much are vector fields are changing? Once we have a basis of vector fields and we know their
changes, then we can measure all other vector fields against them. This leads to the definition of
a covariant derivative, a type of differential operator on vector fields. It is extremely common to
call this an connection, but we will refrain from doing so, at least until we have made clear the
relationship with the parallel transport operator. Though the two approaches are equivalent, the
modern approach is the much easier place to begin. On the other hand, some of the definitions
and motivations for the modern approach only really make sense from the point of view of the
traditional approach.

Definition 3.20. A covariant derivative on a manifold M is a function ∇ that acts on two
vector fields to produce a third. We write it as ∇XY , with X being the ‘direction’. It has the
following properties for all smooth functions f :M → R and vector fields X, X̃, Y, Ỹ :

a. It is C∞-linear in the direction:

∇fX+X̃Y = f∇XY +∇X̃Y.
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b. It is additive in the derivative:

∇X(Y + Ỹ ) = ∇XY +∇X Ỹ .

c. It obeys the product (Leibniz) rule:

∇X(fY ) = X(f)Y + f∇XY.

Example 3.21 (Euclidean Space). Consider euclidean space Rn and let X = Xi∂i, Y = Y i∂i
be vector fields in the chart xi. Then

∇euc
X Y := Xi∂Y

j

∂xi
∂j

is a covariant derivative.

You might be confused, because in Example 2.33 we said this formula didn’t work. Indeed,
this formula is not chart independent. This definition is saying explicitly “use this particular
coordinates to do the derivative and not others”. If you write this covariant derivative in
polar coordinates, then the formula for this covariant derivative will look different. But this
is why we say that it is a covariant derivative, we are not claiming uniqueness.

Exercise 3.22. Check the above example has the three properties that are required of a covari-
ant derivative.

The above example suggests that there are many covariant derivatives on a manifold. At least
for a manifold that can be covered by a single chart, every set of coordinates gives a covariant
derivative. In the following theorem we characterise the set of covariant derivatives.

Theorem 3.23 (Tensorial). Let ∇0,∇1 be two covariant derivatives derivatives. Define their
difference A(X,Y ) := ∇0

XY −∇1
XY . Then A is C∞-linear in both X and Y .

Proof. C∞-linear in X is immediate from Property a of covariant derivatives. C∞-linear in Y
is not too much harder to show, we use Properties b and c:

A(X, fY + Ỹ ) = ∇0
X(fY ) +∇0

X Ỹ −∇1
X(fY )−∇1

X Ỹ

= X(f)Y + f∇0
XY −X(f)Y −∇1

XY +A(X, Ỹ )

= fA(X,Y ) +A(X, Ỹ ).

Exercise 3.24. Prove the converse of Theorem 3.23: Let ∇ is a covariant derivative on M .
For all vector fields X,Y let A(X,Y ) be a smooth vector field. Suppose that this function A is
C∞-linear in both X,Y . Then ∇̃ := ∇+A is also a covariant derivative.

Corollary 3.25 (Affineness). The space of covariant derivatives on M is affine in the following
sense: if t ∈ R is a constant and ∇0,∇1 are two covariant derivatives, so is ∇t := (1−t)∇0+t∇1.

Proof. Observe that ∇t = ∇0 + t(∇1 −∇0). The corollary now follows from Theorem 3.23 and
its converse Exercise 3.24.



3.3. COVARIANT DERIVATIVES 55

The above theorems give us a way to construct new covariant derivatives from existing ones (and
in fact construct every covariant derivative). But we need one to start with. One can prove1

that every manifold has a covariant derivative, but the proof is technical and not practically
useful. We have seen in Example 3.21 that if one chart covers the whole space, then we can
declare it is special and use the directional derivative. For manifolds that are a submanifold of
a bigger space, the following example is typical.

Example 3.26 (Stereographic Projection,Tangent Connection). Consider the sphere S1 in-
side R2. We can understand any vector field Y on S1 as a function Ỹ : S1 → R2 using the
pushforward. Therefore we can differentiate Ỹ as an R2 valued function in the usual way.

For the sake of a numerical example, let us take both X and Y to be the vector field from
Example 2.19. The pushforward of the vector field is

X =

{
−2x2+2
(x2+1)2

∂
∂p1

+ 4x
(x2+1)2

∂
∂p2

for x ∈ UN

0 for p = N

and interpreting this a function to R2 we have

Y =

{(
−2x2+2
(x2+1)2

, 4x
(x2+1)2

)
for x ∈ UN

0 for p = N
=

{
2

x2+1
(−p2, p1) for p ̸= N

0 for p = N.

If we differentiate Ỹ alongX, then using the product rule to avoid some nasty but unimportant
terms we get

X(Ỹ ) = X

(
2

x2 + 1

)
(−p2, p1) + 2

x2 + 1

(
− 4x

(x2 + 1)2
,
−2x2 + 2

(x2 + 1)2

)
= X

(
2

x2 + 1

)
(−p2, p1)− 4

(x2 + 1)2
(
p1, p2

)
The first term is tangent to the circle, but the second is not. So we see the trouble is that the
directional derivative X(Ỹ ) = Xi ∂Y j

∂pi
∂

∂pj
is no longer be tangent to S1. Therefore this does

not meet the definition of a covariant derivative on S1.

What we can do however is to project this directional derivative onto the tangent space. We
define the tangent covariant derivative as

∇⊤
XY = proj

TpS1
Xi∂Y

j

∂pi
∂

∂pj
.

Let’s check the three required properties. The two linearity properties just follow from the

1Lee Proposition 4.5
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linearity of the projection

∇⊤
fX+X̃

Y = proj
TpS1

(
fXi∂Y

j

∂pi
∂

∂pj
+ X̃i∂Y

j

∂pi
∂

∂pj

)
= f proj

TpS1
Xi∂Y

j

∂pi
∂

∂pj
+ proj

TpS1
X̃i∂Y

j

∂pi
∂

∂pj
= f∇⊤

XY +∇⊤
X̃
Y,

∇⊤
X(Y + Ỹ ) = proj

TpS1

(
Xi∂Y

j

∂pi
∂

∂pj
+Xi∂Ỹ

j

∂pi
∂

∂pj

)
= ∇⊤

XY +∇⊤
X Ỹ .

For the third property, we need to recognise that X(f)Y is already tangent to S1, so the
projection leaves it unaltered:

∇⊤
X(fY ) = proj

TpS1
Xi∂(fY

j)

∂pi
∂

∂pj
= proj

TpS1

(
X(f)Y +Xif

∂Y j

∂pi
∂

∂pj

)
= X(f)Y + f∇⊤

XY.

Nothing in the calculation depended on S1 specifically, so this is a general construction for
immersed submanifolds.

Next we examine what type of derivative a covariant derivative is. We will show that it is a
directional derivative, in a sense that will be developed. To this end, the first property to notice
is that although the direction and the derived vector fields have dramatically different behaviour
under scaling by a smooth function, they are both R-linear. If a is a constant then

∇aXY = a∇XY, ∇X(aY ) = X(a)Y + a∇XY = a∇XY.

Consequently, if either field is zero, then so is the covariant derivative. Moreover, using cut-
off functions, the covariant derivative only depends on local information.2 In fact something
stronger is true of X:

Lemma 3.27 (Directional Derivative). The value of ∇XY at p ∈ M only depends on X|p and
not other values of X.

Proof. By linearity, it suffices to prove that X|p = 0 implies (∇XY )|p = 0. Writing X in a chart
we have X = Xi∂i and X

i(p) = 0 for all the coefficients. Then(
∇Xi∂iY

)
|p =

(
Xi∇∂iY

)∣∣∣
p
= Xi(p)

(
∇∂iY

)∣∣∣
p
= 0.

For this reason we sometimes speak of the covariant derivative ∇vY in a direction v ∈ TpM .
The same is not true for Y : the covariant derivative really is a derivative of Y and depends on
its values in a neighbourhood of a point. However, to compute ∇vY you don’t need to know Y
completely on an open neighbourhood of p, it is enough to know Y on a curve whose tangent is
v.

Lemma 3.28 (Curve Derivative). Let Y, Ỹ be two vector fields and let α : (a, b) → M be a
smooth curve with α(0) = p and α′(0) = v. Suppose that Y ◦ α = Ỹ ◦ α. Then ∇vY = ∇vỸ .

2See Lee Lemma 4.1 for a proof. We prove a stronger statement in Lemma 3.28.
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Proof. Let us consider the situation in a chart, writing v = vi∂i|p, Y = Y i∂i and Ỹ = Ỹ i∂i.
Then by the properties of covariant derivatives,

∇vY = ∇vi∂i|p(Y
j∂j) = vi∇∂i|p(Y

j∂j) = vi
∂Y j

∂xi

∣∣∣∣
p

∂j + viY j(p)∇∂i|p∂j ,

and likewise for Ỹ . Now, Y and Ỹ agree on α, so Y (p) = Ỹ (p). Moreover, by the chain rule

vi
∂Y j

∂xi

∣∣∣∣
p

=
d

dt
(Y j ◦ α)

∣∣∣∣
p

=
d

dt
(Ỹ j ◦ α)

∣∣∣∣
p

= vi
∂Ỹ j

∂xi

∣∣∣∣∣
p

.

Hence

∇vY = vi
∂Y j

∂xi

∣∣∣∣
p

∂j + viY j(p)∇∂i|p∂j = vi
∂Ỹ j

∂xi

∣∣∣∣∣
p

∂j + viỸ j(p)∇∂i|p∂j = ∇vỸ

This lemma tells us that we can really view the covariant derivative as a generalisation of a
directional derivative. This is in contrast to other derivatives of vector fields. Recall Exam-
ple 2.37. Now consider the vector fields from that example along the curve α(t) = (t, 0), the
x-axis. We have X ◦ α = ∂1, Y ◦ α = ∂2, and V ◦ α = ∂1. But [X,Y ] = 0 while [V, Y ] = −∂1.
This shows that the Lie bracket is not a covariant derivative.

To break up all this theory, let’s do another example.

Example 3.29 (3-Sphere). We define a covariant derivative ∇L on S3 in the following way.
Given any vector field Y on S3, use left trivialisation to write it as a function Ỹ : S3 → TeS3.
From Example 3.17 we know this has the formula p 7→ p−1Y |p using quaternions. Now that
we have a function to the same vector space, there is no problem differentiating. This gives
us a function X(Ỹ ) : M → TeS3. Use the left trivialisation again to move the result back to
TpS3.

Putting this all in one formula gives

(∇L
XY )|p := (TeLp ◦X ◦ TpLp−1)Y.

This covariant derivative has the property that the derivative of a left-invariant vector field
is always zero. This is because, by definition, after you bring its vectors to e they are all the
same. In other words Ỹ is constant and thus has zero derivative.

So to see an interesting example, we need to use a non-left-invariant vector field. Consider
Y |p = ip. We know that Ỹ (p) = p−1ip. To proceed we need to choose a direction field X. We
know that the value of the covariant derivative at any point only depends on the value of X
at that point. So for simplicity let us calculate for the point i in the direction j = ∂

∂p2
:

X|iỸ =
∂

∂p2
p−1ip

∣∣∣∣
i

= −p−1 ∂p

∂p2
p−1ip+ p−1i

∂p

∂p2

∣∣∣∣
i

= −p−1jp−1ip+ p−1ij
∣∣
i

= −i−1ji−1ii+ i−1ij = j+ j = 2j.
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Finally, we move this back to TiS3

(∇XY )|i = TeLi(2j) = i 2j = 2k.

In the same manner, we can define a covariant derivative ∇R using the right trivialisation.

In the examples above, to define a covariant derivative we really gave a directional derivative. But
what is the minimal information required to specify a covariant derivative? Because covariant
derivatives are local, we give the answer in a chart. Let ∂i be the coordinate vector fields. Then
for each pair i, j we have a vector field ∇∂i∂j . This vector field must be able to be written

∇∂i∂j = Γk
i j∂k,

for some coefficients Γk
i j . These coefficients are called Christoffel coefficients, though be aware

that some authors reserve this name for a special case. This is sufficient information to determine
∇ because

∇XY = Xi∇∂i(Y
j∂j) = Xi∂Y

j

∂xi
∂j +XiY j∇∂i∂j =

(
Xi∂Y

k

∂xi
+XiY jΓk

i j

)
∂k.

Example 3.30 (Polar Coordinates). Let us consider R2 with ∇euc. We see by comparison
of its definition in Example 3.21 with the formula above that Γk

i j is zero for all points and all
indices in the standard chart.

But let us compute it with respect to polar coordinates. By the definition of ∇euc, we have
to calculate in the x1, x2 coordinates. We have

∂

∂r
= cos θ

∂

∂x1
+ sin θ

∂

∂x2
=

x1√
(x1)2 + (x2)2

∂

∂x1
+

x2√
(x1)2 + (x2)2

∂

∂x2

∂

∂θ
= −r sin θ ∂

∂x1
+ r cos θ

∂

∂x2
= −x2 ∂

∂x1
+ x1

∂

∂x2
.

Hence we can calculate

∇ ∂
∂r

∂

∂θ
=

x1√
(x1)2 + (x2)2

∇ ∂
∂x1

∂

∂θ
+

x2√
(x1)2 + (x2)2

∇ ∂
∂x2

∂

∂θ

=
x1√

(x1)2 + (x2)2

(
∂(−x2)
∂x1

∂

∂x1
+
∂x1

∂x1
∂

∂x2

)
+

x2√
(x1)2 + (x2)2

(
∂(−x2)
∂x2

∂

∂x1
+
∂x1

∂x2
∂

∂x2

)
=

x1√
(x1)2 + (x2)2

∂

∂x2
− x2√

(x1)2 + (x2)2
∂

∂x1

= − sin θ
∂

∂x1
+ cos θ

∂

∂x2
=

1

r

∂

∂θ
,

and hence in polar coordinates

Γr
r,θ = 0, Γθ

r,θ =
1

r
.
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The other six coefficients are calculated similarly.

Example 3.31 (Tangent Connection). Let’s calculate the Christoffel coefficients for a sub-
manifold f : M → Rn with the connection ∇⊤ from Example 3.26 in some chart U . Let
Φ = f ◦ ϕ−1 be a parameterisation, a map from a chart U to Rn. Because the definition of
∇⊤ uses the geometry of Rn we need the pushforwards of the coordinate basis vectors. We
use the notation Ei = Tx(f)

∂
∂xi = Jx(Φ)

j
i

∂
∂pj

. From the directional derivative definition of
the pushforward map

Ei(Y
j) = TΦ

(
∂

∂xi

)
(Y j) =

∂

∂xi
(Y j ◦ Φ).

Therefore the covariant derivative is

∇⊤
∂i
∂j = proj

TpM

∂

∂xi
(Ek

j ◦ Φ) ∂

∂pk
.

Finally to give the Christoffel coefficients, we write this vector in the coordinate basis Ei.
This requires solving some linear algebra problem.

Example 3.32 (Stereographic Projection). Let’s calculate the Christoffel coefficients for S1
with the connection ∇⊤ from Example 3.26 in the chart UN . This is a special case of the
previous example. The immersion f is the identity map, so the parameterisation is Φ = ϕ−1

N .
There is only one coordinate vector field

E ◦ Φ = −2
x2 − 1

(x2 + 1)2
∂

∂p1
+

4x

(x2 + 1)2
∂

∂p2
=

2

(x2 + 1)2

(
(1− x2)

∂

∂p1
+ 2x

∂

∂p2

)
.

The composition with Φ is simply saying that we should express the coefficients in the variables
of the chart. We prepare some calculations

∂

∂x
(E1 ◦ Φ) = −8x

(x2 + 1)3
(1− x2) +

2

(x2 + 1)2
(−2x)

∂

∂x
(E2 ◦ Φ) = −8x

(x2 + 1)3
(2x) +

2

(x2 + 1)2
(2)

You can do the orthogonal projection in the standard linear algebra way, but because this is
the plane it’s easy to write down a vector perpendicular to E. This leads to

∂

∂xi
(Ek ◦ Φ) ∂

∂pk
=

−4x

x2 + 1
E +

2

(x2 + 1)2

(
−2x

∂

∂p1
+ 2

∂

∂p2

)
=

−4x

x2 + 1
E +

4

(x2 + 1)3

[
x

(
(1− x2)

∂

∂p1
+ 2x

∂

∂p2

)
+

(
−2x

∂

∂p1
+ (1− x2)

∂

∂p2

)]
=

−2x

x2 + 1
E +

4

(x2 + 1)3

(
−2x

∂

∂p1
+ (1− x2)

∂

∂p2

)
.
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Hence

∇⊤
∂1∂1 = proj

TpS1

∂

∂xi
(Ek

j ◦ Φ) ∂

∂pk
=

−2x

x2 + 1
E ⇒ Γ1

11 =
−2x

x2 + 1
.

Exercise 3.33 (Lee Lemma 4.4). Suppose that M is a manifold covered by a single chart U .
Show that the set of covariant derivatives on M is in one-to-one correspondence with the set
of Christoffel coefficients. That is, show that every choice of n3 functions Γk

i j gives a covariant
derivative.

Exercise 3.34. Derive the transformation formula for Γk
i j between two charts. Observe that it

is neither covariant nor contravariant.

Exercise 3.35 (Stereographic Projection). Repeat the calculation of the Christoffel coefficients
from Example 3.32 for S2 in the chart UN . The following formulas may prove useful. Here we
have the pushforwards of the coordinate vector fields and combinations that align with longitude
and latitude:

E1 =
2

(∥x∥2 + 1)2

−(x1)2 + (x2)2 + 1
−2x1x2

2x1

 x1E1 + x2E2 =
2

(∥x∥2 + 1)2

−x1(∥x∥2 − 1)
−x2(∥x∥2 − 1)

2∥x∥2


E2 =

2

(∥x∥2 + 1)2

 −2x1x2

(x1)2 − (x2)2 + 1
2x2

 x2E1 − x1E2 =
2

∥x∥2 + 1

 x2

−x1
0

 .

The derivatives are

∂

∂x1
E1 =

−4x1

∥x∥2 + 1
E1 +

4

(∥x∥2 + 1)2

[
−p+ 1

2
(∥x∥2 + 1)(x1E1 + x2E2)

]
∂

∂x2
E1 =

−4x2

∥x∥2 + 1
E1 +

2

∥x∥2 + 1

[
x2E1 − x1E2

]
,

and

∂

∂x1
E2 =

−4x1

∥x∥2 + 1
E2 −

2

∥x∥2 + 1

[
x2E1 − x1E2

]
∂

∂x2
E2 =

−4x2

∥x∥2 + 1
E2 +

4

(∥x∥2 + 1)2

[
−p+ 1

2
(∥x∥2 + 1)(x1E1 + x2E2)

]
.

With the derivatives in this form, you should be able to calculate the Christoffel coefficients
easily. For example, from

∇⊤
∂1∂1 =

−2x1

∥x∥2 + 1
E1 +

2x2

∥x∥2 + 1
E2

we read that

Γ1
11 =

−2x1

∥x∥2 + 1
, Γ2

11 =
2x2

∥x∥2 + 1
.

For the other derivative of E1, the projection is trivial, and

Γ1
21 =

−2x2

∥x∥2 + 1
, Γ2

21 =
−2x1

∥x∥2 + 1
.
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And from the derivatives of E2 we obtain:

Γ1
12 =

−2x2

∥x∥2 + 1
, Γ2

12 =
−2x1

∥x∥2 + 1
,

Γ1
22 =

2x1

∥x∥2 + 1
, Γ2

22 =
−2x2

∥x∥2 + 1
.
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3.4 Parallel Transport

We began Section 3.3 with the motivation that we want to compare different tangent spaces to
one another and a thought experiment about walking around the Earth. Then we went on to
define covariant derivatives. Now it is time to connect the two (pardon the pun).

Definition 3.36. Let M be a manifold with a covariant derivative ∇, α : (a, b) →M a smooth
curve and Y a vector field. We say that Y is parallel along α (with respect to ∇) if ∇α′Y = 0
at all points on the curve.

The inspiration of the name parallel is that the vectors of the vector field at different points
are meant to be (in some sense) parallel to one another. Phrased different: we have a field
of parallel vectors. Even though α′ is not a vector field on M , this is well-defined due to
Lemma 3.27. Similarly, we really only need to values of Y along the curve α to compute this
condition, due to Lemma 3.28. Therefore many books build a theory of ‘vector fields on curves’.
We will avoid this extra theory by assuming the main result: so long as the curve α is injective
and not pathological, every vector field on α can be extended to a vector field on M .

In a chart we have α′(t) = dαi

dt ∂i, so the condition becomes

(3.37) 0 =

(
dαi

dt

∂Y k

∂xi
+ Γk

i j

dαi

dt
Y j

)
∂j =

(
dY k

dt
+ Γk

i j

dαi

dt
Y j

)
∂j ,

where we treat the vector field as a function of t, i.e. Y (α(t)). Since Γk
i j and dαi

dt are specified,

we treat this as a system of ODEs for the functions Y i(t) : (a, b) → R. By the uniqueness of
solutions to ODEs, a parallel vector field is uniquely determined by its value at one point of
the curve. On the other hand the existence of solutions to ODEs ensures that given a vector
v ∈ Tα(t0) there exists a unique parallel field Y along α with Y (t0) = v.

Let us make our thought experiment rigorous by using the tangent covariant derivative. We can
expand the thought experiment in the following way: while we are walking around the world
without turning, we are holding a stick. The stick represents a vector field along the curve of
our journey. Suppose at the start of our journey, the stick is pointing south (recall we are facing
east). As we walk east around the world, our stick will continue to point south. Thus we ask
whether the vector field Y |p = (0, 0,−1) ∈ TpS2 is parallel with respect to ∇⊤ along the equator
α(t) = (cos t, sin t, 0). Indeed it is, since Y is constant with respect to p,

∇⊤
α′Y = proj

TpS2

(
− sin t

∂Y j

∂p1
∂

∂pj
+ cos t

∂Y j

∂p2
∂

∂pj
+ 0

∂Y j

∂p3
∂

∂pj

)
= 0.

Now what about the original thought experiment? This time as we walk around the world, let
the stick point forward. Clearly, if we don’t turn, it should continue to point forward. In other
words

Y = α′(t) = (− sin t, cos t, 0). = (−p2, p1, 0).

This is not constant as a function into R3. Now when we compute

∇⊤
α′Y = proj

TpS2

(
− sin t (1)

∂

∂p2
+ cos t (−1)

∂

∂p1
+ 0

)
= proj

TpS2
(−p) = 0.
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We see from the calculation that the derivative of Y along the curve points towards the center
of the sphere, so when projected to the tangent plane it becomes zero. In summary, parallel
transport by ∇⊤ on the sphere matches our intuition of ‘walking without turning’. Of course
there are many other covariant derivatives on the sphere, and with respect to them perhaps
these two vector fields are not parallel.

Example 3.38 (3-Sphere). Let us consider the covariant derivative ∇L on S3 from Exam-
ple 3.29. We noted there that left-invariant vector fields have ∇L-derivative zero at any point
and in any direction. Hence left-invariant fields are parallel along every curve in S3.

Conversely, suppose Y is parallel along α. It follows from the definition of ∇L that t 7→
Tα(t)Lα(t)−1Y (α(t)) is constant. In words, if we consider Y as a function of t, ie Y (α(t))
and move the vectors to e using the tangent map of the left action, ie Tα(t)Lα(t)−1 , then this
function is constant. Though we don’t have a formal definition, it is fair to say that Y is
left-invariant along the curve.

The final observation for this example is that given any vector w ∈ TpS3 there is a unique
left-invariant vector field Y with Y |p = w. Let v = TpLp

−1w. Then Y |p = pv is the field.
Therefore there is a unique way to parallel transport any vector to any other point of S3.
Manifolds with this property are called parallelisable. It is equivalent to having a trivial
tangent bundle.

In the above example, we encountered the idea of taking a vector v at one point α(t0), finding
a vector field Y with Y |α(t0) that is parallel along α, and in particular calculating the parallel
vector at another point w = Y |α(t1). We call w the parallel transport of v along α. This is
a function P (α)st : Tα(t)M → Tα(s)M called the parallel transport operator. Because the ODE
is linear in Y , the parallel transport operator is linear: If Y is the parallel vector field with
Y |α(t) = v and Ỹ is the parallel vector field with Ỹ |α(t) = ṽ, then Y + Ỹ is also parallel and

(Y + Ỹ )|α(t) = v + ṽ. The same idea works with scaling v.

Some other properties of P (α)st follow easily from its definition as the solution of an ODE. We
have semi-group properties P (α)tt = id and P (α)us ◦ P (α)st = P (α)ut . By the uniqueness of the
solutions to ODEs, we have that P (α)st is injective, and therefore an isomorphism of vector
spaces. And so on.

Conversely, if one has the parallel transport operator for a curve α, the we can recover the
covariant derivative in the direction α′ through the formula

∇α′(0)Y = lim
h→0

1

h

[
P (α)0hY |α(h) − Y |α(0)

]
∈ Tα(0)M.

Exercise 3.39. Prove the above formula. Hint: Take a basis of Tα(0)M and parallel transport
it along α. As a reward for solving this exercise, you may now use the word connection for a
covariant derivative.

Exercise 3.40. Argue that parallel transport with respect to ∇L on S3 is P (α)st = α(t)α(s)−1.
If we insert this into the above equation we obtain

∇L
α′(0)Y = α(0) lim

h→0

1

h

[
α(h)−1Y |α(h) − α(0)−1Y |α(0)

]
.

Explain why this is the same formula as Example 3.29.
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So intuitively the two approaches, covariant derivatives and parallel transport operators, are
equivalent. The reason that it is difficult to start with parallel transport operators is that is
tricky to characterise exactly when a set of linear functions between tangent spaces, one for every
curve, correspond to a covariant derivative. Note our logic above: if we begin with a covariant
derivative, then we have a parallel transport operator, and taking a limit we can recover the
covariant derivative. But if you begin with a arbitrary set of operators, there is no guarantee
that the limit will exist. You need to have some type of smooth dependence of P (α)st on t and s.
Further, what conditions should you impose on the dependence of P (α) on α such if two curves
are tangent at a point, the above limit produces the same result. Hopefully, these questions give
you an appreciation of the difficulty involved.

Special mention should go to Appendix B in Sharpe, which does start with the classical idea of
rolling a plane (or another space) around on a surface and shows how that gives various modern
structures on the manifold.
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3.5 Torsion

In this section we discuss a quantity called torsion that is derived from a covariant derivative.
There is a relation between the torsion of a connection and the torsion of a space curve, but
we will not be explore it in this course3. Ultimately we will only be interested in covariant
derivatives with zero torsion, so in a sense we are introducing it only to rule it out. Which
brings us to the point: how should we motivate the definitions in this section without going
deep into theory we will not use? We ask some natural questions and give some reasonable
answers.

In euclidean space we have Schwarz’ theorem, also known as Clairaut’s theorem, that the partial
derivatives with respect to different variables commute (for smooth functions among others).
This result is embedded in the definition of the Lie bracket, where it was necessary to have
the second order terms cancel. In fact sometimes the theorem is expressed as [∂i, ∂j ] = 0. So
naturally we ask this question of the covariant derivative, but the answer is negative in general:

∇∂i∂j −∇∂j∂i = Γk
i j∂k − Γk

j i∂k =
(
Γk
i j − Γk

j i

)
∂k.

This leads to the following definition

Definition 3.41. We say that a covariant derivative is torsion-free (in some chart) if ∇∂i∂j −
∇∂j∂i = 0. Equivalently in terms of Christoffel coefficients, if Γk

i j = Γk
j i at every point.

In this first definition, torsion of a covariant derivative is a measure of the non-commutativity
of coordinate vector fields. It seems natural therefore that this should depend on the choice of
chart as much as the covariant derivative. But if you have done Exercise 3.34, you may already
know that if Γk

i j = Γk
j i at a point in one chart then it also holds at that point in any overlapping

chart. We will return to this idea shortly.

Example 3.42 (Euclidean Space). We have Rn with one chart, and ∇euc from Example 3.21.
In Example 3.30 computed that the Christoffel coefficients are all zero. Thus this covariant
derivative is torsion-free in this chart.

Example 3.43 (Stereographic Projection). In Exercise 3.35 you found all the Christoffel
coefficients. Observe that they are symmetric in the lower two indices

Γ1
21 =

−2x2

∥x∥2 + 1
= Γ1

12, Γ2
21 =

−2x1

∥x∥2 + 1
= Γ2

12.

This shows that the covariant derivative ∇⊤ of S2 is torsion-free on UN . Since the torsion is
a continuous function, it must also be zero at the north pole.

We have the expectation that the coordinate vector fields should commute, or that this is a

3See the ‘American football example’ Lee Problem 6-1
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desirable property, but we do not have that expectation for general vector fields X,Y . We find

∇XY −∇YX = Xi∇∂i(Y
j∂j)− Y j∇∂j (X

i∂i)

=

(
Xi∂Y

k

∂xi
+XiY jΓk

i j

)
∂k −

(
Y j ∂X

k

∂xi
+ Y jXiΓk

j i

)
∂k

=

(
Xi∂Y

k

∂xi
− Y j ∂X

k

∂xi

)
∂k +XiY j

(
Γk
i j − Γk

j i

)
∂k

= [X,Y ] +XiY j
(
Γk
i j − Γk

j i

)
∂k.

The meaning of this equation is that the ‘covariant derivative commutator’ of two vector fields
is their Lie bracket plus a factor coming from the fact that the coordinate vector fields do not
‘covariantly commute’.

Definition 3.44. Given a covariant derivative ∇, we define the torsion of two vector fields X,Y
to be a third vector field

T (X,Y ) = ∇XY −∇YX − [X,Y ].

Remarkably the value of T (X,Y ) at any point p only depends on X|p, Y |p, with the formula

T (X,Y ) = XiY jT k
i j∂k for T k

i j = Γk
i j − Γk

j i.

The definition of T (X,Y ) is in terms of three vector fields ∇XY , ∇YX, and [X,Y ], so clearly
is independent of charts. A covariant derivative is torsion-free if T k

i j = 0, and so this too is
independent of charts. The second formula is just a rearrangement of the calculation preceding
the definition. We say that the second formula is remarkable because although T is defined
using derivatives both of which depend on the local behaviour of vector fields, the torsion only
depends on the pointwise values of the vector fields. Because the Lie bracket is an antisymmetric
function of X,Y , so too is the torsion T (X,Y ) = −T (Y,X).

Example 3.45 (3-Sphere). In this example we show that the torsion of the covariant deriva-
tive ∇L on S3 from Example 3.29 is non-zero. The trick is to not work with coordinate
vector fields, but rather work with left-invariant vector fields. Let E1|p = pi and likewise
E2|p = pj, E3|p = pk denote the left-invariant vector fields that are obtained by pushing for-
ward i, j,k ∈ TeS3. We have already noted in Example 3.38 that ∇L

vEi = 0 for any vector
v ∈ TpM .

Further at any point E1|p, E2|p, E3|p is a basis for TpS3. This means that every vector field
X on S3 can be written as

X = X1E1 +X2E2 +X3E3.

Thus Ei have similar properties to the coordinate vector basis field, except that they do not
come from coordinates. A set of vector fields with this basis property is called a frame, but
we will not explore this concept in generality. In this frame, the covariant derivative can be
reckoned with

∇L
XY = ∇L

X

(
Y jEj

)
= X(Y j)Ej + Y j∇L

XEj = X(Y j)Ej .
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Similarly the Lie bracket simplifies

[Ei, Y ] = [Ei, Y
jEj ] = Ei(Y

j)Ej + Y j [Ei, Ej ]

[X,Y ] = [XiEi, Y ] = Xi[Ei, Y ]− Y (Xi)Ei

= XiEi(Y
j)Ej +XiY j [Ei, Ej ]− Y jEj(X

i)Ei

= X(Y j)Ej +XiY j [Ei, Ej ]− Y (Xi)Ei.

Together this yields

TL(X,Y ) = ∇L
XY −∇L

YX − [X,Y ]

= X(Y j)Ej − Y (Xj)Ej −X(Y j)Ej −XiY j [Ei, Ej ] + Y (Xi)Ei

= −XiY j [Ei, Ej ].

Thus the torsion comes down to the Lie brackets of this frame.

For this example we will evaluate [E1, E2]:

[E1, E2] = [pi, pj] = [−p1 + p0i+ p3j− p2k,−p2 − p3i+ p0j+ p1k]

= [−p1∂0 + p0∂1 + p3∂2 − p2∂3,−p2∂0 − p3∂1 + p0∂2 + p1∂3]

= −p1∂2 + p0∂3 + p3(−∂0)− p2(−∂1)−
[
− p2∂1 − p3(−∂0) + p0(−∂3) + p1∂2

]
= −2p3∂0 + 2p2∂1 − 2p1∂2 + 2p0∂3 = 2E3.

We can generalise this argument; set i1 = i, i2 = j, i3 = k so that we can use index notation.

[Ei, Ej ] = [p∂i, p∂j ] = pii∂j − pij∂i = p(iiij − ijii).

When i = j, the quaternions commute and the bracket is zero (as expected). If they are
not equal then the quaternions anti-commute. This gives [E2, E3] = 2E1 and [E3, E1] = 2E2.
(There is in fact a close relationship between the Lie bracket of S3 and the cross product of
R3).

Example 3.46 (3-Sphere). We can also ask for the torsion of ∇R on S3. Of course we could
do the same as the previous example, except using a right-invariant frame, and get a similar
answer. But to make the two examples comparable, let us compute the torsion of ∇R using
the left-invariant frame Ei.

What changes about the calculation is that ∇R
Ei
Ej ̸= 0. Instead we must generalise the

calculation from Example 3.29:

Ei(p) = p∂ip = pii,

∇R
Ei
Ej =

(
Ei(pijp

−1)
)
p =

(
Ei(p)ijp

−1 − pijp
−1Ei(p)p

−1
)
p = piiij − pijii = [Ei, Ej ].

The covariant derivative of an arbitrary vector field is

∇R
XY = X(Y j)Ej +XiY j∇R

Ei
Ej = X(Y j)Ej +XiY j [Ei, Ej ].
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Hence

TR(X,Y ) = ∇R
XY −∇R

YX − [X,Y ]

= X(Y j)Ej +XiY j [Ei, Ej ]− Y (Xj)Ej −XiY j [Ej , Ei]

−X(Y j)Ej −XiY j [Ei, Ej ] + Y (Xi)Ei

= XiY j [Ei, Ej ].

Thus the torsion of ∇R is the negative of the torsion of ∇L.

Recall Exercise 3.24 that given one connection we can create another by the addition of a vector
valued function A(X,Y ). We can ask how the torsion of the new covariant derivative related to
the torsion of the original. This follows easily, for ∇̃ = ∇+A,

T ∇̃(X,Y ) = ∇̃XY − ∇̃YX − [X,Y ] = ∇XY +A(X,Y )−∇YX −A(Y,X)− [X,Y ]

= T∇(X,Y ) +A(X,Y )−A(Y,X).

Purely algebraically, for any function of two variables we can split it into a symmetric and
antisymmetric parts

A(X,Y ) =
1

2

(
A(X,Y ) +A(Y,X)

)
+

1

2

(
A(X,Y )−A(Y,X)

)
.

If A is already symmetric or antisymmetric, then it is just equal to its symmetric or antisym-
metric part respectively and the other part is zero. Thus we can express the relationship of the
torsions by the dictum “adding A to a covariant derivative adds twice the antisymmetric part
of A to its torsion”. In particular, for any covariant derivative, we can absorb the torsion. This
means we construct a new torsion-free covariant derivative ∇̃ := ∇− 1

2T .

Example 3.47 (3-Sphere). We have just seen in Examples 3.45 and 3.46 that with respect
to the left-invariant fields Ei the covariant derivatives are

∇L
Ei
Ej = 0 ∇R

Ei
Ej = [Ei, Ej ]

TL(Ei, Ej) = −[Ei, Ej ] TR(Ei, Ej) = [Ei, Ej ].

(Aside: the formula on the right makes it seem as if ∇R and TR are equal. They are not
in general, only for left-invariant vector fields. Remember: a covariant derivative has the
product rule in Y , whereas the torsion is C∞-linear.)

If we absorb the torsion on these two connections we get the torsion-free connection

∇LC
Ei
Ej =

1

2
[Ei, Ej ] = ∇L

Ei
Ej +

1

2
[Ei, Ej ] = ∇R

Ei
Ej −

1

2
[Ei, Ej ].

This fits nicely with Corollary 3.25, because ∇LC can also be understood as the average of
the left and right covariant derivatives: ∇LC = 1

2∇
L + 1

2∇
R. I’ll give you one guess what the

LC stands for!

We have seen now that for a torsion-free connection that the coordinate vector fields will ‘co-
variant commute’ but general vector fields will not.
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Definition 3.48. A smooth family of curves is a function αs(t) : (−ε, ε) × (a, b) → M . By
smooth family we mean that it is smooth in both variables s and t. We typically think of the
main curves of the family t 7→ αs(t) for fixed s. But we also have the transverse curves, where
we fix t and allow s to vary. We can write α(s, t) to emphasise this duality.

Therefore we have two vector fields: the tangents in the main direction and the tangents in
the transverse direction. Well, this is not completely true as we do not really have vector fields
because the curves may cross each other, giving multiple vectors at the same point. (Technically
what we have is the pushforwards of two vector fields.) Regardless, for each value of (s, t) it
makes sense to ask how the derivative ∂sα is changing in comparison to ∂tα.

Lemma 3.49 (Mixed Derivatives). Let ∇ be a torsion-free covariant derivative and α(s, t) :
(−ε, ε)× (a, b) →M a smooth family of curves. Then ∇∂sα∂tα = ∇∂tα∂sα.

Proof. This is a purely computational proof. In a chart, the tangent vectors are

∂sα =
∂αk

∂s
∂k, ∂tα =

∂αk

∂t
∂k.

Then

∇∂sα∂tα =

(
∂2αk

∂s∂t
+ Γk

i j

∂αi

∂s

∂αj

∂t

)
∂k,

∇∂tα∂sα =

(
∂2αk

∂t∂s
+ Γk

i j

∂αi

∂t

∂αj

∂s

)
∂k.

By the symmetry of the Christoffel coefficients for torsion-free covariant derivatives, these are
equal.

We should comment about why the expression ∇∂sα∂tα is well-defined even though the tangents
do not necessarily form a vector field. We know that the direction of ∇ depends only on the
pointwise value, so this is no issue. And for ∂tα we need to know its values along a curve in the
direction of ∂sα, but this is exactly the meaning of partial derivative. So understood correctly,
these expressions are valid. This is an instance where a fleshed out notion of ‘vector field on
a curve’ would have been more precise, but hopefully you see that not much has been lost by
skipping this concept.
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3.6 The Levi-Civita connection

Let us once more return to the thought experiment of walking along the equator α(t) =
(cos t, sin t, 0) with our stick. We now understand that we are parallel transporting our stick. But
consider the vector field Z(α(t)) = (0, 0,− cos2 t). To push the metaphor into silliness, it is an
telescoping selfie stick that is lengthening and shortening. The vector field Z always points south,
but it is not parallel according to definition. If we write Z = cos2 tY for Y (α(t)) = (0, 0,−1), a
known parallel vector field, then

∇⊤
α′Z = ∇⊤

α′(cos2 t Y ) =
d

dt

(
cos2 t

)
Y + cos2 t∇⊤

α′Y = −2 sin t cos t Y ̸≡ 0.

This illustrates the point that parallel is about more than just direction, it also concerns length
(which is unlike how we use the term in elementary geometry and linear algebra). Therefore,
among the many covariant derivatives that exists on a Riemannian manifold, we are interested
in those whose parallel transport preserves length and angle.

Let us now turn this intuition into a definition. Suppose M is a Riemannian manifold with
metric g and that ∇ is a connection that preserves the lengths and angles of parallel transport
vectors. For any curve γ, let X,Y be parallel fields along γ with respect to ∇. This means that
g(X,Y ) is a constant function along γ. For all smooth functions a, b, we must have

d

dt
g(aX, bY ) =

d

dt

(
ab g(X,Y )

)
=
da

dt
bg(X,Y ) + a

db

dt
g(X,Y ) + ab

d

dt
g(X,Y )

= g(a′X, bY ) + g(aX, b′Y ) + 0.

On the other hand
∇γ′(aX) = a′X + a∇γ′X = a′X.

Therefore we make the definition

Definition 3.50. A covariant derivative ∇ is called metric-compatible or a metric connection
if for all vector fields X,Y, Z

Z
(
g(X,Y )

)
= g
(
∇ZX,Y

)
+ g
(
X,∇ZY

)
.

The choice to define this property using a third vector field Z instead of the tangent vector γ′ is
purely a matter of style. The converse of the above argument is immediate: if X,Y are parallel
along a curve γ then the right hand side is zero and thus g(X,Y ) is constant on the curve.

Example 3.51 (3-Sphere). We can show that the left and right covariant derivatives are
compatible with the metric on S3 coming from R4. Write vector fields X = XiEi and Y =
Y iEi with respect to the left-invariant basis fields from Example 3.45. By the property of
quaternions that a · b = Re āb we see that

Ei · Ej = Re piipij = Re īip̄pij = Re īiij = ii · ij ,

since p ∈ S3 has unit length. In particular it is constant on all of S3. Additionally, the covariant
derivatives of the Ei are zero in every direction. Therefore, similar to the calculation before
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the definition, we have

Z(X · Y ) = Z(XiY j Ei · Ej) = Z(Xi)Y j Ei · Ej +XiZ(Y j)Ei · Ej

=
(
Z(Xi)Ei

)
· Y +X ·

(
Z(Y j)Ej

)
=
(
Z(Xi)Ei +Xi∇L

ZEi

)
· Y +X ·

(
Z(Y j)Ej + Y j∇L

ZEj

)
=
(
∇L

ZX
)
· Y +X ·

(
∇L

ZY
)
.

This shows that ∇L is metric-compatible.

For ∇R we can reuse some of this calculation. What changes is that ∇R
ZEi may not be zero.

Instead ∇R
ZEi = Zk[Ek, Ei]. We need to prove a version of the cyclic property for the triple

product (for vectors in R3 we have a · (b× c) = b · (c× a)):

[Ek, Ei] · Ej + Ei · [Ek, Ej ] = Re (ikii − iiik)ij +Re īi(ikij − ijik)

= Re(iiikij − ikiiij − iiikij + iiijik)

= Re(−ikiiij + iiijik) = 0.

This allows us to write

Z(X · Y ) =
(
Z(Xi)Ei

)
· Y +X ·

(
Z(Y j)Ej

)
+XiY jZk([Ek, Ei] · Ej + Ei · [Ek, Ej ])

=
(
Z(Xi)Ei

)
· Y +X ·

(
Z(Y j)Ej

)
+Xi∇R

ZEi · Y + Y jX · ∇R
ZEj

=
(
∇R

ZX
)
· Y +X ·

(
∇R

ZY
)
.

This proves that ∇R is also metric-compatible.

It is useful to reduce the metric-compatibility condition to a condition on the Christoffel coeffi-
cients in some chart.

Lemma 3.52. Let a connection ∇ in some chart be described by the Christoffel coefficients Γk
i j.

It is compatible with the metric if and only if

∂kgi j = Γl
k igl j + Γl

k jgi l(3.53)

Proof. Notice that the formula for metric-compatibility is C∞-linear in Z, so it enough to show
it holds for each coordinate basis vector. The following calculation is a set of equivalences:

∂k
(
g(X,Y )

)
= g
(
∇∂kX,Y

)
+ g
(
X,∇∂kY

)
∂k
(
XiY jgi j

)
= g
(
(∂kX

i +X lΓi
k l)∂i, Y

j∂j
)
+ g
(
Xi∂i, (∂kY

j + Y lΓj
k l)∂j

)
∂kX

iY jgi j +Xi∂kY
jgi j +XiY j∂kgi j = (∂kX

i +X lΓi
k l)Y

jgi j +Xi(∂kY
j + Y lΓj

k l)gi j

XiY j∂kgi j = X lΓi
k lY

jgi j +XiY lΓj
k lgi j

∂kgi j = Γl
k igl j + Γl

k jgi l.

In other words, a covariant derivative is metric-compatible if and only if its Christoffel coefficients
satisfy (3.53).

The above equation seems to say that metric-compatibility is a rather strong condition. We
know that there are n3 choices of smooth functions for the Christoffel coefficients, and counting
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the possible values for i, j, k gives n3 conditions. It is almost enough to guarantee uniqueness,
but not quite, because the we get the same condition if we swap i and j. However, metric-
compatibility and torsion-free are enough to ensure uniqueness. This result is given a rather
impressive sounding name, though sometimes it is called a theorem and other times a lemma.
We have our cake and eat it too:

Theorem 3.54 (Fundamental Lemma of Riemannian Geometry). On every Riemannian man-
ifold there exists a unique metric-compatible torsion-free covariant derivative.

Proof. Our strategy for the proof is as follows. First we will establish the so-called Koszul
formula. Uniqueness is then a direct consequence. To prove existence we will show that the
Koszul formula defines a torsion-free metric-compatible covariant derivative in every chart. Since
we already have uniqueness, we can conclude that these give a well-defined covariant derivative
on the whole manifold.

The idea of the Koszul formula is to use the symmetries of the metric and the Lie bracket to get
an expression with exact one covariant derivative. Begin with the metric-compatibility property
and then use the fact that torsion is zero:

Z
(
g(X,Y )

)
= g
(
∇ZX,Y

)
+ g
(
X,∇ZY

)
= g
(
∇ZX,Y

)
+ g
(
X,T (Z, Y ) +∇Y Z + [Z, Y ]

)
= g
(
∇ZX,Y

)
+ g
(
X,∇Y Z

)
+ g
(
X, [Z, Y ]

)
.

Now write this equation two more times with the vector fields permuted

Y
(
g(Z,X)

)
= g
(
∇Y Z,X

)
+ g
(
Z,∇XY

)
+ g
(
Z, [Y,X]

)
X
(
g(Y,Z)

)
= g
(
∇XY, Z

)
+ g
(
Y,∇ZX

)
+ g
(
Y, [X,Z]

)
.

Notice that of the six possible permutations, only ∇ZX, ∇Y Z and ∇XY occur. This is a result
of using the torsion-free property. Each of the three covariant derivatives occurs twice. Now,
add any two equations and subtract the other. We will add the second and third and subtract
the first, but it’s not important which you choose.

X
(
g(Y, Z)

)
+ Y

(
g(Z,X)

)
− Z

(
g(X,Y )

)
= 2g

(
Z,∇XY

)
+ g
(
Z, [Y,X]

)
+ g
(
Y, [X,Z]

)
− g
(
X, [Z, Y ]

)
.

If you like, you can clean this up a little, though the role each of the vector fields play in
g
(
Z,∇XY

)
is different, so there cannot be perfect symmetry in the formula. Here is a version I

like:

2g
(
∇XY,Z

)
= X

(
g(Y, Z)

)
− g
(
X, [Y,Z]

)
+ Y

(
g(X,Z)

)
− g
(
Y, [X,Z]

)
− Z

(
g(X,Y )

)
+ g
(
Z, [X,Y ]

)
This is the Koszul formula. Since the metric is non-degenerate, what it shows is that if there is
a metric-compatible torsion-free covariant derivative then it can be calculated purely in terms
of Lie brackets and inner products. Therefore we have established uniqueness.

For existence, it is possible to take the Koszul formula as the definition and directly check all
the required properties. It is easier however to first reduce the Koszul formula to an expression
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in charts. Choose any chart and suppose that X = ∂i, Y = ∂j , Z = ∂k are coordinate vector
fields. The Lie brackets are zero. We get

2g(Γl
i j∂l, ∂k) = 2Γl

i jgl k = ∂igj k + ∂jgi k − ∂kgi j .

If we view the left hand side in matrix notation rather than index notation, we see that to solve
for Γ we need to invert the matrix G = (gi j). There is a sneaky convention that the components
of the inverse matrix use upper indices (gi j) = G−1. With this convention, the fact that these
matrices are inverse can be written gi jgj k = δik. In index notation, multiplying by the inverse
matrix looks like Γl

i jgl kg
km = Γl

i jδ
m
l = Γm

i j . Thus we can write

(3.55) Γm
i j =

1

2
gkm

(
∂igj k + ∂jgi k − ∂kgi j

)
.

So given a metric g, define a covariant derivative on this chart using this formula for the Christof-
fel coefficients. Exercise 3.33 tells us that this does indeed define a covariant derivative on this
chart, but it remains to show that it is metric-compatible and torsion-free. Torsion-free is an
easy because the above formula is symmetric in i and j. Using the Christoffel coefficients defined
through the Koszul formula, we see that the condition of Lemma 3.52 satisfied:

2Γl
k igl j + 2Γl

k jgi l =
(
∂kgi j + ∂igk j − ∂jgk i

)
+
(
∂kgj i + ∂jgk i − ∂igk j

)
= 2∂kgi j .

Therefore the covariant derivative that we have defined in each chart is metric-compatible and
torsion-free. As mentioned at the outset of the proof, it only remains to show that this definition
in each chart agrees, but this follows due to uniqueness.

We celebrate this result with more terminology. It honours the Italian mathematician Tullio
Levi-Civita, who developed much of the ‘tensor calculus’ (covariant, contravariant, indices, etc).
His name tricks many students (myself included) into thinking there are two mathematicians
Levi and Civita. In response to being asked what he liked best about Italy, Einstein once said
“spaghetti and Levi-Civita”.

Definition 3.56. The unique metric-compatible torsion-free covariant derivative on a Rieman-
nian manifold is called the Levi-Civita connection or the Riemannian connection.

Example 3.57 (Euclidean Space). On any open subset of Rn with the dot product as metric,
the Levi-Civita connection is ∇euc from Example 3.21. Because its Christoffel coefficients
are identically zero, obviously it is torsion-free and satisfies Equation (3.53) so is metric-
compatible.

Example 3.58 (3-Sphere). A corollary of Lemma 3.52 is that the set of metric-compatible
covariant derivatives has a affine structure. Corollary 3.25 shows us that the affine combi-
nation of covariant derivatives is again a covariant derivative. The Christoffel coefficients
of the new covariant derivative is the same affine combination of Christoffel coefficients
(Γt)ki j = (1 − t)(Γ0)ki j + t(Γ1)ki j . Inserting this into Equation (3.53) shows that such an
affine combination is also metric-compatible.

We saw in Example 3.51 that both ∇L and ∇R were metric-compatible. Therefore ∇LC =
1
2∇

L+ 1
2∇

R is metric-compatible. Additionally, we proved in Example 3.47 that it is torsion-
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free. Therefore ∇LC really is the Levi-Civita connection for S3.

Another obvious example of a Levi-Civita connection would be ∇⊤ on S2. Instead of proving
it for the specific case, instead we generalise the construction to any Riemannian immersed
submanifold.

Definition 3.59 (Tangent Connection). Let M → N be an Riemannian immersed submanifold.
We identify the manifold M with its image under the immersion to simplify the statement. Let
∇N be the Levi-Civita connection of N . We define the tangent connection on M to be the
covariant derivative

(∇⊤
XY )|p = proj

TpM
∇N

XY.

This is definition extends the previous definition from Example 3.26 because ∇euc is the Levi-
Civita connection of Rn.

Theorem 3.60 (Gauss Formula). The tangent connection is the Levi-Civita connection of M .

Proof. The proof that it is in fact a covariant derivative is entirely similar to the corresponding
statement in Example 3.26. We check the three properties of a covariant derivative:

∇⊤
fX+X̃

Y = proj
TpM

∇N
fX+X̃

Y = proj
TpM

(
f∇N

XY +∇N
X̃
Y
)
= f∇⊤

XY +∇⊤
X̃
Y,

∇⊤
X(Y + Ỹ ) = proj

TpM

(
∇N

XY +∇N
X Ỹ
)
= ∇⊤

XY +∇⊤
X Ỹ ,

∇⊤
X(fY ) = proj

TpM

(
X(f)Y +∇N

XY
)
= X(f)Y + f∇⊤

XY,

using that Y is already tangent to M . You might observe that this part of the proof works for
any covariant derivative and that we have not yet used the metric-compatibility or torsion-free
of ∇N .

For torsion-free, we need to know that if X,Y are tangent to M that [X,Y ] is too, even when
we consider them as vector fields on N . To prove this fact requires a proper investigation of
submanifolds, and the construction of a special chart on N that aligns with a chart on M . This
is beyond the scope of this course, which has tried to avoid manifold theory as much as possible.
We have seen an example of this phenomenon though: in Example 3.45 the Lie bracket of the
Ei fields was again an Ei field. Assuming this result,

T⊤(X,Y ) = ∇⊤
XY −∇⊤

YX − [X,Y ] = proj
TpM

(
∇N

XY −∇N
Y X − [X,Y ]

)
= proj

TpM
TN (X,Y )

is zero. The generalised statement for arbitrary connections would be that the tangent connec-
tion is torsion-free iff the torsion of ∇N is perpendicular to TpM at every point of M . Though
we hadn’t defined it, one could also say iff TN lies in the normal bundle of M .

Lastly, we need to show that the tangent connection is metric-compatible. This is where we
need to use that M is Riemannian immersed, so that the metric on M and the metric on N
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agree for tangent vectors to M .

Z
(
gM (X,Y )

)
= Z

(
gN (X,Y )

)
= gN

(
∇N

ZX,Y
)
+ gN

(
X,∇N

Z Y
)

= gN
(
proj
TpM

∇N
ZX,Y

)
+ gN

(
X,proj

TpM
∇N

Z Y
)

= gN
(
∇⊤

ZX,Y
)
+ gN

(
X,∇⊤

ZY
)

= gM
(
∇⊤

ZX,Y
)
+ gM

(
X,∇⊤

ZY
)
.

To explain the working here a little, for any vector in TpN we can split it into a part in TpM
and a part perpendicular to TpM . Because Y ∈ TpM , the inner product of Y with a vector
perpendicular to TpM is zero. Thus we can go from the first to the second line.

Now we know that ∇⊤ is a metric-compatible torsion-free covariant derivative on M . By the
uniqueness in Theorem 3.54, it is the Levi-Civita connection.

To close the chapter, we revisit the question “why torsion-free”? Our first answer was that it is a
natural expectation, based on the commutativity of partial derivatives in the euclidean setting.
Our second answer is that torsion-free is a matter of convenience:

• The most common connections, namely the euclidean connection ∇euc and the tangent
connection ∇⊤ are torsion-free.

• The Levi-Civita connection is unique and the Koszul formula allows it to be calculated.

• For many applications, whether or not a connection has torsion makes no difference. So
absorbing the torsion doesn’t lead to a loss of generality. We will see this in action in the
next chapter.



Chapter 4

Geodesics

This chapter is a continuation of the idea of parallel transport in Section 3.4 . I debated whether
to move that section to this chapter, but ultimately decided linking covariant derivatives and
parallel transport was necessary as motivation. But perhaps it would be worthwhile to read
that section again now.

In this chapter we develop the theory of geodesics, which generalise the notion of a ‘straight
line’. To put the question provocatively: what does it mean to have a straight line in a curved
space? Consider this question for S2 if somebody asked you to fly an aeroplane in a straight line
between two cities. A reasonable definition would be a flight path that did not require steering
the plane’s control stick. This is the same as the idea of ‘walking without turning’ that we used
previously in our thought experiment. Such paths are called geodesics. On the other hand, this
is Riemannian geometry. In euclidean space, the shortest path between two points is a straight
line. Perhaps this should be taken as the defining feature of straight lines. It turns out that
this length-minimising property is also true of geodesics, so that the two possible definitions
coincide.

First we will formalise the definition of geodesic. Although we mostly restrict ourselves to
consideration of the Levi-Civita connection, we do examine in the the mutual dependence of
geodesics and connections. Using the length of a curve we define a distance function on a
Riemannian manifold as the infimum of the length of all smooth curves. We will show that
geodesics are critical points of the length functional, using a proof that is reminiscent of the
proof that minimal surfaces are critical for area from Section 1.6. Showing that they are locally
length minimising, surprisingly, is significantly more difficult. This leads us to construct special
coordinates, so-called normal coordinates, in which the geodesic structure of the Riemannian
manifold is a little clearer.

4.1 Straight Lines

Adding to the discussion above, we understand that ‘walking without turning’ along a curve α
means that the tangent of the curve is parallel. The technicality is that α′ is not a vector field
on the manifold, but this is not a problem because it is a vector field along the curve α and we
know that that is sufficient to define its covariant derivative.

76
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Definition 4.1. A curve α is called a geodesic of a covariant derivative ∇ if

∇α′α′ = 0.

In a chart we may write α = (αi) and use the Christoffel coefficients to describe the covariant
derivative:

0 = ∇α′α′ =
dαi

dt

∂

∂xi

(
dαk

dt
∂k

)
+
dαi

dt

dαj

dt
Γk
i j∂k =

[
d2αk

dt2
+ Γk

i j

dαi

dt

dαj

dt

]
∂k.

This is generally know as the geodesic equation. It is of course the parallel transport equa-
tion (3.37) with Y = α′. But since the vector field in this case is linked the the curve, we now
have a second-order nonlinear system of ODEs. However we can use a trick to write this as a
system of first order ODEs:

dαk

dt
= vk(t),

dvk

dt
= −Γk

i j(α(t)) v
i(t)vj(t).

From this we conclude the local existence and uniqueness of geodesics in a neighbourhood of
every point and in every direction. Specifically, given a point p ∈ M and a direction v ∈ TpM
existence implies that there is a curve γp,v : (a, b) → M with γv(0) = 0 and γ′v(0) = v. We will
drop the p when it is unambiguous from context. We assume that γp,v : (a, b) →M is maximal
in the sense that any other solution is a restriction of γp,v to some smaller domain (a′, b′) ⊂ (a, b).
This assumption may always be achieved, because uniqueness makes it possible to glue together
any two solutions into a ‘longer’ one. Related to this is the observation that if p̃ = γp,w(t0) and
w̃ = γ′p,w(t0), then

γp̃,w̃(t) = γp,w(t+ t0).

Example 4.2 (Helicoid). Consider the helicoid with the inherited metric from R3 and the
tangent connection. We consider again in this example two (sets of) curves: radial lines and
helices. First there are radial curves α(t) = Φ(t, v) = (t cos v, t sin v, bv) for some v ∈ R. The
tangent connection is the projection of the derivational derivative in R3 to the tangent plane
of the helicoid. The directional derivative in the direction α′ is the derivative with respect to
t. Hence ∇euc

α′ α′ = α′′ = 0, because α is linear in t. Hence radial lines are geodesics of the
helicoid.

On the other hand we have the helices β(t) = Φ(u, t) = (u cos t, u sin t, bt) for some u ∈ R. As
above ∇euc

β′ β′ = β′′ but this time it is not zero. Now we reuse our previous calculations. As
remarked upon in Example 1.22, β′′ already lies in the tangent plane. Hence

∇⊤
β′β′ = proj

TβΣ
β′′ = β′′ = (−u cos t,−u sin t, 0) ̸= 0.

This shows that the helix is not a geodesic for helicoid, unless u = 0 (in which case it is the
central axis of the helicoid).

How do the geodesics of a manifold depend on the choice of covariant derivative? Following
Lemma 3.23 we consider the connections ∇ and ∇̃ = ∇+A. In a chart we may write A(∂i, ∂j) =
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Ak
i j∂k and since A is C∞-bilinear these functions completely determine A. Moreover Γ̃k

i j =

Γk
i j +Ak

i j . Let α be a geodesics of ∇. Then the geodesic equation for ∇̃ reads

d2αk

dt2
+
(
Γk
i j +Ak

i j

) dαi

dt

dαj

dt
=
d2αk

dt2
+ Γk

i j

dαi

dt

dαj

dt
+Ak

i j

dαi

dt

dαj

dt
= Ak

i j

dαi

dt

dαj

dt
.

Thus α is also a geodesic of ∇̃ if and only if this quantity is zero. What is obscured by index
notation is the symmetry here. Using a relabelling of summation indices

2Ak
i j

dαi

dt

dαj

dt
= Ak

i j

dαi

dt

dαj

dt
+Ak

j i

dαj

dt

dαi

dt
=
(
Ak

i j +Ak
j i

) dαi

dt

dαj

dt
.

This can of course be zero for some curve α. If A is antisymmetric, A(X,Y ) = −A(X,Y ),
then this quantity is zero for all curves, and in particular the two connections have the same
geodesics. Conversely, we know that every vector w ∈ TpM at every point is the tangent vector
to some geodesic of ∇. If the two connections have the same geodesics, then this forces A to be
antisymmetric. Therefore we have proved

Theorem 4.3 (Geodesic Agreement). Two covariant derivatives have exactly the same geodesics
if and only if they differ by an antisymmetric A.

In particular, if we absorb the torsion of a connection ∇̃ = ∇− 1
2T , then this does not change the

geodesics. This justifies our comment at the end of Chapter 3 that torsion is often unimportant.

Remark 4.4. For the remainder of the chapter we will only consider the Levi-Civita connection.

The geodesic equation says that the curve is parallel transporting its own tangent vector. If the
connection is metric-compatible then this means that the length of the tangent vector is not
changing. In Riemannian geometry, we call ∥α′∥g the speed of the curve α.

Theorem 4.5 (Constant Speed). Let M be a Riemannian manifold and ∇ a metric-compatible
connection. Then the geodesics of ∇ have constant speed.

Proof. To remove the square root from the norm, observe that a continuous function is constant
if and only if its square is constant. The result now follows from the definition of metric-
compatibility:

d

dt
g(α′, α′) = g(∇α′α′, α′) + g(α′,∇α′α′) = 0.

For any point there is a special geodesic called the constant geodesic. It is the geodesic associated
to the zero vector. One can check easily that γ0(t) = p for all t ∈ R solves the geodesic equation
with the initial condition γ0(0) = p and γ′0(0) = 0. The interpretation is that walking in
a straight line with initial speed zero means standing still. As a function R → M they are
constant, hence the name. This degenerate example is none-the-less important to include.

Notice that a geodesic is a parameterised curve. To give an example, both α(t) = (t, 0) and
β(t) = (2t, 0) are geodesics in R2. Their images in R2 but they are not equal as parameterised
curves because they have different speeds. But our intuition tells us that a straight line is about
direction, not speed.
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The following lemma tells us how geodesics in the same direction with different initial speeds
are related. It says that they have the same image and differ only by a constant rescaling factor.
For this reason, geodesics that only differ by speed are often conflated with one another.

Lemma 4.6 (Rescaling Lemma). Let w ∈ TpM and c ∈ R. Whenever one expression is defined,
so is the other and they are equal:

γw(ct) = γcw(t).

Proof. We deal with the case c = 0 separately.1 On the left hand side we have γw(0t) = γw(0) = p
for all t ∈ Rn. On the right we have the constant geodesic γ0(t), which we know is equal to p
for all time. Hence the two sides are defined for all t ∈ R and equal.

Now assume c ̸= 0. We use the first-order version of the geodesic equation, because it makes
the idea a little clearer. As per definition, γw is the geodesic with an initial direction of w. Let
v = γ′w. It obeys

dγkw
dt

= vk(t),
dvk

dt
= −Γk

i j(γw(t)) v
i(t)vj(t), γw(0) = p, v(0) = w.

Now consider the reparameterised curve α(t) = γw(ct). The starting point has not changed:
α(0) = γw(0) = p. But the velocity has changed:

dα(t)

dt
=
dγkw(ct)

dt
= c

dγkw
dt

(ct) = cv(ct) =: u(t).

In particular u(0) = cv(0) = cw. Finally, we see for the second ODE

duk

dt
= c

dvk(ct)

dt
= c2

dvk

dt
(ct) = −c2Γk

i j(γw(ct)) v
i(ct)vj(ct) = −Γk

i j(α(t))u
i(t)uj(t).

Thus we see that (α, u) is a solution of the same ODE and IVP that γcw(t) solves. By uniqueness
and maximality of γcw, we conclude that α is the restriction of γcw. But we can also run this
argument in the reverse direction and conclude that α̃(t) = γcw(c

−1t) is a restriction of γw. The
conclusion must be that one exists if and only if the other does, and they are equal.

A particular case is for c = −1. The lemma says γ−w(t) = γw(−t): the geodesic in the reverse
direction is the same as walking backwards. If we choose a time t0 and set p̃ = γ(t0) and
w̃ = γ′p,w(t0), then we have

γp̃,−w̃(t0) = γp̃,w̃(−t0) = γp,w(−t0 + t0) = p.

This says that if you walk along a geodesic for a certain amount of time t0, turn around and
walk back for the same amount of time, then you end back where you started. These properties
might seem obvious, but it is important to question whether our intuition carry over to the
general setting.

Exercise 4.7. Show that a reparameterisation β(t) = α(g(t)) of a non-constant geodesic α is
again a geodesic if and only if g(t) is a linear function.

Exercise 4.8. Show that any curve α with the property that∇α′α′ = f(t)α′(t) for some function
f can be reparameterised to a geodesic.

1In the proof of Lee Lemma 5.8 any c ∈ R is allowed but certain places in the proof use 1/c.
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Finally, what can be said about geodesics in an immersed manifold? For this question to be
sensible, we should use the tangent connection on M from Definition 3.59. To recap, we have
a Riemannian manifold N with the Levi-Civita connection and M is Riemannian immersed in
N . The tangent connection on M is the projection of ∇N to the tangent space of M . A curve
α on M is a geodesic iff

0 = ∇⊤
α′α′ = proj

TpM

(
∇N

α′α′) .
Because ∇α′α′ is a second-order derivative of α we interpret it as a type of acceleration. The
above equation says that a curve is a geodesic of M when its acceleration in N is always
perpendicular to M .

We can relate this back to normal curvature in Section 1.5. In that situation we have N = R3

and the connection is just ordinary directional derivatives ∇euc. Therefore ∇N
α′α′ = α′′. The

acceleration α′′ of a curve in R3 has components in the T and N directions, Equation (1.27). If
we project this onto the tangent plane then we get

∇⊤
α′α′ = ∥α′∥

(
d∥α′∥
ds

T + ∥α′∥κproj
TpM

N

)
.

Hence we see that α is a geodesic of the surfaceM if and only if α is parameterised with constant
speed and N , the normal of the curve, is perpendicular to M . Since any regular curve can be
reparameterised by arc-length, the first condition is only a technical point. If N is perpendicular
toM this means that the angle between N and the surface normal ν is zero. In other words, the
normal curvature is equal to the curvature of α. Traditionally, one defines the geodesic curvature
of α as

κg = κ∥ proj
TpM

N∥ = κ sin θ.

This is a measure of how far an arc-length parameterised curve is from being a geodesic. Alter-
natively, the observation κ2n+κ

2
g = κ2 (since the normal and geodesic curvatures are projections

of the curvature vector) leads us to say a curve is a geodesic if its curvature is entirely normal.

Example 4.9 (Tangent Connection). Consider S2. Consider a geodesic α and suppose with-
out loss of generality that α is parameterised by arc-length. From the above discussion, a
geodesics α must have α′′ in the normal direction to the sphere, N · ν = ±1. For the sphere
ν = α. Therefore ν ′ = α′ = T . On the other hand N ′ = −κT + τB, using the Frenet
equations, and we can conclude that τ ≡ 0. This proves that the geodesics of the sphere lie in
the plane containing the normal and their tangent vector. These are exactly the great circles.
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4.2 The Hyperbolic Plane

So far we have seen the example of S2 and R2. We have the sense that these spaces are
special. There is a another important two-dimensional Riemannian manifold: the hyperbolic
plane H2. Unlike the sphere, a theorem of Hilbert proves that the hyperbolic plane cannot be
isometrically immersed into R3.2 Therefore we really need to use the tools of manifolds and
charts to understand this space, there can be no resorting to geometric tricks in euclidean space.

This space was first discovered in connection to the ‘parallel postulate’ of Euclid. Euclid gave
five postulates3, which we would call axioms,

α′ Let it have been postulated to draw a straight-line from any point to any point.

β′ And to produce a finite straight-line continuously in a straight-line.

γ′ And to draw a circle with any center and radius.

δ′ And that all right-angles are equal to one another.

ε′ And that if a straight-line falling across two (other) straight-lines makes internal angles
on the same side (of itself whose sum is) less than two right-angles, then the two (other)
straight-lines, being produced to infinity, meet on that side (of the original straight-line)
that the (sum of the internal angles) is less than two right-angles (and do not meet on the
other side).

Clearly one of these is not like the others. The fifth postulate is called the parallel postulate,
because it is equivalent to Playfair’s axiom:

There is at exactly one line that can be drawn parallel to another given one through
an external point.

There are several interesting geometries that come from replacing this axiom. If there are no
parallel lines then we get projective geometry (one intersection) or spherical geometry (two
intersections). If there are more than one parallel line then we get hyperbolic geometry.

For our purposes we will introduce the hyperbolic plane by fiat. Like the euclidean plane it can
be covered by a single coordinate chart. There are several ‘models’ of the hyperbolic plane, but
we will use the ‘half-plane’ model where the geodesics have the easiest formulas.

Definition 4.10. The hyperbolic plane is the following manifold: Let I = {0},

U0 = H2 =
{
(x, y) ∈ R2 | y > 0

}
,

and φ0 0 = id, so that (2, I, {U0}, {φ0 0}) is its atlas. Additionally, it is a Riemannian manifold
with the metric

gi j(x, y) =

(
y−2 0
0 y−2

)
given in the U0 chart.

2It is unknown whether it can be isometrically immersed into R4, but it can be into R5

3Here I am using the translation of Richard Fitzpatrick, based on the authoritative Greek edition of J L
Heiberg. A beautiful version designed for teaching can be found here, but it changes the numbering.

https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
https://www.c82.net/euclid/en/book1/#axioms
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The first common misconception to address is the ‘boundary’ at y = 0. As a Riemannian
manifold, there is no boundary. If you lived in the hyperbolic plane, as you tried to approach
y = 0 at constant speed you would find that the coordinates were changing at an every decreasing
rate. If we explain this using vectors in coordinates, for y small, a unit-length vector has very
small coefficients, and therefore moving at unit-speed makes only a small change in coordinates.
Conversely, for large y, a unit-length vector has large coefficients. This is analogous to looking
at the world in the Mercator map, where a plane on the equator changes its longitude far less
than a plane near the poles even at the same speed.

Let us compute the Christoffel coefficients for the Levi-Civita connection. Only two derivatives
of the metric are non-zero

∂2g1 1 = −2y−3, ∂2g2 2 = −2y−3

and the inverse matrix is

gi j =

(
y2 0
0 y2

)
.

Using Equation (3.55)

2Γk
i j = y2

(
∂igj k + ∂jgi k − ∂kgi j

)
Γ2
2 2 = Γ1

1 2 = Γ1
2 1 = −y−1

Γ2
1 1 = y−1,

and the other four are zero.

This means that we can try to solve the geodesic equation. It is certainly possible to solve it
directly, but we will solve it in a special case and then use isometries to obtain the full solution,
as this is geometrically more interesting. The special case is the following: let p = (0, 1)
the the starting point of the geodesic and v = ∂2 be its initial direction. If the geodesic is
α(t) = (x(t), y(t)) then the geodesic formula is

0 = x′′ + Γ1
1 2x

′y′ + Γ1
2 1y

′x′ = x′′ − 2y−1x′y′

0 = y′′ + Γ2
1 1x

′x′ + Γ2
2 2y

′y′ = y′′ + y−1(x′)2 − y−1(y′)2.

Notice that if (x, y) is a solution to these ODEs, so too is (−x, y). Moreover, −x(0) = −0 = 0
and −x′(0) = −0 = 0, so they have the same initial condition. Therefore they must be equal,
in other words x(t) = −x(t), which implies x(t) ≡ 0. The second ODE now simplifies to

0 = y′′ − y−1(y′)2

0 =
y′′

y′
− y′

y

C = ln y′ − ln y.

The initial conditions y(0) = y′(0) = 1 force C = 0. We continue

y′

y
= 1

y = Aet = et,
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again using the initial conditions. Thus the unique geodesic through (0, 1) with initial vector ∂2
is the vertical line γ(t) = (0, et).

Already in this argument we already saw a glimpse to the method we will use to find all other
geodesics. We used the reflection R : (x, y) 7→ (−x, y). This preserved the geodesic equations
because this is in fact an isometry of H2. After we strip away the terminology of Definitions 3.4
and 3.9, what we see is that an isometry is a diffeomorphism, in particular a bijective map,
such that the pushforward of vector doesn’t change the inner product. The pushforward of
v ∈ T(x,y)H2 by reflection is

TR(v1∂1
∣∣
p
+ v2∂2

∣∣
p
) = −v1∂1

∣∣
q
+ v2∂2

∣∣
q

for p = (x, y) and q = (−x, y), and

g(TR(v), TR(w)) = g(−v1∂1
∣∣
q
+ v2∂2

∣∣
q
,−w1∂1

∣∣
q
+ w2∂2

∣∣
q
)

= v1w1g1 1(q) + v2w2g2 2(q)

= v1w1g1 1(p) + v2w2g2 2(p)

= g(v, w),

because the components of the metric are independent of x.

Another obvious isometry is horizontal translation (x, y) 7→ (x+a, y). From this we can conclude
that the geodesic through (a, 1) with initial direction ∂2 is γ(t) = (a, et). These are simply all
the vertical lines.

The translation (x, y) 7→ (x, y+a) is not an isometry. For one thing, it is not even a well-defined
map on H2, which only has the points of the upper half-plane. But even between points where
it is well defined, we see that the metric is changed because g1 1(x, y + a) ̸= g1 1(x, y).

It turns out that simple scaling of the points Dr : (x, y) 7→ (rx, ry) is an isometry. This is called
dilation. We compute

g(TDr(v), TDr(w)) = g(rv1∂1
∣∣
q
+ rv2∂2

∣∣
q
, rw1∂1

∣∣
q
+ rw2∂2

∣∣
q
)

= r2v1w1g1 1(q) + r2v2w2g2 2(q)

= r2v1w1(ry)−2 + r2v2w2(ry)−2

= v1w1g1 1(p) + v2w2g2 2(p)

= g(v, w).

Unfortunately, this does tell us any new geodesics, because it takes vertical lines to vertical lines.

We need a different idea. Notice that because the matrix of the metric is a scalar of the euclidean
metric (conformal), hyperbolic angles and euclidean angles are equal:

cos θhyp =
g(v, w)

∥v∥g∥w∥g
=

y−2 v · w
y−1∥v∥ y−1∥w∥

= cos θeuc.

Therefore we should look for transformations of the upper half-plane that preserve euclidean
angles (conformal). Perhaps you have encountered circle inversion before. It restricts to give a
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bijective map on the upper half-plane S(x, y) = (x2 + y2)−1(x, y), because (0, 0) ̸∈ H2. We see
that, for p = (x, y), q = S(x, y),

g
(
TS(∂1

∣∣
p
), TS(∂1

∣∣
p
)
)

= g
(
∥p∥−4[y2 − x2]∂1

∣∣
q
+ ∥p∥−4[−2xy]∂2

∣∣
q
, ∥p∥−4[y2 − x2]∂1

∣∣
q
+ ∥p∥−4[−2xy]∂2

∣∣
q

)
= ∥p∥−8[y2 − x2]2g

(
∂1
∣∣
q
, ∂1
∣∣
q

)
+ ∥p∥−8[−2xy]2g

(
∂2
∣∣
q
, ∂2
∣∣
q

)
= ∥p∥−8

(
[y2 − x2]2 + [−2xy]2

) (
∥p∥−2y

)−2

= ∥p∥−4
(
y4 − 2y2x2 + x4 + 4x2y2

)
y−2

= y−2 = g(∂1
∣∣
p
, ∂1
∣∣
p
).

The calculation for g
(
TS(∂2

∣∣
p
), TS(∂2

∣∣
p
)
)
is exactly the same. That leaves

g
(
TS(∂1

∣∣
p
), TS(∂2

∣∣
p
)
)

= g
(
∥p∥−4[y2 − x2]∂1

∣∣
q
+ ∥p∥−4[−2xy]∂2

∣∣
q
,+∥p∥−4[−2xy]∂1

∣∣
q
+ ∥p∥−4[x2 − y2]∂2

∣∣
q

)
= ∥p∥−4[y2 − x2]∥p∥−4[−2xy]g

(
∂1
∣∣
q
, ∂1
∣∣
q

)
+ ∥p∥−4[−2xy]∥p∥−4[x2 − y2]g

(
∂2
∣∣
q
, ∂2
∣∣
q

)
= 0 = g(∂1

∣∣
p
, ∂2
∣∣
p
).

Therefore S(x, y) = (x2 + y2)−1(x, y) is an isometry, not just conformal.

Remarkably circle inversion and the horizontal translations are all the isometries we need to get
all the geodesics. By applying S to the geodesic γ(t) = (a, et) we get the geodesic(

a

a2 + e2t
,

et

a2 + e2t

)
.

Looking on a graphing tool we see that they are semicircles centered on the x-axis. This is easy
to verify algebraically(

a

a2 + e2t
− 1

2a

)2

+

(
et

a2 + e2t

)2

=
(2a2 − a2 − e2t)2 + 4a2e2t

4a2(a2 + e2t)2
=
a4 + 2a2e2t + e4t

4a2(a2 + e2t)2
=

1

4a2
.

In particular we see that we have semicircles of every radius. By horizontal translation then,
the set of geodesics includes every vertical line as well as every semicircle centered on the x-axis
(from now on we will just say semicircle, leaving the centering implicit).

But in fact this accounts for every unit-speed geodesic. Choose any point p and any direction
v with ∥v∥g. If v is ±∂2, then the desired geodesic is the vertical line. For any other v, by
straightedge and compass (for coolness factor) one can construct a semicircle through that point
with the direction as tangent. This must be the unique geodesic. For non-unit-speed geodesics,
one can simply rescale t, using Lemma 4.6.

Exercise 4.11. Find all geodesics by solving the geodesic equation directly.

These isometries are not only transitive on the set of geodesics, but also on the set of points. This
is easily achieved by dilating (0, 1) to (0, y) and then a horizontal translation to (x, y). Every

https://www.desmos.com/calculator
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point can therefore be mapped to any other by first bringing it to (0, 1) and then sending it on
its way. Spaces with a transitive set of isometries are called homogeneous. But the hyperbolic
plane is also isotropic, it looks the same in every direction. This means that there is a full set
of isometric rotations. Begin with ∂2

∣∣
(0,1)

. Dilate and translate it to any point on a different

vertical line as above. We know that this vertical line is transformed by circle inversion to a
semicircle. A semicircle has every possible tangent direction except ±∂2. You can now translate
and dilate it back to (0, 1). This give every direction except −∂2. But this can be achieved
through two π/2 rotations.

Exercise 4.12. Argue that there is exactly one isometry that fixes (0, 1) and rotates its tangent
space by a given angle.

Exercise 4.13. Prove that a homogeneous space is isotropic at one point if and only if it is
isotropic at every point.

Now that we have determined the geodesics, we can comment on the similarities and differences
to other geometries. The first observation is that between any two points there is a unique
geodesic. Secondly any two geodesics can intersect at most once. Both of these properties are
similar to the euclidean plane but are in contrast to spherical geometry, where antipodal points
have infinitely many geodesics between them and every pair of geodesics intersects twice.

We can also consider the parallel postulate. Choose a geodesic and a point p external to it. We
know that there is an isometry that will transform the geodesic into the y-axis, so we assume
this without loss of generality. What are the geodesics through the point that do not cross
the y-axis? Not only is there the vertical line through p, there are infinitely many semicircles.
In particular, there is one semicircle through p which is tangent to the y-axis. This is called
a limiting parallel. The vertical line through p is also a limiting parallel, based on our earlier
explanation that as points increase in y value for constant x value, the distance between them
shrinks.

A triangle in the hyperbolic plane is of course a shape with three geodesic sides, none of which
are parallel. Just as for euclidean geometry, we can try to classify triangles up to isometry, which
is called congruence in elementary geometry. By isometry, we may bring any edge of the triangle
to the y-axis, so we assume that one vertex is at (0, 1) and the other (0, b). Let α be the angle
at (0, 1) and β the angle at (0, b). We see that this information already uniquely determines a
triangle, thus we have the ‘angle-side-angle’ rule of triangle congruence.

But more is true. There are restrictions on the angles for two other sides to intersect be able to
intersect, namely α+ β < π, just as for euclidean space. But unlike the classical situation, even
if α+β < π this is no guarantee that the two sides meet. For any α, β, there is some B > 1 such
that for b = B the sides are limiting parallels. As b ranges from B down to 1, the third angle
ranges from 0 (limiting parallel) to π − α − β (all three corners very close to (0, 1), so we can
approximate the circles by their tangents). Therefore the sum of angles in a hyperbolic triangle
is always less that π. Also note that the angle increases monotonically. This means there is a
1-to-1 correspondence between b and the third angle. In other words, two hyperbolic triangle
are congruent if and only if they have corresponding angles: the ‘angle-angle-angle’ rule!
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Exercise 4.14. Admire this Escher drawing.
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We close this section with a useful calculation method. It is often profitable to use complex
numbers x+ιy to describe the points of H2. The chief advantage is the ease of writing isometries.
Clearly horizontal translation and dilations are z 7→ z + a and z 7→ rz for a, r ∈ R respectively.
But inversion in the unit circle is z 7→ z̄−1 and reflection in the y-axis is z 7→ −z̄. As you can see
by the presence of complex conjugation, these later two isometries are orientation reversing; they
are both reflections after all. Therefore it is common to combine them to an isometry z 7→ −z−1.
This along with translation and dilation generate all orientation preserving isometries. A general
orientation preserving isometry is therefore

z 7→ az + b

cz + d

for a, b, c, d ∈ R with ad−bc = 1. Transformations of this form are calledMöbius transformations.
The set of isometries is three-dimensional so it was necessary to normalise the four constants,
and using the ‘determinant’ makes the formula for the inverse transform simple.
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4.3 Length and Distance

In the above discussion of hyperbolic triangle, we were careful not to speak of the length of the
sides because we simply have not yet defined length on a Riemannian manifold. Let us remedy
that situation. In euclidean space, we had a distance function already and in Theorem 1.6 were
able to show that the length of a path as in Definition 1.4 was the integral of its speed. In the
general case, we have no prior distance function, but the Riemannian metric does give allows us
to determine the speed. Therefore we ‘reverse’ these theorems:

Definition 4.15. In a Riemannian manifold M with metric g, the (Riemannian) length of a
smooth path α : [a, b] →M is defined to be

L(α) =

∫ b

a
∥α′(t)∥g dt.

The distance dg between two points is defined to be the infimum of the lengths of all smooth
paths connecting them.

Example 4.16 (Hyperbolic Plane). With this definition of length we can calculate the lengths
of geodesics in the hyperbolic plane. Because we obtained the geodesics by isometries, which
preserve the metric and therefore the length, it is sufficient to calculate the length of the
vertical geodesic. It has the constant speed parameterisation

γ(t) = (0, et).

Therefore

γ′(t) = (0, et),

∥γ′(t)∥2g = ∥(0, et)∥2g =
1

(et)2
[
02 + (et)2

]
= 1,

L(γ|[a,b]) =
∫ b

a
∥γ′(t)∥g dt =

∫ b

a
∥γ′(t)∥g dt = b− a.

To put this more geometrically, the length of the geodesic connecting (0, y1) and (0, y2) is
| ln y2 − ln y1| = ln |y2/y1|.

There are (at least) two equivalent definitions of the distance function on a Riemannian manifold
in the literature, with the difference being over which set of paths the infimum is taken. We
have chosen ‘smooth curves’. Perhaps more common is to choose ‘piecewise smooth curves’. A
curve is piecewise smooth if it is continuous and the set of non-smooth points is finite. These
non-smooth points are called corners. Smooth functions are clearly nicer to work with than
piecewise smooth function, if you work with the latter you are forever splitting the curve into
its smooth interval and you must provide correction terms for the corners. The advantage of the
piecewise approach is clear if you try to prove the triangle inequality for the distance function.
In the piecewise approach it is immediate because the concatenation of a piecewise smooth
curve from p to p′ and from p′ to p′′ is again piecewise smooth. However the concatenation
of smooth paths will in general not be a smooth path. Therefore the proof that this distance
function is a distance function, Corollary 4.26 will have to be delayed until after we have proved
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Corollary 4.25, the ‘corner rounding’ lemma. The proof that dg is symmetric is trivial and the
proof that it has positivity will be addressed in Corollary 4.20.

Remark 4.17. We see that the definition of the distance function implicitly assumes that there
is a smooth path between every point. For manifolds, connected, path-connected, and smooth-
path-connected are all equivalent. When we use the distance function, we assume that the
manifold is connected.

We truly need to take the infimum, even in the euclidean case. Consider U = R2 \ {0} and
two points p,−p. The distance between them is 2∥p∥. The unique path in the full plane that
achieves this is the straight line, but this is not a path in the manifold, because it would pass
through the removed origin. However, by taking paths that pass arbitrarily close to the origin,
we see that the distance between these points is still 2∥p∥

This leads to an important point: even for manifolds that are Riemannian immersed in euclidean
space the distance function of Definition 4.15 is not the restriction of the euclidean distance
function. Consider U = R2 \ B(0, 1). Now the (limiting) shortest path between p and −p
skims the boundary of the unit disk An easy estimate shows that any such path is longer than
2
√
1 + ∥p∥2, which is strictly greater than 2∥p∥. Therefore the distance function coming from

the Riemannian metric and the restriction of the euclidean distance function to U are different.
It is possible to show however that both generate the same topology.

Theorem 4.18. The topology induced by dg is equal to the topology of the M as a manifold.

Proof. Choose a point p and a chart U ⊂ Rn that contains it. Within this chart, there is a
convex compact neighbourhood K of p. In this chart we have the metric gi j as a matrix of
functions, but we can also consider the euclidean metric on this chart δi j . Consider all the
vectors on K that are unit-length with respect to δi j . This is a compact set K × Sn−1. Because
g is positive definite and continuous, it obtains a positive maximum C and minimum c on this
set of vectors. For any vector v ∈ TK, write v = ∥v∥eucv̂ with ∥v̂∥euc = 1, then

∥v∥eucc ≤ ∥v∥g = ∥v∥euc∥v̂∥g ≤ ∥v∥eucC.

If we apply this to paths, we obtain

(4.19) cLeuc(α) = c

∫ b

a
∥α′∥euc dt ≤ Lg(α) =

∫ b

a
∥α′∥g dt ≤ C

∫ b

a
∥α′∥euc dt = CLeuc(α).

Because K is convex, any two points can be joined with a straight-line, which achieves the
euclidean distance between those points. Hence for any smooth path from p to q

c deuc(p, q) ≤ cLeuc(α) ≤ Lg(α).

This proves that c deuc(p, q) is a lower bound for dg(p, q), and likewise C deuc(p, q) is an upper
bound. Hence for small balls measured with dg, there is a euclidean ball within it and containing
it. Since balls generate the topology, this shows the two topology are equal.

Corollary 4.20 (Positivity of Distance). dg(p, q) = 0 if and only if p = q.
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Proof. One direction is easy: if p = q take the constant path α(t) = p. This has length zero.

Assume then that dg(p, q) = 0. As discussed above we don’t know if there is a minimum length
path. Let αn be a sequence of smooth paths from p to q whose lengths are decreasing to zero.
Because the integral defining length is positive, any restriction of a curve decreases its length.
Choose a chart containing U containing p and a compact set K as in the previous proof. There
are two possibilities, either αn never leaves K or it leaves K for the first time at αn(tn) ∈ ∂K.
If it never leaves K, set tn = bn so that αn(tn) = q. Hence we have a sequence of points

qn = αn(tn) =

{
q

αn(tn) ∈ ∂K.

This is a sequence in the compact set K (if q ̸∈ K, this is not a contradiction, this just means
it will never occur in the sequence). Hence it has a convergent subsequence, whose limit q′ is
either q or a point in ∂K.

But now we know
deuc(p, q′) ≤ c−1dg(p, q′) ≤ c−1Lg(αn) → 0.

Hence p = q′. Therefore either p = q or p ∈ ∂K. But the second possibility is a contradiction,
because p is in the interior of K by definition.

Hopefully this is illustrative of the general strategy in this topic: We try to reduce the situation
to a single chart, and then in the chart we can compare our metric g with the easily understood
euclidean metric on the chart. With this in mind, we can now prove the corner rounding lemma.
First we give an example in the plane.

Example 4.21 (Curve Blending). Consider the piecewise smooth curve α : (−1, 1) → R2

given by

α(t) =

{
(t, 0) for t ≤ 0

(0, t) for t > 0

It has a corner at t = 0. We can think of this as the joining of the curve α0(t) = (t, 0) and
the curve α1(t) = (0, t).

Let ϕε(x) be a smooth step function that is 0 for x < −ϵ and 1 for x > ε. Then αε(t) :=
(1− ϕε(t))α0(t) + ϕε(t)α1(t) is a smooth curve that agree with α for t ̸∈ (−ε, ε).

The curve in the above example had a right angle at its corner, but actually that was not
particularly important. The key trick was to smoothly extend both sides of the curve past
the corner. It wasn’t even necessary that the two extensions intersected, the blending formula
will still produce a smooth curve. So then how can we know that every smooth curve can be
extended past the corner? We don’t try to do it exactly, we allow ourselves to ‘graft on’ at a
nearby point.

Example 4.22 (Curve Extension). Take a smooth curve α : (a, 0) → Rn. For any small
ε > 0, let βε be the tangent line to α at α(−2ε). Then blending the curve with its tangent
around the point of tangency produces

(1− ϕε(t+ 2ε))α(t) + ϕε(t+ 2ε)βε(t).
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This is well-defined for all t ∈ (a,∞) It agrees with α for t < −3ε and with βε for t > −ε.

Now we can use three blends to remove a corner from a piecewise smooth curve. In fact,
performing this operation on smaller pieces of the curve ever closer to the corner results in
curves that have almost the same length.

Lemma 4.23 (Corner Rounding, Euclidean). Let α : (a, b) → Rn be a piecewise smooth curve
with a single corner at t = 0. Then for every ε > 0 there exists a smooth curve αε : (a, b) → Rn

that agrees with α for |t| > 2ε. Moreover, limε→0 L(αε) = L(α).

Proof. The previous two examples have shown us how to construct αε. First, on both sides of
the corner, use Example 4.22 to extend α|(a,0) and α|(0,b) past 0. Then use Example 4.21 to
blend the two together at 0. In more detail, for t in (−3ε,−ε) we blended α|(a,0) with its tangent
β− at t = −2ε. Similarly for t in (ε, 3ε) we blended α|(0,b) with its tangent β+ at t = 2ε. And
for t ∈ (−ε, ε) we blended the two tangents together.

It only remains to show that this process hasn’t increased the length too much. Because length
is additive

L(αε)− L(α) =

∫ b

a
∥α′

ε∥ − ∥α′∥ dt =
∫ 3ε

−3ε
∥α′

ε∥ − ∥α′∥ dt

=

(∫ −ε

−3ε
+

∫ ε

−ε
+

∫ 3ε

ε

)
∥α′

ε∥ − ∥α′∥ dt

≤
(∫ −ε

−3ε
+

∫ ε

−ε
+

∫ 3ε

ε

)
∥α′

ε∥ dt.

So we consider the three blends separately.

Let us calculate how much blending two curves α, β at t = 0 increases the length. For conve-
nience, assume that the curves are parameterised by arc-length.

γ(t) = (1− ϕε(t))α(t) + ϕε(t)β(t)

γ′(t) = ϕ′(β − α) + (1− ϕε)α
′ + ϕεβ

′

∥γ′(t)∥ ≤ ϕ′∥β − α∥+ (1− ϕε)1 + ϕε1

= ϕ′∥β − α∥+ 1,

which gives ∫ ε

−ε
∥γ′(t)∥ dt ≤

∫ ε

−ε
ϕ′ε∥β − α∥ dt+ 2ε ≤ sup

t∈(−ε,ε)
∥β − α∥+ 2ε.

Because we have smooth curves, ∥β−α∥2 is smooth and hence Lipschitz on any compact interval:∣∣∥β(t)− α(t)∥2 − ∥β(0)− α(0)∥2
∣∣ < C|t|.

In total, ∫ ε

−ε
∥γ′(t)∥ dt ≤

√
∥β(0)− α(0)∥2 + Cα,βε+ 2ε,

which tends to ∥β(0)− α(0)∥ as ε→ 0.
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This shows that the blends of the curve with the two tangents tends to zero in the limit. But
the two tangents may be skew to one another and not meet in Rn. However, we can handle this
with some triangle inequalities:

∥β+(0)− β−(0)∥ ≤ ∥β+(0)− β+(2ε)∥+ ∥β+(2ε)− β−(−2ε)∥+ ∥β−(−2ε)− β−(0)∥
≤ 2ε+ ∥α(2ε)− α(−2ε)∥+ 2ε,

and since α is continuous, this goes to zero also.

In a draft of this lemma, I tried to be explicit about the rate of convergence of the lengths but
it made the proof even messier. I think the rate of convergence is O(ε), but this is only a guess.

Exercise 4.24. Determine the rate of convergence.

Another approach I considered for the corner rounding process was to use the curve shortening
flow. Geometric flows are an important area of research. Most famously, there is the Ricci flow,
which was used to solve the Poincare conjecture. In the curve shortening flow, one considers a
family αt(s) of arc-length parameterised curves such that

∂αt

∂t
= κt(s)Nt(s).

for the curvature κt and normal Nt. If we think of t as a time parameter, it says that the curve
is moving fastest where it is most curved, towards the center of the osculating circle. From our
knowledge of curves and curvature, we know that this is equal to

∂αt

∂t
=
∂2αt

∂s2
.

We see that this is a heat equation. We know that the heat equation has very good regularity
properties. Given a continuous initial condition, which in this case would be a curve α0, the
solution is smooth in t and analytic in s. Thus if we begin with a continuous curve, then we
obtain a smoothing through this flow. I recommend Andrews et al to students who are intrigued
by this.

Our ‘elementary’ corner rounding construction, though it seems as if it is particular to Rn, can
also be performed in a Riemannian manifold.

Corollary 4.25 (Corner Rounding, Riemannian). Let α : (a, b) → M be a piecewise smooth
curve in a Riemannian manifold M with a single corner at t = 0. Then for every ε > 0 there
exists a smooth curve αε : (a, b) →M that agrees with α for |t| > 2ε. Moreover, limε→0 L(αε) =
L(α).

Proof. The statement is local, in that we only need to change α in a neighbourhood of α(0).
Choose a chart U containing α(0). Then by applying Lemma 4.23, we have a smooth curve αε.
We know that its length converges to that of α in the euclidean metric of the chart, but not in
the Riemannian metric g. As in the previous proof, it is enough to show that

Lg(αε)− Lg(α) =

∫ 3ε

−3ε
∥α′

ε∥g − ∥α∥g dt ≤
∫ 3ε

−3ε
∥α′

ε∥g dt

tends to zero, but this follows immediately from the estimate (4.19).



4.3. LENGTH AND DISTANCE 93

Corollary 4.26 (Triangle Inequality). On a Riemannian manifold, the distance function obeys
the triangle inequality dg(p, p′′) ≤ dg(p, p′) + dg(p′, p′′).

Proof. As we already indicated, the proof comes down the class of curves used to define the
distance function. We defined it with smooth curves. Consider any sequences of smooth paths
αε from p to p′ and βε from p′ to p′′. Assume that as ε → 0 these approach the respective
distances between the points.

Now concatenate the paths to get a piecewise smooth path with possibly a corner at p′. Apply
the corner rounding procedure of Corollary 4.25 to obtain a sequence of smooth paths from
p to p′′. Let γε be the ε-blending of αε and βε. In other words, we have taken the diagonal
subsequence from the sequence of pairs of paths and the sequence of their blending. Therefore

dg(p, p′′) ≤ lim
ε→0

L(γε) = lim
ε→0

L(αε) + L(βε) = dg(p, p′) + dg(p′, p′′).

We close this section with a classic result: that geodesics are critical points of the length func-
tional. The proof of this statement is reminiscent of the variational approach in Section 1.6 to
show that minimal surfaces have vanishing mean curvature. In that situation, we considered
graphs, so we could model a variation of the surface by adding another function. In the present
case, we don’t want to make a similar simplification and instead we will work directly with
smooth families of paths.

Theorem 4.27 (First Variation of Length). Suppose that α : (−ε, ε)× [a, b] → M is a smooth
family of paths. Let α(s, a) = α(s, 0) and α(s, b) = α(0, b) so that all paths have the same
endpoints. Thus this family of paths represents a variation of the path α(0, t). Without loss of
generality, assume that t 7→ α(0, t) is parameterised by arc-length. Then

d

ds
L(α(s, ·))

∣∣∣∣
s=0

= −
∫ b

a
g(∂sα,∇∂tα∂tα) dt.

Therefore α(0, t) is a geodesic if and only if it is a critical point of L.

Proof. We compute

d

ds
L(α(s, ·)) =

∫ b

a

d

ds

√
g(∂tα, ∂tα) dt

=

∫ b

a

1

2
g(∂tα, ∂tα)

−1/2g(∂tα,∇∂sα∂tα) dt

=

∫ b

a
∥∂tα∥−1/2

g g(∂tα,∇∂sα∂tα) dt.

When we set s = 0 into the above, ∥∂tα∥−1/2
g = 1 because we assumed that α(0, t) was arc-length

parameterised. Next we can use Lemma 3.49 to turn the covariant derivative in the ∂sα into on
in the ∂tα direction. Additionally,

d

dt
g(∂sα, ∂tα) = g(∇∂tα∂sα, ∂tα) + g(∂sα,∇∂tα∂tα).
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Putting these together gives

d

ds
L(α(s, ·))

∣∣∣∣
s=0

=

∫ b

a
g(∂tα,∇∂tα∂sα) dt

=

∫ b

a

d

dt
g(∂sα, ∂tα)− g(∂sα,∇∂tα∂tα) dt

= g(∂sα, ∂tα)
∣∣∣b
a
−
∫ b

a

d

dt
g(∂sα,∇∂tα∂tα) dt.

The first term vanishes because all the terms have the same endpoint, hence ∂sα(s, a) =
∂sα(s, b) = 0.

That geodesics are critical points of length, not minima is significant.

Example 4.28. Consider the case of S2 and take points p, q that are not antipodes of one
another. There is a unique great circle through these two points, and these points break
it into two (arc-length parameterised) geodesic paths, one long and one short. The shorter
geodesic is the minimum (we will prove this in the next section) but the longer geodesic is a
saddle point in the space of smooth paths between these points. We can see that it is a saddle
point by imagining variations. If most of the path is fixed, and we just add a variation in one
small area then the geodesic will have the lowest length of this family of paths. On the other
hand, consider all the planes that contain p, q. You can do this by rotating a plane on the
line through p, q. If you take the family of paths that are the intersection of these planes and
the sphere, then the long geodesic is the longest and the short geodesic is the shortest path
between p, q in this family.
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4.4 Exponential Maps

Although we have given a reasonable definition of the distance on a Riemannian manifold, it is
often very difficult in practice to understand this function. We have not given an example of
the distance between two points yet because the prospect of searching for the infimum of length
over every possible path is daunting. Even in a well-understood space such as the euclidean
plane, where would you even begin? While at first glance it seems as if Theorem 4.27 simplifies
the search to geodesics, this is only a complete answer if you already know that there exists a
length-minimising path between the two points. Again, the example of a punctured plane shows
that a length-minimising path may not exist. The example of a punctured sphere and two points
either side of the puncture, such that the shorter geodesic is blocked, shows that even though
the two points are connected by a geodesic (the longer geodesic), its length is not the distance.

However, what we will show in this chapter is every point has a special ball around it: every
point in that ball has a unique geodesic to the center and the length of this geodesic is the
distance to the center. The key gadget for this construction is the exponential map, which can
be summarised as ‘follow the geodesic out from the center’. The name is due to a relationship
with the exponential map in Lie group theory and actual exponentials will not be relevant to us
here.

Definition 4.29. For any p ∈ M let the exponential map expp : TpM⇀M be the function
defined by

expp(v) = γp,v(1),

where γp,v is the unique maximal geodesic with γp,v(0) = 0 and γ′p,v(0) = v. Because the solutions
of ODEs depend smoothly on their initial conditions, expp is a smooth function of v.

Recall, due to the Rescaling Lemma 4.6 geodesics that only differ by speed have the same image.
In the exponential map we have removed this duplication by only considering t = 1. This is the
only advantage of defining the exponential map over using geodesics directly. In fact the two
are equivalent, since from the Rescaling Lemma we have that

γp,v(t) = γp,tv(1) = expp(tv).

The exponential map is a partially defined function; its value only exists if the corresponding
geodesic exists at time t = 1. Geodesics are defined by an ODE with short-time existence,
but we know nothing about their long-time existence. It is natural therefore to ask about
dom expp ⊂ TpM . Because of the constant curve α(t) = p we know that 0 ∈ domexpp. Likewise,
short-time existence tells us that dom expp contains a neighbourhood of 0. The final thing we
can say is that dom expp is star-shaped around 0 ∈ TpM : For clarity, write t = c in the above
equation: expp(cv) = γp,v(c). If γp,v(1) exists then γp,v(c) exists for c < 1 because γp,v is
maximal. This shows that if v ∈ domexpp then cv ∈ domexpp for 0 ≤ c ≤ 1.

The next thing we have to understand is tricky because it breaks the usual hierarchy of concepts.
We need to think about the tangent map Tv expp : Tv(dom expp) → Texpp(v)M . In particular,
for v = 0 it is a map between TpM and itself. Recall the definition of a manifold in Chapter 2.
A chart U is an open subset of Rn and the tangent space is TpM = Rn (with an equivalence
relation between these Rn for different charts). Likewise we can think of dom expp ⊂ TpM as
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an open subset of euclidean space and Tv(dom expp) as Rn. Given w ∈ TpM we think of it in
Tv(dom expp) as the curve v + tw. For any w ∈ TpM we have

T0 expp(w) =
d

dt
expp(0 + tw)

∣∣∣∣
t=0

=
d

dt
γp,w(t)

∣∣∣∣
t=0

= w.

Hence T0 expp = idTpM .

Because T0 expp is an isomorphism, the inverse function theorem says that there is a neighbour-
hood V ∋ 0 such that expp |V is an diffeomorphism onto its image. We can further restrict
V so that the image is entirely within the chart U4. Therefore we have a transition function
expp |V : V → U . Because img expp is entirely within U , it will obey the cocycle conditions with
every other transition function of M . Because it is defined on all of V adding this chart to the
atlas does not create any new points of M . In the literature this construction is called normal
coordinates at p. We will call this chart a normal chart at p.

A normal chart has two metrics on it. Because it is a chart of M , of course it has the metric g.
But V is also a subset of TpM and TpM is an inner-product space using the inner product g|p.
Therefore V also has the metric that just uses g̃ = g|p at every point. Clearly the two metrics
are equal at p. The coefficients g̃i j of this second metric are constants, and the second metric
can be thought of as a euclidean metric. The natural question is therefore how g and g̃ compare.

A normal chart V is centered on p, in the sense that [0V ] = p ∈M . The most useful property of
a normal chart is that rays t 7→ tv, which are geodesics of g̃, are geodesics of g. This is because
g̃i j is constant, so its geodesics are straight lines in V . On the other hand, if we view these rays
in the chart U , we have t 7→ expp(tv) = γp,v(t), which are by definition geodesics of g. For this
reason we call these rays radial geodesics, without needing to specify which metric. Similarly we
define geodesic balls and geodesic spheres centered at p to be the sets

B̃r = {v ∈ TpM | ∥v∥g̃ < r}, ∂B̃r = {v ∈ TpM | ∥v∥g̃ = r}.

By restricting V we may assume that it is a geodesic ball. Of course rays and sphere are
orthogonal with respect to g̃ but remarkably:

Lemma 4.30 (Gauss’ Lemma). Radial geodesics are orthogonal to geodesic spheres with respect
to the metric g.

Proof. Choose any smooth function ω : (−ε, ε) → TpM with ∥ω∥g̃ = 1 and consider the family
of curves in V

α(s, t) = tω(s).

This family has the property that every main curves α(s, ·) is a radial geodesic and that every
transverse curves α(·, t) lies in a geodesic sphere. This means that ∂sα(0, t) is a tangent vector
to the geodesic sphere ∂B̃t. Conversely, given any tangent vector to a geodesic sphere arises in
this way.

The lemma comes down to showing that ∂tα(0, t) and ∂sα(0, t) are orthogonal for all t with
respect to g. Because ∂sα(0, 0) = 0ω′(0) = 0 it is enough to prove that g(∂tα(0, t), ∂sα(0, t)) is

4It is not necessary to do this step, but it makes things simpler.



4.4. EXPONENTIAL MAPS 97

constant. We compute, for ∇ the Levi-Civita connection of g,

∂

∂t
g(∂tα(0, t), ∂sα(0, t)) = g(∇∂tα∂tα(0, t), ∂sα(0, t)) + g(∂tα(0, t),∇∂tα∂sα(0, t))

= 0 + g(∂tα(0, t),∇∂sα∂tα(0, t))

=
∂

∂s

1

2
g(∂tα(0, t), ∂tα(0, t)) = 0.

The facts we have used here are that a geodesic parallel transports its tangent vector (Defini-
tion 4.1), a geodesic is constant speed (Lemma 4.5), and symmetry of covariant derivatives for
families of curves (Lemma 3.49).

Example 4.31 (Hyperbolic Plane). How does this apply to the hyperbolic plane? The
hyperbolic plane is covered by a single chart U = H2. Consider the set of geodesics through
any point p. We know that they are defined for all time, positive and negative. This tells us
that expp is defined on the whole tangent space. We also know that for any point q there is
a geodesic from p to q. This tells us that expp is surjective onto U . Finally, these geodesics
only intersect at p. This means that expp is diffeomorphism from TpM to U , and the normal
chart at p covers all of H2.

Let us be explicit for the point p = (0, 1). The geodesics though this point have the form
γ(t) = (0, et) or

γ(t) = (a2 + 1)

(
a

a2 + e2t
− a

a2 + 1
,

et

a2 + e2t

)
=

(
a

a2 + e2t
(1− e2t),

a2 + 1

a2 + e2t
et
)
.

We should try to combine these into a single formula. In the limit a → ±∞ we have γ(t) →
(0, et). Therefore the problem is that a is not parameterised correctly in some sense. Let
a = cot θ/2. Then

sin2
θ

2
(a2 + e2t) = sin2

θ

2
(csc2

θ

2
− 1 + e2t) = 1 +

1

2
(1− cos θ)(−1 + e2t)

=
1

2
[(1 + cos θ) + (1− cos θ)e2t]

and

γ(t) =
2 sin2 θ

2

(1 + cos θ) + (1− cos θ)e2t

(
cos θ

2

sin θ
2

(1− e2t), csc2
θ

2
et

)
=

1

(1 + cos θ) + (1− cos θ)e2t
(
sin θ(1− e2t), 2et

)
.

Now we see that we have a nice parameterisation γθ(t) of the geodesics through (0, 1), with
θ giving the angle of the tangent with ∂2. For example θ = 0 gives γ0(t) = (0, et) and θ = π
gives γπ(t) = (0, e−t). More generally we see that

γθ(−t) =
1

(1 + cos θ)e2t + (1− cos θ)

(
sin θ(e2t − 1), 2et

)
= γθ+π(t).

In fact, (t, θ) are polar coordinates for the normal chart at (0, 1).
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This gives us a formula for geodesic spheres. In normal coordinates of course, geodesic spheres
around p are just t = r. In (x, y) coordinates, they are

α(θ) =
1

(1 + cos θ) + (1− cos θ)R2

(
sin θ(1−R2), 2R

)
,

for R = er. These are euclidean circles with centers at (0, coshR) and radii sinhR.

Example 4.32. We can apply the same analysis to the sphere. Consider the set of geodesics
through any point p. We know that they are defined for all time, positive and negative. This
tells us that expp is defined on the whole tangent space. We also know that for any point q
there is a geodesic from p to q. This tells us that expp is surjective onto U . However, this
time all geodesics from p intersect at the antipode of p. Therefore expp is not injective. To
construct a normal chart we therefore have to restrict to a subset of TpM .

For the south pole, to choose a definite point, we know the geodesics are the lines of longitude.
Therefore the normal chart at this point has to have lines of longitude as rays. The normal
chart is in fact just a rescaling of UN (stereographic projection) so that the rays are unit
speed geodesics.

Theorem 4.33. For any p ∈M consider any other point q that lies in a geodesic ball of p. Let
α : [a, b] → M be any smooth path from p to q, not necessarily lying in the geodesic ball. Then
the radial geodesic from p to q is the unique length-minimiser from p to q.

Proof. We again use a normal chart V = B̃r′ at p. The radial geodesic has the form γ(t) = tω
for some ∥ω∥g̃ = 1. The point q = rω lies on the geodesic sphere ∂B̃r ⊂ B̃r′ . Since v is tangent
vector of γ at p and geodesics are constant speed

∥γ′∥g = ∥γ′(0)∥g = ∥γ′(0)∥g̃ = ∥ω∥g̃ = 1.

Therefore

L(γ) =

∫ r

0
∥γ′∥g dt =

∫ r

0
1 dt = r.

Now suppose first that α stays entirely within the geodesic ball B̃r′ . This means we can write
α(t) = ρ(t)ω(t), where ρ : [a, b] → R≥0 and ω : [a, b] → TpM with ∥ω(t)∥g̃ = 1. So notice that
ρω′ is tangent to the geodesic sphere ∂B̃ρ. Also for any t we can consider the radial geodesic
s 7→ sω(t). It follows that g(ω, ω) = 1 at any point of V . Then with the help of Gauss’
Lemma 4.30

∥α′(t)∥2g = g|α(t)(ρ′ω + ρω′, ρ′ω + ρω′)

= (ρ′)2g|α(t)(ω, ω) + 2ρρ′g|α(t)(ω, ω′) + ρ2g|α(t)(ω′, ω′)

= (ρ′)2 + 0 + ρ2g|α(t)(ω′, ω′)

≥ (ρ′)2.

Therefore

L(α) =

∫ b

a
∥α′(t)∥g dt ≥

∫ b

a
ρ′(t) dt = ρ(b)− ρ(a) = r − 0 = L(γ).
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Finally, if α does not stay entirely within the geodesic ball B̃r′ , there there must be some first
time t = b̃ that it crosses ∂B̃r. Then

L(α) ≥ L(α|[a,b̃]) ≥ L(γ).

Thus the radial geodesic is a length-minimiser from p to q.

For the converse, observe that it is only possible to have equality if α lies entirely within the
geodesic ball and g|α(t)(ω′, ω′) = 0 for all t. This implies that ω′ = 0 and that α is radial.

Remark 4.34. An immediate consequence of this is that geodesic balls and metric balls are
the same sets, and the r of the geodesic ball really is its radius.

Example 4.35 (Hyperbolic Plane). From Example 4.31 we know that for any point the
normal chart covers the entire of the hyperbolic plane. Therefore the distance between any
two points is given by the length of the geodesic path between them. This was calculated for
vertical geodesics in Example 4.16. We can develop this into a general distance formula.

Consider two points p = (x1, y1), q = (x2, y2) ∈ H2. We will use isometries to bring them both
to the y-axis. Firstly we translate so that p′ = (0, y1), q

′ = (w, y2) for w = x2 − x1. Next,
we construct an isometry using the complex number form. Suppose that f transforms p′ to
(0, 1) = ι and q′ to (0, r) = ιr. Then the inverse transform f−1 obeys

aι+ b

cι+ d
= p′ = ιy1,

aιr + b

cιr + d
= q′ = w + ιy2.

From the left equation, we see that a = y1d and b = −y1c. Continuing with the right equation,
we have

ιy1rd− y1c = wd− y2rc+ ι(y2d+ wrc),

Re : 0 = (y1 − y2r)c+ wd

Im : 0 = wrc+ (y2 − y1r)d,

⇒ 0 = (y2 − y1r)(y1 − y2r)− w2r

= y1y2 − (y21 + y22 + w2)r + y1y2r
2

b :=
y21 + y22 + w2

2y1y2

r = b±
√
b2 − 1.

Thus the distance between p and q is given by ln
∣∣ r
1

∣∣ = ln(b +
√
b2 − 1). In the case that

x1 = x2 we see that b2 − 1 = (y22 − y21)
2/(2y1y2)

2 so that the distance formula reduces to

ln
y21 + y22 + y22 − y21

2y1y2
= ln

y2
y1

as expected from Exercise 4.16.
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One can continue to torture the distance formula until it yields to geometric interpretation:

4y1y2(b+
√
b2 − 1)

= 2y21 + 2y22 + 2w2 + 2
√
(y21 + y22 + w2)2 − 4y21y

2
2

= 2y21 + 2y22 + 2w2 + 2
√

(y21 − 2y1y2 + y22 + w2)(y21 + 2y1y2 + y22 + w2)

= (y1 − y2)
2 + (y1 + y2)

2 + 2w2 + 2
√
((y1 − y2)2 + w2)((y1 + y2)2 + w2)

=
(√

(y1 − y2)2 + w2 +
√
(y1 + y2)2 + w2

)2
.

We have a the root of a sum of squares, so this must be some euclidean distance in the
hyperbolic plane. Indeed, the left square root is the distance between p and q. For the other
square root, if we take p, q, and the semicircle they lie on, and reflect those in the x-axis to
make a full circle then the second square root is the distance between p and the reflection of
q.

There is one more property of normal charts that we will need in the next chapter, namely
that the metric in a normal chart has a nice form at p. For any chart, because g|p is non-
degenerate we can always find an orthonormal basis of TpM . We can then make a linear change
of coordinates such that this basis is a coordinate vector basis near p. Doing this will diagonalise
the metric, so gi j(p) = δi j . But typically gi j are non-constant, so this property only holds at p
and ∂kgi j(p) ̸= 0. A special feature of normal charts is that the partial derivatives of the metric
coefficients are zero, so that this procedure simplifies gi j at p up to second order.

Lemma 4.36 (Metric in Normal Chart). In a normal chart at p ∈M , all first partial derivatives
of the metric coefficients vanish at p, i.e. ∂kgi j(p) = 0.

Proof. In a normal chart at p, the point p is the origin and we know that the radial lines are
geodesics. Let γ(t) = tv be the geodesic in the v direction. If we put this into the geodesic
equation,

0 + Γk
ij(tv)v

ivj = 0.

In particular, if we put t = 0 into this equation and consider all possible v, this equation can
only hold if Γk

ij(0) = 0 for all indices. From the formula (3.55) for the Christoffel coefficients of
the Levi-Civita connection, this in turn is only possible if

∂igk j(0) + ∂jgi k(0)− ∂kgi j(0) = 0.

Permute the indices
∂jgi k(0) + ∂kgj i(0)− ∂igj k(0) = 0,

and add the two expressions together to obtain

2∂jgi k(0) = 0.
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Example 4.37 (Hyperbolic Plane). Consider p = (0, 1) ∈ H2. In the usual coordinates,
gi j = y−2δi j so gi j(p) = δi j . But ∂2gi j = −2y−3δi j so ∂2gi j(p) ̸= 0.

Recall Example 4.31. In that exercise we constructed polar coordinates for a normal chart at
p. Namely (t, θ) were related to the usual coordinates by

(x1, x2) = (x, y) =
1

(1 + cos θ) + (1− cos θ)e2t
(
sin θ(1− e2t), 2et

)
=

1

cosh t− cos θ sinh t
(− sin θ sinh t, 1) .

Let (u1, u2) be (cartesian) normal coordinates at p with (u1, u2) = (t cos θ, t sin θ). Then we
can calculate the metric in these normal coordinates using that change of chart formula from
Section 3.1:

g̃i j =
∂xk

∂ui
∂xl

∂uj
gk l =

∂xk

∂ui
∂xl

∂uj
y−2δk l =

(
∂x1

∂ui
∂x1

∂uj
+
∂x2

∂ui
∂x2

∂uj

)
y−2

What we want to see is that g̃i j(p) = δi j and ∂kg̃i j(p) = 0. The direct approach, while
elementary, is ugly. To make our point it is sufficient to give Taylor series for the coefficients
of the metric up to first order, which requires in turn the Taylor series of the change of
coordinates up to second order. The key function to understand is the denominator

d := cosh t− cos θ sinh t = cosh t− t cos θ
sinh t

t
.

Both cosh t and sinh t
t are even analytic functions of t. Therefore inserting t =

√
(u1)2 + (u2)2

gives

d =

(
1 +

1

2!
t2 + . . .

)
− u1

(
1 +

1

3!
t2 + . . .

)
=

(
1 +

1

2!
((u1)2 + (u2)2) + . . .

)
− u1

(
1 +

1

3!
((u1)2 + (u2)2) + . . .

)
= 1− u1 +

1

2
(u1)2 +

1

2
(u2)2 + . . . ,

an analytic function of the normal coordinates. As y = d−1, we can easily write down the
Taylor series for y−2

y−2 = 1− 2u1 + . . . .
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For y itself, clearly y(p) = 1 and

∂y

∂u1
= − 1

d2
∂d

∂u1
∂y

∂u1
(p) = 1

∂y

∂u2
= − 1

d2
∂d

∂u2
∂y

∂u2
(p) = 0

∂2y

∂u1∂u1
=

2

d3

(
∂d

∂u1

)2

− 1

d2
∂2d

∂u1∂u1
∂2y

∂u1∂u1
(p) = 1

∂2y

∂u1∂u2
=

2

d3
∂d

∂u1
∂d

∂u2
− 1

d2
∂2d

∂u1∂u2
∂2y

∂u1∂u2
(p) = 0

∂2y

∂u2∂u2
=

2

d3

(
∂d

∂u2

)2

− 1

d2
∂2d

∂u2∂u2
∂2y

∂u2∂u2
(p) = −1.

So the Taylor series of y up to second order is

y = 1 + u1 +
1

2
(u1)2 − 1

2
(u2)2.

Next x = −d−1 sin θ sinh t = −yu2 sinh t
t so up to second order

x = −
(
1 + u1 + . . .

)
u2 (1 + . . . ) = −u2 − u1u2.

Finally we have up to first order

g̃1 1 =

((
∂x

∂u1

)2

+

(
∂y

∂u1

)2
)
y−2 =

((
−u2

)2
+
(
1 + u1

)2)
(1− 2u1)

= (1 + 2u1)(1− 2u1) = 1

g̃1 2 =

(
∂x

∂u1
∂x

∂u2
+

∂y

∂u1
∂y

∂u2

)
y−2 =

(
(−u2)(−1− u1) + (1 + u1)(−u2)

)
(1− 2u1)

=
(
u2 − u2

)
(1− 2u1) = 0

g̃2 2 =

((
∂x

∂u2

)2

+

(
∂y

∂u2

)2
)
y−2 =

(
(−1− u1)2 + (−u2)2

)
(1− 2u1)

=
(
1 + 2u1

)
(1− 2u1) = 1.

We will finish this chapter by indicating various directions in which one could continue. One can
investigate further with Riemannian manifolds as metric spaces. We have encountered several
times the example of the punctured plane and how it ‘blocks’ geodesics. The Hopf-Rinow
theorem states that a connected Riemannian manifold is complete as a metric space if and only
if every geodesic exists for all time. One can also develop the theory of the exponential map
further. We have mentioned its connection to the exponential map in Lie group theory, so this
could be expounded. We can also ask at every p what is the largest geodesic ball on which expp
is injective, called the injectivity radius. Relatedly, we have the cut locus at p which asks when
geodesics from p stop being the length-minimisers. We can also consider families of geodesics,
using the Jacobi field, of which the radial geodesics are one example. Another example would
be geodesics beginning on some hypersurface. A typical question is to ask at what rate these
geodesics are moving apart.
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Naturally one can look for special manifolds. We found the geodesics of the hyperbolic plane
using isometries. As mentioned, spaces whose isometries are transitive are called homogeneous,
and one whose isometries are transitive on the unit sphere of TpM are called isotropic at p.
Spaces such that for every point there is an isometry that acts as − id on TpM are called
symmetric spaces, and there is a complete classification.

These are all relatively ‘pure’ Riemannian geometry questions, in that they try to understand
the intrinsic structure of a Riemannian manifold. But we can also take Riemannian manifolds as
the setting to investigate all types of geometric problems. Geometric flows are one example. The
final direction we will mention however is harmonic maps. Both minimal surfaces and geodesics
are extremal for a functional, surface area and length respectively. If we model both of these
problems as embedding stretched rubber objects and seeing the ‘minimal tension’ configuration,
then this motivates the definition of a harmonic map. The name is due to the defining equation
being a generalisation of the Laplacian to the context of Riemannian manifolds (compare the
the Laplacian in Equation (1.40)). My PhD work was on harmonic maps from a torus into S3.



Chapter 5

Curvature

Curvature in Riemannian geometry can seem a little hidden, but we have already encountered
its effects. We saw for instance that parallel transport around a loop on the sphere changes a
vector. We also saw for the hyperbolic plane that triangles have angles that sum to less than π.
Both of these are due to the intrinsic curvature of the space. Our own universe has curvature: in
general relativity it is curvature that causes gravity. We commonly interpret an asteroid being
deflected as it passes a planet as it being pulled from its straight line path by a force; in truth
it is travelling on a geodesic and it is space itself that is bent.

5.1 Symmetries and Identities

We first motivate curvature by locally comparing a Riemannian manifold M to euclidean space
Rn. Later we will connect it to the more geometric picture presented in Chapter 1. An important
feature of euclidean space is that it has (a basis of) parallel vector fields with respect to the
Levi-Civita connection. These are vector fields that are parallel along every curve. Because the
Levi-Civita connection is uniquely determined by the metric, the property of having a parallel
vector field must be a local isometry invariant, i.e. if M at p has a neighbourhood that is
isometric to a neighbourhood of Rn then it has a parallel vector field.

The obvious way to construct a parallel vector field is to begin with a vector Z|p ∈ TpM and
parallel transport it around. Choose two coordinate direction ∂1, ∂2. We parallel transport Z|p
along the x1-axis and then from every point in the x2 direction. Is the vector field so constructed
parallel in the x1 direction? By construction ∇∂1Z = 0 on the x1-axis, so it is sufficient to have
∇∂2∇∂1Z = 0.

An alternative way to ask this question is to construct a second vector field Z̃ with Z̃|p = Zp by
first parallel transporting Z̃|p along the x2-axis and then from every point in the x1 direction. By
definition Z̃ and Z agree on the x1- and x2-axes. But do they agree at other points? Consider

104
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a point q = p+ (h1, h2) close to p. Then using an approximation

Z|p+(h1,0) ≈ Z|p + h1(∇∂1Z)|p
Z|q ≈ Z|p+(h1,0) + h2(∇∂2Z)|p+(h1,0)

=
[
Z + h1(∇∂1Z)

]
|p + h2

[
∇∂2Z + h1(∇∂2∇∂1Z)

]
|p+(h1,0)

= Z|p + h10 + h20 + h1h2(∇∂2∇∂1Z)|p+(h1,0).

Likewise
Z̃|q = Z̃|p + h10 + h20 + h1h2(∇∂1∇∂2Z̃)|p+(0,h2).

For h1, h2 small and since Z̃|p = Z|p we see that Z̃|q = Z|q are equal if and only if ∇∂2∇∂1Z =
∇∂1∇∂2Z. Thus the lack of a parallel vector field can be measured by the difference ∇∂1∇∂2Z−
∇∂2∇∂1Z. We can move away from coordinates by using the properties of the connection to
give an equivalent statement for arbitrary vector fields. For X = Xi∂i, Y = Y j∂j

∇X∇Y Z −∇Y ∇XZ = Xi∇∂i(Y
j∇∂jZ)− Y j∇∂j (X

i∇∂iZ)

= Xi∂Y
j

∂xi
∇∂jZ +XiY j∇∂i∇∂jZ − Y j ∂X

i

∂xj
∇∂iZ −XiY j∇∂j∇∂iZ

= XiY j
(
∇∂i∇∂jZ −∇∂j∇∂iZ

)
+∇Xi(∂iY j)∂jZ −∇Y j(∂jXi)∂iZ

= XiY j
(
∇∂i∇∂jZ −∇∂j∇∂iZ

)
+∇Xi(∂iY j)∂j−Y j(∂jXi)∂iZ

= XiY j
(
∇∂i∇∂jZ −∇∂j∇∂iZ

)
+∇[X,Y ]Z.

Just as for torsion, we see that this ‘commutator’ of vector fields has a part that is due the com-
mutator of the vector fields themselves but also a part that is ‘built in’ to all such commutators.

Definition 5.1. The Riemannian curvature tensor R is a vector valued function

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

We see immediately from the calculation above that R only depends on the pointwise values of
X and Y . We can continue to get an formula for the curvature tensor in terms of the Christoffel
coefficients.

R(∂i, ∂j)Z = ∇∂i∇∂j (Z
k∂k)−∇∂j∇∂i(Z

k∂k)

= ∇∂i

(
∂jZ

k∂k + Zk∇∂j∂k
)
−∇∂j

(
∂iZ

k∂k + Zk∇∂i∂k
)

= ∇∂i

(
∂jZ

k∂k + ZkΓl
jk∂l

)
−∇∂j

(
∂iZ

k∂k + ZkΓl
ik∂l
)

=
(
∂i∂jZ

k∂k + ∂jZ
kΓl

ik∂l + ∂iZ
kΓl

jk∂l + Zk∂iΓ
l
jk∂l + ZkΓm

jkΓ
l
im∂l

)
−
(
∂j∂iZ

k∂k + ∂iZ
kΓl

jk∂l + ∂jZ
kΓl

ik∂l + Zk∂jΓ
l
ik∂l + ZkΓm

ikΓ
l
jm∂l

)
= Zk

(
∂iΓ

l
jk + Γm

jkΓ
l
im − ∂jΓ

l
ik − Γm

ikΓ
l
jm

)
∂l.

This proves1 that the curvature tensor only depends pointwise on the value of Z, even though it
is constructed out of derivatives. The expression in the bracket is called Rl

ijk. Because it is often
a pain to work with a vector valued function, it is common to define a curvature quadlinear form

Rm(X,Y, Z,W ) = g(R(X,Y )Z,W ).

1Can you imagine calculating this without the summation convention?
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Clearly the metric depends on W only pointwise, so it makes sense to express this in a chart as

Rm(X,Y, Z,W ) = XiY jZkW lglmR
m
ijk =: XiY jZkW l Rmijkl .

Note, different authors use different conventions about the order of the indices. We follow Lee,
whereas Jost and Wikipedia use the order lkij. Petersen refuses to choose a side by only ever
using Rm(∂i, ∂j , ∂k, ∂l). It is also common to use R for both objects and let the position of the
indices distinguish them. On paedological grounds we avoid this.

Example 5.2 (Euclidean Space). The plane (or any euclidean space) in its standard chart
has Christoffel coefficients identically equal to zero. Therefore its curvature vanishes at all
points.

Example 5.3. On any one dimensional manifold, there is only one coefficient of the Rieman-
nian curvature tensor:

R1
111 = ∂1Γ

1
11 + Γ1

11Γ
1
11 − ∂1Γ

1
11 − Γ1

11Γ
1
11 = 0.

Therefore one dimensional manifolds have no intrinsic curvature. In fact we have seen this in
Chapter 1: curves can be reparameterised by arc-length, which makes the induced metric the
euclidean metric.

Example 5.4 (Stereographic Projection). In Exercise 3.32 we calculated the Christoffel co-
efficients for S2 in stereographic coordinates.

2x1

∥x∥2 + 1
= −Γ1

11 = −Γ2
21 = −Γ2

12 = Γ1
22,

2x2

∥x∥2 + 1
= Γ2

11 = −Γ1
21 = −Γ1

12 = −Γ2
22.

We can use that with the above formula to calculate Rl
ijk. We prepare ourselves by calculating

the partial derivatives

∂

∂x1
Γ1
22 =

−2(x1)2 + 2(x2)2 + 2

(∥x∥2 + 1)2
∂

∂x2
Γ1
22 =

−4x1x2

(∥x∥2 + 1)2

∂

∂x1
Γ2
11 =

−4x1x2

(∥x∥2 + 1)2
∂

∂x2
Γ2
11 =

2(x1)2 − 2(x2)2 + 2

(∥x∥2 + 1)2

Many of the curvature coefficients are zero just by definition.

Rl
iik = ∂iΓ

l
ik − ∂iΓ

l
ik + Γm

ikΓ
l
im − Γm

ikΓ
l
im = 0,

so of the sixteen coefficients there are at most eight non-zero entries.

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γm

jkΓ
l
im − Γm

ikΓ
l
jm

R1
121 = −R1

211 = ∂1Γ
1
21 − ∂2Γ

1
11 + Γ1

21Γ
1
11 + Γ2

21Γ
1
12 − Γ1

11Γ
1
21 − Γ2

11Γ
1
22

= −∂1Γ2
11 + ∂2Γ

1
22 + Γ2

11Γ
1
22 + Γ1

22Γ
2
11 − Γ1

22Γ
2
11 − Γ2

11Γ
1
22

= 0.
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R1
122 = −R1

212 = ∂1Γ
1
22 − ∂2Γ

1
12 + Γ1

22Γ
1
11 + Γ2

22Γ
1
12 − Γ1

12Γ
1
21 − Γ2

12Γ
1
22

= ∂1Γ
1
22 + ∂2Γ

2
11 − Γ1

22Γ
1
22 + Γ2

11Γ
2
11 − Γ2

11Γ
2
11 + Γ1

22Γ
1
22

= ∂1Γ
1
22 + ∂2Γ

2
11

=
4

(∥x∥2 + 1)2
.

R2
121 = −R2

211 = ∂1Γ
2
21 − ∂2Γ

2
11 + Γ1

21Γ
2
11 + Γ2

21Γ
2
12 − Γ1

11Γ
2
21 − Γ2

11Γ
2
22

= −∂1Γ1
22 − ∂2Γ

2
11 − Γ2

11Γ
2
11 + Γ1

22Γ
1
22 − Γ1

22Γ
1
22 + Γ2

11Γ
2
11

= −∂1Γ1
22 − ∂2Γ

2
11

= − 4

(∥x∥2 + 1)2
.

R2
122 = −R2

212 = ∂1Γ
2
22 − ∂2Γ

2
12 + Γ1

22Γ
2
11 + Γ2

22Γ
2
12 − Γ1

12Γ
2
21 − Γ2

12Γ
2
22

= −∂1Γ2
11 + ∂2Γ

1
22 + Γ1

22Γ
2
11 + Γ2

11Γ
1
22 − Γ2

11Γ
1
22 − Γ1

22Γ
2
11

= 0.

We see that many of the coefficients are zero, and the non-zero ones are equal up to a sign.

From Exercise 3.8 we also have the coefficients of the metric in this chart. In particular, they
form a diagonal matrix.

gi j =
4

(∥x∥2 + 1)2
δi j .

Then the other form of the curvature is

Rmijkl = glmR
m
ijk =

4

(∥x∥2 + 1)2
Rl

ijk.

The non-zero coefficients are

Rm1221 = −Rm2121 = −Rm1212 = Rm2112 =
16

(∥x∥2 + 1)4
.

These local expressions show us that the curvature tensor determines n4 smooth functions
Rmijkl. However some symmetries are apparent already from the definition, such as R(X,Y )Z =
−R(Y,X)Z. Here are the others

Theorem 5.5 (Symmetries). (i) Rm is antisymmetric in the first pair and last pair of entries:

Rm(X,Y, Z,W ) = −Rm(Y,X,Z,W ) = −Rm(X,Y,W,Z).

(ii) Rm is symmetric under the exchange of the first and last pair:

Rm(X,Y, Z,W ) = Rm(Z,W,X, Y ).

(iii) R has the following cyclic symmetry, called the first or algebraic Bianchi identity:

R(X,Y )Z +R(Z,X)Y +R(Y,Z)X = 0.
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Proof. (i) seems the logical place to start. We have already noted that antisymmetry in the first
pair comes from the definition of R.

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

For antisymmetry in the last pair we first compute for Z =W and use metric-compatibility

g(R(X,Y )Z,Z) = g(∇X∇Y Z,Z)− g(∇Y ∇XZ,Z)− g(∇[X,Y ]Z,Z)

= X(g(∇Y Z,Z))− g(∇Y Z,∇XZ)− Y (g(∇XZ,Z)) + g(∇XZ,∇Y Z)

− 1

2
[X,Y ](g(Z,Z))

= X(g(∇Y Z,Z))− Y (g(∇XZ,Z))−
1

2
[X,Y ](g(Z,Z))

= X(
1

2
Y (g(Z,Z)))− Y (

1

2
X(g(Z,Z)))− 1

2
[X,Y ](g(Z,Z)) = 0.

Any bilinear function that is zero on (Z,Z) is antisymmetric:

0 = g(R(X,Y )Z +W,Z +W )− g(R(X,Y )Z −W,Z −W )

= 2g(R(X,Y )Z,W ) + 2g(R(X,Y )W,Z).

Next we prove (iii). The follows from a long calculation, but one that can be shortened using
the following piece of notation from Petersen:

ST (X,Y, Z) = T (X,Y, Z) + T (Z,X, Y ) + T (Y, Z,X).

SR(X,Y )Z = S∇X∇Y Z − S∇Y ∇XZ − S∇[X,Y ]Z

= S∇Z∇XY − S∇Z∇YX − S∇[X,Y ]Z

= S∇Z(∇XY −∇YX)− S∇[X,Y ]Z

= S
(
∇Z [X,Y ]−∇[X,Y ]Z

)
= S[Z, [X,Y ]],

using twice that ∇ is torsion-free. This expression is always zero, a fact known as the Jacobi
identity, which is easily proved using a chart:

S[Z, [X,Y ]] = [Z, [X,Y ]] + [X, [Y, Z]] + [Y, [Z,X]] = 0.

Now (ii) follows from (i) and (iii)

Rm(X,Y, Z,W ) = −Rm(Z,X, Y,W )− Rm(Y, Z,X,W )

= Rm(Z,X,W, Y ) + Rm(Y, Z,W,X)

= Rm(W,Z,X, Y )− Rm(X,W,Z, Y )− Rm(W,Y,Z,X)− Rm(Z,W, Y,X)

= 2Rm(Z,W,X, Y ) + Rm(X,W, Y, Z) + Rm(W,Y,X,Z)

= 2Rm(Z,W,X, Y )− Rm(X,Y, Z,W ).

Exercise 5.6. Show that these symmetries restrict the number of independent coefficients of
Rm to n2(n2 − 1)/12. In particular, for n = 2 there is essentially only one coefficient.
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The algebraic Bianchi identity was first written down by Ricci. However it is so named because
it looks similar to a cyclic identity discovered by Bianchi. It’s general form requires additional
definitions of a kind we have avoided, so we give a special form that is suitable to applications.

Theorem 5.7. For any p ∈M take the normal chart centered at p such that gij(p) = δij. The
second or differential Bianchi identity states that at p:

∂mRmijkl +∂k Rmijlm+∂l Rmijmk = 0.

Proof. In the normal chart at p this point is the origin. Due to Lemma 4.36 we know in the
normal chart at p that gij(p) = δij and ∂kgij(p) = 0. In the proof of that lemma it was shown,
and it follows easily from ∂kgij(0) = 0, that Γk

ij(0) = 0. Hence

(∂mRmijkl)(0) = (∂m(glnR
n
ijk))(0) = 0 + δln(∂mR

n
ijk)(0) = ∂mR

l
ijk(0)

= ∂m
(
∂iΓ

l
jk − ∂jΓ

l
ik + Γm

jkΓ
l
im − Γm

ikΓ
l
jm

)
(0)

= ∂m∂iΓ
l
jk(0)− ∂m∂jΓ

l
ik(0) + (0 + 0)− (0 + 0).(5.8)

Taking the cyclic permutations of ijm proves

(∂mRmijkl)(0) + (∂iRmjmkl)(0) + (∂j Rmmikl)(0) = 0.

And swapping the first and last pair gives the identity as stated in the theorem.

We motivated the introduction of the curvature tensor by asking whether a space was locally
isometric to euclidean space, specifically whether there existed a parallel vector field in a neigh-
bourhood of a point. Historically this question was approached through the lens of coordinate
transformation: does there exist a coordinate transformation that makes the metric coefficients
constant and equal to δij? The relevance of normal coordinates, where gij(p) = δij+0+O(∥p∥2),
to the question now seems obvious. What Riemann found was that there was an obstacle in the
second order of the Taylor expansion that could not be removed. To see the relation between our
definition and Riemann’s observation, start with the formula for Rl

ijk in terms of the Christoffel
coefficients and substitute in the expression for them in terms of the metric coefficients. Suppose
you have a chart where gij(p) = δij + 0 + O(∥p∥2). The normal chart has this property, but
there may be others.

∂iΓ
l
jk = ∂ig

n l
(
∂kgj n + ∂jgk n − ∂ngk j

)
+ gn l∂i

(
∂kgj n + ∂jgk n − ∂ngk j

)
∂iΓ

l
jk(0) = 0 + ∂i∂kgj l + ∂i∂jgk l − ∂i∂lgk j

∂jΓ
l
ik(0) = ∂j∂kgi l + ∂j∂igk l − ∂j∂lgk i

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γm

jkΓ
l
im − Γm

ikΓ
l
jm

Rl
ijk(0) = ∂iΓ

l
jk(0)− ∂jΓ

l
ik(0) + 0− 0

= ∂i∂kgj l(0)− ∂i∂lgk j(0)− ∂j∂kgi l(0) + ∂j∂lgk i(0).

If in this coordinate chart all the second derivatives of g also vanished at some point, then the
right hand side would be zero. This implies R(X,Y )Z = 0 for all vectors X,Y, Z ∈ TpM . But
curvature is defined independent of coordinates charts. If the curvature tensor is non-zero at
some point p in some directions, logically it is impossible in any chart for the Taylor series of
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gij at p to additionally vanish in the second order. In particular curvature is an obstruction to
being locally euclidean.

As we saw in Theorem 5.5, the numerous symmetries of R mean that there is a lot of redundancy
in its coefficients. It makes sense therefore to ask if there is a way to distil the information of
the curvature tensor into a simpler object. We provide two such simplifications now, and will
look at a third in the last section.

Definition 5.9. For every point p ∈ M and vectors Y,Z ∈ TpM , we consider the linear map
X 7→ R(X,Y )Z from TpM to itself. The Ricci curvature Ric(Y,Z) is the trace of this map. It
is bilinear in Y,Z so can be expressed nicely using coefficients

Ric(Y, Z) := Y jZk Ricjk = Y jZkδilR
l
ijk = Y jZkgimRmijkm .

Likewise the scalar curvature S is the trace (in the sense of bilinear forms) of the Ricci curvature
with respect to the metric:

S = trg Ric = gjk Ricjk = gjkgimRmijkm .

It may seem more natural to take the trace of Z 7→ R(X,Y )Z. However this is zero because Rm
is antisymmetric in the last pair. Likewise antisymmetry of R in X,Y means taking the trace
of X 7→ R(Y,X)Z just gives a negative sign. The Ricci curvature is in fact a symmetric bilinear
form:

Rickj = gimRmikjm = gimRmjmik = gmiRmmjki = gimRmijkm = Ricjk .

Example 5.10 (Stereographic Projection). In Example 5.4 we computed the coefficients Rl
ijk

in the chart UN . Most were zero. Therefore the coefficients of the Ricci tensor in this chart
are

Ricjk = δilR
l
ijk = R1

1jk +R2
2jk

Ric11 = R1
111 +R2

211 = R2
211 =

4

(∥x∥2 + 1)2

Ric12 = R1
112 +R2

212 = 0

Ric21 = R1
121 +R2

221 = 0

Ric22 = R1
122 +R2

222 = R1
122 =

4

(∥x∥2 + 1)2
.

As expected, this is a symmetric matrix.

For the scalar curvature we need the the inverse of the matrix of the metric

gi j =
(∥x∥2 + 1)2

4
δi j .

Hence

S = gjk Ricjk =
(∥x∥2 + 1)2

4
(Ric11+Ric22) = 2.

Not unreasonably, the scalar curvature for the sphere is at every point 2.
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We will not go deeply into the theory of Ricci and scalar curvature, but we will mention some
special cases of interest. Spaces with Ric ≡ 0 are called Ricci-flat. A slightly more general class
of Riemannian manifolds are Einstein manifolds. These have the property that Ric = λg for
a function λ : M → R. Since the Ricci curvature must be a symmetric bilinear form, this is
more-or-less the simplest form it could take. Taking trace of both sides shows that for Einstein
manifolds,

S = gjk Ricjk = λgjkgjk = λ
∑
k

δkk = λ dimM.

Example 5.11 (Stereographic Projection). Observe that the sphere is an Einstein manifold
with λ ≡ 1 as

Ricjk =
4

(∥x∥2 + 1)2
δij = gij .

We also see that its scalar curvature is S = λ dimS2 = 1× 2 = 2.

These are named for Einstein because the equation for the curvature of space-time in the theory
of general relativity is

Ricij −
1

2
Sgij = Tij ,

where the right hand side is a function representing matter-energy. If you allow on the left hand
side an additional ‘cosmological constant’

Ricij −
1

2
Sgij + Λgij = Tij ,

then Einstein manifolds are models of a vacuum universe (no matter-energy). Einstein originally
published his theory without a cosmological constant. At the time it was thought that the
universe was static and eternal, and in a subsequent publication he argued for Λ to permit this.
A decade later, the observations of distant galaxies by Hubble showed that the universe was
expanding. He would call this his “biggest blunder”, as trusting the simplicity of his original
derivation would have meant another successful prediction of the theory. It seems a little mean
naming this class of manifolds after a man’s biggest blunder.

Theorem 5.12 (Schur). On a connected Einstein manifold with dimension three or greater, the
scalar curvature is constant.

Proof. The key to this proof is the differential Bianchi identity 5.7. In normal coordinates at a
point p

(∂mRicjk)(p) = (∂m(gil Rmijkl))(p) = 0 + δil(∂m(Rmijkl))(p).

On the other hand

(∂m(λgjk))(p) = (∂mλ)(p)δjk + 0.
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Putting this into the Bianchi identity gives (leaving evaluation at p implicit)

0 = ∂mRmijkl −∂k Rmijml +∂l Rmijmk

0 = δil∂mRmijkl −δil∂k Rmijml +δ
il∂l Rmijmk

= ∂mλ δjk − ∂kλ δjm + δil∂l Rmijmk

0 = δjk∂mλ δjk − δjk∂kλ δjm + δjkδil∂l Rmijmk

= ∂mλ dimM − ∂mλ− δilδjk∂l Rmjimk

= ∂mλ (dimM − 1)− δil∂lλ δim

= ∂mλ (dimM − 2).

If dimM > 2 then this forces λ to have zero derivative in every direction. Morever, we can do
this for every point. Therefore λ = (dimM)−1S is constant.
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5.2 Hypersurfaces

A hypersurface is the embedding of an n-dimensional manifold M in an (n + 1)-dimensional
manifold N (codimension one). Additionally, assume that both a Riemannian manifolds and
that the embedding is Riemannian. Alternatively, you may begin with a Riemannian manifold
N and any manifoldM and then put the pullback metric onM , which will make the embedding
Riemannian. Recall Definition 3.59 and Theorem 3.60. They explain how the Levi-Civita
connection ∇⊤ of M can be calculated using the Levi-Civita connection ∇N ; essentially ∇⊤ is
the projection of ∇N .

We can also ask what information is lost by this projection.

Definition 5.13. The second fundamental form of M in N is the function

II(X,Y ) = ∇N
XY −∇⊤

XY.

This is a function from tangent vector fields on M to a normal vector field on M .

In the case that M is a hypersurface in N , there is an up-to-sign unique unit normal vector field
ν of M .2 In this case we also consider the second fundamental form to be

h(X,Y ) = g(II(X,Y ), ν) = g(∇N
XY, ν).

That this definition aligns with the definition in Section 1.5 is essentially the Meusnier’s theo-
rem 1.28. For R3 the metric is the dot product and the covariant derivative is just the usual
directional derivative. The theorem tells us for a arc-length parameterised curve that h(α′, α′)
is equal to the normal curvature α′′ · ν. In R3 it was clear by definition that h was a symmetric
C∞-bilinear form. This property generalises.

Theorem 5.14 (Codazzi-Mainardi). The second fundamental form II is a symmetric C∞-
bilinear function.

Proof. Consider the antisymmetric part of II. For tangent vector fields X,Y to M , we compute

II(X,Y )− II(Y,X) = ∇N
XY −∇⊤

XY −∇N
Y X +∇⊤

YX = TN (X,Y )− T⊤(X,Y ) = 0,

where TN and T⊤ are torsion. But Levi-Civita connections are torsion-free. This proves the
symmetry.

By definition covariant derivatives are C∞-linear in the direction. Hence II(X,Y ) is C∞-linear
in X. But by symmetry it is also C∞-linear in Y .

Notice that the Gauss formula only applies to tangent vector fields of M . We can also ask
about the derivative of the normal vector field ν. Observe that because ν is unit-length, for any
tangent vector X ∈ TpM

0 = X(g(ν, ν)) = 2g(ν,∇N
Xν)

2If M is orientable this field is global. If M is non-orientable then this can only be chosen locally.
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shows that ∇N
Xν is tangent to M . In fact

0 = X(g(Y, ν)) = g(∇N
XY, ν) + g(Y,∇N

Xν) = g(∇⊤
XY + II(X,Y ), ν) + g(Y,∇N

Xν)

⇒ g(Y,∇N
Xν) = −h(X,Y )

The above is called the Weingarten formula and is the analogue of the working following Exer-
cise 1.29. It tells us that for a hypersurface, the covariant derivative of any vector field in N in
a tangent direction of M can be calculated with ∇⊤ and h alone.

From these formulae follows a particularly nice formula relating the Riemann curvature tensors
of M and N . Originally the Levi-Civita connection was simply defined to the be tangent
connection, so this formula was called the Gauss formula.

RmN (X,Y, Z,W ) = g(RN (X,Y )Z,W ) = g(∇N
X∇N

Y Z −∇N
Y ∇N

XZ −∇N
[X,Y ]Z,W )

= g(∇N
X(∇⊤

Y Z + h(Y, Z)ν)−∇N
Y (∇⊤

XZ + h(X,Z)ν)−∇⊤
[X,Y ]Z,W )

= g(∇⊤
X∇⊤

Y Z +∇N
X(h(Y, Z)ν)−∇⊤

Y ∇⊤
XZ −∇N

Y (h(X,Z)ν)−∇⊤
[X,Y ]Z,W )

= g(RM (X,Y )Z +∇N
X(h(Y,Z)ν)−∇N

Y (h(X,Z)ν),W )

= RmM (X,Y, Z,W ) + g(X(h(Y,Z))ν + h(Y,Z)∇N
Xν,W )

− g(Y (h(X,Z))ν + h(X,Z)∇N
Y ν,W )

= RmM (X,Y, Z,W ) + h(Y,Z)g(∇N
Xν,W )− h(X,Z)g(∇N

Y ν,W )

= RmM (X,Y, Z,W )− h(Y,Z)h(X,W ) + h(X,Z)h(Y,W ).

Because for euclidean space the Riemann curvature tensor vanishes, this gives us a relation
between the curvature tensor of M and the second fundamental form.

Theorem 5.15 (Theorema Egregium). Let M be a Riemannian embedded surface in R3. Let
X,Y ∈ TpM be orthonormal vectors. The Gauss curvature K is related to the curvature tensor
by

K = Rm(X,Y, Y,X).

Therefore the Gauss curvature of a surface is an isometry invariant.

There exists a modification of this formula for arbitrary tangent vectors, but it amounts to
applying Gram-Schmidt orthogonalisation to the vectors X,Y . Therefore we work exclusively
with this more elegant form.

Proof. If X,Y ∈ TpM are orthonormal, then we can use them as a basis of TpM . With respect
to this basis

h =

(
h11 h12
h21 h22

)
=

(
h(X,X) h(X,Y )
h(Y,X) h(Y, Y )

)
.

Using Lemma 1.37 and the Gauss formula for curvature gives us therefore that

K = h11h22 − h212 = h(Y, Y )h(X,X)− h(X,Y )h(Y,X) = RmM (Y,X,X, Y ).
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Example 5.16 (Stereographic Projection). We know the Riemann curvature of S2 in the UN

chart already, so we should be able to use that to calculate the Gauss curvature. First we need
orthonormal vectors at every point of the chart UN . The coordinate vectors are orthogonal
to one another, but not unit length. Therefore take

X =
∥x∥2 + 1

2
∂1, Y =

∥x∥2 + 1

2
∂2.

Then

K = Rm(X,Y, Y,X) =

(
∥x∥2 + 1

2

)4

Rm1221 = 1.

As we observed in Example 1.34, the normal curvature of a sphere at every point and in
every direction is the inverse of its radius, here 1. Hence the principal curvatures are 1 and
directly from Definition 1.36 we see that the Gauss curvature is 1, in agreement with the
above calculation.

Definition 5.17. If M is a 2-dimensional Riemannian manifold, we define the Gauss curvature
K(p) = Rm(X,Y, Y,X) for any orthonormal basis X,Y of TpM .

Exercise 5.18. Implicit in this definition is the claim that this quantity is independent of the
choice of orthonormal basis of TpM . Prove this claim.
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5.3 Sectional Curvature

The Ricci and scalar curvatures are natural simplifications of the curvature tensor and have nice
properties, but we are yet to see any geometric intuition for these so-called curvatures. In this
section we finally address this question.

In Chapter 1 we defined the curvature of a surfaces by reference to the curvature of curves in
that surface. In particular the normal curvature was important, which we now understand is
the curvature of a geodesic. Likewise we can define a type of curvature using surfaces within
our manifold. These surfaces should be special in some way so that their curvature reflects the
curvature of the manifold.

Definition 5.19. For any point p ∈ M let us use the normal chart at p. Given a pair of
orthonormal vectors X,Y ∈ TpM , they span a plane in the chart, called the plane section P .
The sectional curvature K(P ) = K(X,Y ) of M at p is defined to be the Gauss curvature at p
of the plane section.

Example 5.20. Consider a two dimensional manifold. Then in the chart there is only one
possible plane, namely the chart itself. In this case the definitions are somewhat trivial and
the sectional curvature is just the Gauss curvature of the manifold from Definition 5.17.

In general it is important to use normal coordinates to define the plane section. In some sense,
this plane is constructed out of geodesics. We first show that the second fundamental form of
the plane section in M is zero at p. Choose any vector v ∈ TpP . Let γv be the geodesic through
p in the direction of v. The definition of the normal chart is that this is a ray, hence it lies in
P . By the Gauss formula,

0 = ∇M
γ′ γ′ = ∇P

γ′γ′ + II(γ′, γ′).

The tangent and normal directions are linearly independent, so both terms on the right must
vanish. In particular 0 = II(γ′(0), γ′(0)) = II(v, v) for all v ∈ TpM . Since II is symmetric it must
vanish at p. Together with Theorema Egregium 5.15 and the Gauss formula for curvature, we
have proved

Theorem 5.21. If X,Y ∈ TpM are orthonormal then the sectional curvature of M at p is

K(X,Y ) = RmP (X,Y, Y,X) = RmM (X,Y, Y,X).

It may seem as though the sectional curvature is just another simplification of the full curvature
tensor. But this is not the case.

Theorem 5.22. The sectional curvatures uniquely determine the curvature tensor. Moreover
if at some point p ∈ M the sectional curvature is constant K(X,Y ) = κ for all orthonormal
X,Y ∈ TpM then the curvature tensor is given by

Rm(X,Y, Z,W ) = κ
(
g(X,W )g(Y, Z)− g(X,Z)g(Y,W )

)
.

Proof. Suppose two curvature tensors have the same sectional curvatures at a point p. Then
their difference R is a quadlinear map on TpM with the same symmetries as a curvature tensor.
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It is sufficient to prove R(X,Y, Z,W ) = 0 for X,Y, Z,W elements of an orthonormal basis for
TpM . We now use the symmetries:

0 = R(X +W,Y, Y,X +W )

= R(X,Y, Y,X) +R(X,Y, Y,W ) +R(W,Y, Y,X) +R(W,Y, Y,X)

= 0 + 2R(X,Y, Y,W ) + 0,

and

0 = R(X,Y + Z, Y + Z,W )

= R(X,Y, Y,W ) +R(X,Y, Z,W ) +R(X,Z, Y,W ) +R(X,Z,Z,W )

= 0 +R(X,Y, Z,W ) +R(X,Z, Y,W ) + 0.

In other words, in addition to being antisymmetric in the first and last pair, R is also antisym-
metric in the middle pair. Finally we apply the algebraic Bianchi identity:

0 = R(X,Y, Z,W ) +R(Z,X, Y,W ) +R(Y, Z,X,W )

= R(X,Y, Z,W )−R(X,Z, Y,W )−R(Y,X,Z,W )

= R(X,Y, Z,W ) +R(X,Y, Z,W ) +R(X,Y, Z,W ).

Hence R(X,Y, Z,W ) = 0 as required.

For the second claim, we observe that if a tensor has the symmetries of a curvature tensor and
has constant sectional curvature then from the preceding argument it must be the unique such
curvature tensor. One can readily check that the given formula has the necessary symmetries.
For orthonormal X,Y ∈ TpM we have

K(X,Y ) = Rm(X,Y, Y,X) = κ
(
g(X,X)g(Y, Y )− g(X,Y )g(Y,X)

)
= κ.

Example 5.23 (Stereographic Projection). We see now that the curvature of the sphere S2
has exactly this form. The Gauss curvature at every point is 1. Then

Rmijkl = Rm(∂i, ∂j , ∂k, ∂l) = 1
(
gilgjk − gikgjl

)
=

(
4

(∥x∥2 + 1)2

)2 (
δilδjk − δikδjl

)
.

We had in Theorem 5.12 that Einstein manifolds, which have a special form of the Ricci curva-
ture, have constant scalar curvature. There is a similar result in the case of sectional curvature.

Theorem 5.24 (Schur). Suppose that a connected manifold of dimension three or more has
pointwise constant sectional curvature. This means there is a function κ :M → R such that for
all orthonormal X,Y ∈ TpM we have K(X,Y ) = κ(p). Then κ is constant.

Proof. At any point p ∈M we can use a normal chart. In this chart

∂mRm(∂i, ∂j , ∂k, ∂l)|p = ∂m(κ(gilgjk − gikgjl))|p = ∂mκ(p)(δilδjk − δikδjl)

The differential Bianchi identity at p says

0 = ∂mRmijkl |p + ∂k Rmijlm |p + ∂l Rmijmk |p
= ∂mκ(p)(δilδjk − δikδjl) + ∂kκ(p)(δimδjl − δilδjm) + ∂lκ(p)(δikδjm − δimδjk).
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In particular, choose l = i, k = j, and m, i, j distinct. It is possible for three indices to be
distinct because the dimension is at least three.

0 = ∂mκ(p)(1− 0) + ∂kκ(p)(0− 0) + ∂lκ(p)(0− 0) = ∂mκ(p).

Thus κ has zero derivative at p, and hence at every point. It must be constant.

Spaces with constant sectional curvature are called space forms. In every dimension the space
forms are the euclidean space, the sphere (with scalings), and hyperbolic plane (with scalings),
this classification is due to Killing and Hopf. Thus these three spaces, which have been the main
focus of our examples, are in terms of Riemannian geometry the nicest spaces. We have in a
previous section mentioned the study of manifolds with special curvature.

Another direction of research is to impose a bound on the curvature. For example, a theorem
of Myers states that if a Riemannian manifold is complete as a metric space and the infimum of
its sectional curvatures is positive, then it is compact. Or a result of Synge says that a compact
orientable even-dimensional Riemannian manifold with positive sectional curvatures must be
simple connected.

Finally, both theorems of Schur rely on the dimension being three or greater. This is not
a limitation of the proof: Riemann surfaces really are special. There is only one intrinsic
curvature for them, the Gauss curvature, and integral of the Gauss curvature over the whole
manifold is closely connected with its topology (the Gauss-Bonnet theorem). Moreover every
Riemann surface is conformally equivalent to a Riemann surface with constant curvature, which
then are the three space forms. More can be learnt about the theory of Riemann surfaces in
Complex Analysis II (Funktiontheorie II).



Appendix A

Literature

All textbooks that I know approach differential geometry in the following sequence: the classical
subject of curves and surfaces, the general theory of manifolds, Riemannian manifolds. In fact
most only treat one of the three topics. It was somewhat of a challenge therefore to produce
a script that opened with foundational material, covered the least amount of manifold theory
possible, and still was able get to interesting results in Riemannian geometry. I’m writing this
before semester begins, so there is no guarantee we actually make it all the way through!

Do Carmo’s Differential Geometry of Curves and Surfaces (1976, 2016) is a classic. It has great
illustrations and spends a lot of time examining special classes of surfaces. This gives the reader
a good grounding in the sorts of problems that might be interesting in higher dimensions. Our
Chapter 1 does not follow do Carmo as closely as it otherwise might because I wanted to motivate
the curvature of curves through the osculating circle. The approach to normal curvature and
Meusnier’s theorem is very much in line with do Carmo however.

Chapter 2 is a strange beast. Some amount of manifold theory is unavoidable to talk about
Riemannian manifolds. But I didn’t want to just turn this course into “Analysis III Lite” and I
wanted students who have already taken Analysis III to get something new out of it. Therefore
I tried to write down a fresh approach that centers charts as the primary object of manifold
theory. This is somewhat inspired by the physics approach to general relativity, where every
observer has their own chart. I have no good references to give.

There after we move into what is a more-or-less standard approach to Riemannian geometry.
I relied most heavily on John M Lee’s Introduction to Riemannian Manifolds (second edition,
2018). To name but one example, we followed his convention on the indices of the curvature
coefficients. More generally, we followed his example by treating geodesics before curvature. I
recommend this textbook to a student looking to reinforce their knowledge because of its strong
explanations and willingness to use geometric intuitions.

The second textbook I leaned on for the later chapters was Petersen’s Riemannian Geometry
(2005). I was particularly impressed with his handling of the symmetries of the Riemannian
curvature. Prof Schmidt’s lecture notes from when he last ran this course, which I may have
shared with you since they are in German, follows the path set by Petersen. However I would
recommend this book only for a student who is already confident with Riemannian geometry,
because it is rather brisk and it shies away from discussions. This means however it has time
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for further explorations (curvature bounds and symmetric spaces). A book that is similar in
this respect but with a different set of extension topics (harmonic maps and Floer homology) is
Jost’s Riemannian Geometry and Geometric Analysis (2017).

Speaking of geometric analysis, I mentioned in Chapter 4 geometric flows as an alternative
method of straightening curves. I would recommend interested students check out Andrews et
al Extrinsic Geometric Flows (2020). Already with the knowledge of curves and their curvatures
from this course the second chapter of that book, on the curve shortening flow, is very readable.

Likewise I have a special spot in my heart for Sharpe’s Differential geometry: Cartan’s gener-
alization of Klein’s Erlangen program. It really represents a completely different approach to
geometry. Klein’s Erlangen program was an attempt to unify all the then-known geometries
(euclidean, hyperbolic, elliptic, projective, etc) into one framework. The idea worked, but it
never became as popular as the tensor calculus of the Italians, probably due to the influence
of general relativity. What is interesting from the perspective of modern differential geometry
is that many of the ‘old ideas’ that have been dropped or relegated to corollaries are first-class
ideas in this other approach. For example, moving a tangent plane along a surface using eu-
clidean motions is a very natural operations from this point of view, which is why we mentioned
this book in Chapter 3.
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Linear Algebra

Cross product

Consider Rn with the dot product. With this we can determine the lengths of vectors and the
angle between them. In fact the relation a · b = ∥a∥ ∥b∥ cos θ says that the two are equivalent
information. The reason to use the dot product over simply the length and angle information
is because it is very useful to encode this information into a bilinear operation. Likewise, in
R3 given two non-parallel vectors in order, there is a third perpendicular vector that completes
the oriented basis. It is useful to have an operation that goes from a pair of vectors to the
perpendicular complement, but even more useful if this operation has nice algebraic properties.

Here is a construction that leads to the standard cross product. It must be anticommutative to
encode the orientation. We want it to be bilinear, so it is sufficient to construct it on unit vectors.
Note that negating a vector changes the orientation so the output should also be negated to
preserve the orientation, and this is compatible with bilinearity. Finally, it should be rotationally
preserved. With these stimulations, we must choose an odd function f(θ) that determines

i× (cos θ i+ sin θ j) = f(θ)k.

By anticommutativity, i× i = 0. If the cross product is to be bilinear, then

f(θ)k = sin θ (i× j) = sin θ f(π/2)k.

The obvious choice is to set f(π/2) = 1 so that f(θ) = sin θ.

We see that the cross product is determined essentially by the relation i× j = k and bilinearity.
This can be used to calculate any cross product and is called the ‘algebraic method’. Alter-
natively, we have ∥a × b∥ = ∥a∥ ∥b∥ | sin θ|. We can interpret the right hand side as the area
of the parallelogram spanned by a and b. Together with the perpendicularity, this information
also determines the cross product. It is called the ‘geometric method’. This is the reason that
cross products often appear in surface area formulas. For example, a parameterised surface
Φ : U ⊆ R2 → R3 has a surface area of∫∫

U
∥∂uΦ× ∂vΦ∥ du dv.
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Finally, the computation method I use the most is the ‘determinant method’. Given a =
a1i+ a2j+ a3k and b = b1i+ b2j+ b3k take the following determinant∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2)i+ (a3b1 − a1b3)j+ (a1b2 − a2b1)k.

Although it is an abomination that mixes vectors and scalars in one matrix, it gives the correct
result.

Linear Atlases

In this section we offer a different perspective on vector space theory. It is well known that
every finitely generated vector space over K is isomorphic to Kn for a single n ∈ N+ called the
dimension. This is often summarised as ‘there is only one vector space per (finite) dimension’.
One proves this by construction of an ordered basis, which is equivalent to a linear isomorphism
to Kn via

(v1, . . . , vn) ∈ V 7→ ϕ(vi) := ei

ϕ : V → Kn 7→ (ϕ−1(e1), . . . , ϕ
−1(en)),

where (e1, . . . , en) is the standard basis of Kn. After establishing this result, one rushes to bring
all the tools of matrix theory into vector spaces.

This is of course all correct, we offer now only a different emphasis. If you have a vector space
V over the field R of dimension n then unlike Rn is does not have a distinguished ordered basis.
Let us put our focus on the isomorphisms to Rn rather than the ordered bases. If you have
two linear isomorphisms ϕ1, ϕ2 : V → Rn then you can compose them to a linear isomorphism
between euclidean spaces ϕ2 ◦ ϕ−1

1 : Rn → Rn. It is the change of basis matrix that you learn
about in vector space theory. We, being differential geometers, recognise this situation as a
manifold V with coordinates ϕ1, ϕ2 and a transition function ϕ2 ◦ϕ−1

1 . Just as for a Ck-manifold
the transition maps are bijective Ck functions with Ck inverse, here the transition maps are
bijective linear maps (which makes the inverse automatically linear). In this way, we could
define a vector space as a set V with a linear atlas, an atlas where all transition maps are linear
isomorphisms, as opposed to defining a vector space through a list of axioms. Thus a vector
space is a special type of manifold and the choice of a basis is the choice of a chart.

Let us say that matrices describe linear maps between Rn and Rm, but not other vector spaces.
Suppose you have two vector spaces V,W of dimension n,m with linear isomorphisms ϕ1, ϕ2 :
V → Rn and ψ1, ψ2 : W → Rm and a linear map A : V → W . For any manifold, we can
examine a map between manifolds in charts ψ1 ◦A ◦ ϕ−1

1 : Rn → V →W → Rm. This function
ψ1 ◦A◦ϕ−1

1 is a linear function between euclidean spaces, unlike A, so it can be represented as a
matrix. Thus writing a linear map as matrix with respect to bases is nothing other than writing
it in charts. Likewise ψ2 ◦ A ◦ ϕ−1

2 can also be represented as a matrix, and the relationship
between the two is exactly that change of coordinates formula from differential geometry:

ψ2 ◦A ◦ ϕ−1
2 = (ψ2 ◦ ψ−1

1 ) ◦ (ψ1 ◦A ◦ ϕ−1
1 ) ◦ (ϕ2 ◦ ϕ−1

1 )−1.
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We can interpret this formula in terms of matrices:

matrix of A with respect to the new bases

= change of basis matrix for W

×matrix of A with respect to the old bases

× inverse of change of basis matrix for V .

Hopefully you agree that by using the differential geometry idea of clearly separating an object
from its coordinates/charts, we clarify how to change coordinates.

Let us change topics and consider Gaussian elimination, aka row and column operations. Per-
haps you are aware that the three elementary row operations can be implemented as matrix
multiplication. Here they are for 2× n matrix:(

0 1
1 0

)(
v1 . . .
w1 . . .

)
=

(
w1 . . .
v1 . . .

)
(
1 0
0 λ

)(
v1 . . .
w1 . . .

)
=

(
v1 . . .
λw1 . . .

)
(
1 0
λ 1

)(
v1 . . .
w1 . . .

)
=

(
v1 . . .

w1 + λv1 . . .

)
.

We see that all three 2 × 2 matrices are linear isomorphisms, therefore can be interpreted as a
change of basis (or a change of chart). In a similar way, the elementary column operations are
the multiplication of an invertible matrix from the right. If we have a linear map A : V →W we
see that starting with the matrix of A in some bases applying row and column operations gives
CAD−1, the matrix of A with respect to some other bases. The point of Gaussian elimination
is to bring a matrix to reduced row echelon form. But this is exactly finding special bases (or
charts) for V and W in which the matrix of A has a simple form, namely an identity block and
the rest zeroes.

Consider if we have a linear map A : V → V . We can treat the domain and codomain as
separate and use Gaussian elimination to find two bases of V that together give the matrix of A
a nice form. But we can also ask what can be done if we are forced to use the same basis of V
for both domain and codomain. If the change of basis matrix is C, we are asking what can be
said about CAC−1. This is matrix conjugation/similarity. One learns that the eigenvalues of
a matrix are preserved by conjugation and the complete answer is given by the Jordan normal
form.

Bilinear Forms

Introductory linear algebra concentrates on vector spaces and linear maps. But these are not the
only topics of linear algebra. Historically bilinear forms were perhaps even more studied than
linear maps. A bilinear form is a function B : V ×V → R that is linear in both arguments. The
term ‘form’ is an old term indicating a function to the scalars. Like linear maps, bilinear forms
on Rn can be represented as a square matrix B(v, w) = vTBw. What is different to linear maps
is that under a change of basis C−1 the matrix of a bilinear form changes to CTBC. This is
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called matrix congruence and leads to a different set of invariants. For example, the eigenvalues
are invariants of a linear map because they are roots of det(λI −A) and

det(λI − CAC−1) = detC(λI −A)C−1 = detC−1C(λI −A) = det(λI −A).

The same calculation does not work if the transformation is CTBC. Therefore eigenvalues are
not invariants of matrices of bilinear forms.

Every bilinear form can be split into a symmetric and antisymmetric part

B(v, w) =
1

2

(
B(v, w) +B(w, v)

)
+

1

2

(
B(v, w)−B(w, v)

)
.

A bilinear form is symmetric/antisymmetric if and only if the matrix is symmetric/antisymmetric.
This is an invariant of the matrices of bilinear forms; a linear map might have a symmetric ma-
trix in one basis but not another. Another invariant is the dimension of the left and right kernels
of bilinear form. The left kernel is the set of vectors v such that B(v, w) = 0 for all w ∈ V , and
ditto for the right kernel. These are vector subspaces and have the same dimension, called the
nullity. For symmetric and antisymmetric bilinear forms, the left and right kernels are equal. A
bilinear form is called non-degenerate if its kernels are trivial.

The theory for the symmetric and antisymmetric are significantly different from each other. The
invariants of a symmetric bilinear form are revealed by Sylvester’s law of inertia.

Theorem B.1 (Sylvester’s law of inertia). There is a basis that reduces the matrix of a sym-
metric bilinear form B to the following block-diagonal matrixIp −Iq

0

 .

The sizes (p, q) are called the signature and are invariants.

Proof. We first show that B can be diagonalised with {1,−1, 0} on the diagonal. If all vectors
have B(v, v) = 0, then

0 = B(v + w, v + w)−B(v − w, v − w) = 4B(v, w)

shows that B is identically zero. Hence it is the zero matrix in any basis. Otherwise there is a
vector with B(v, v) ̸= 0. By rescaling

B
(√

|B(v, v)|
−1
v,
√

|B(v, v)|
−1
v
)
=
√
|B(v, v)|

−2
B(v, v) = |B(v, v)|−1B(v, v) = ±1.

So without loss of generality assume B(v, v) = ±1. Then we can consider its orthogonal com-
plement v⊥ := {w ∈ V | B(v, w) = 0}. This is the kernel of w 7→ B(v, w). Its image is 1
dimensional by the definition of v, so v⊥ is (n − 1)-dimensional. We can restrict B to v⊥ and
apply the inductive hypothesis to get a basis (v2, . . . , vn) for which B(vi, vj) = 0 for i ̸= j and
B(vi, vi) ∈ {1,−1, 0}. But additionally B(v, vi) = 0 and B(v, v) ∈ {1,−1}. So (v, v2, . . . , vn) is
a basis that meets our requirements.

Clearly by reordering the basis we can ensure that all the 1s come first, then the −1s and lastly
the 0s. It remains to show that signature is an invariant. The kernel of B is independent of
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basis, so we know that the sum p + q is an invariant r. Take any two diagonalising bases, vi
with signature (p, q) and wi with (p′, q′). Suppose that p < p′. Construct a linear map

L : Rn → Rp+q′ , x 7→
(
B(v1, x), . . . , B(vp, x), B(wp′+1, x), . . . , B(wp′+q′ , x)

)
.

Any vector x ∈ kerB is also in the kernel of L. Notice however that p+ q′ < p′ + q′ = n− r so
dimkerL = n− (p+ q′) > r. Hence there must be a vector u in the kernel of L that isn’t in the
kernel of B.

We write u =
∑

i uivi. The coefficients with i ≤ p must be zero, since for j ≤ p

0 = B(vj , u) =
∑
i

uiB(vj , vi) = uj .

And because u is not in the kernel of B, at least one of the coefficients with p + 1 ≤ i ≤ p + q
must be non-zero. Therefore

B(u, u) =
∑

i,j≥p+1

uiujB(vi, vj) =
∑

i≥p+1

uiuiB(vi, vi) =
∑

p+1≤i≤p+q

u2i (−1) < 0.

But now we can apply the same argument in the wi basis, but this time with the conclusion
that B(u, u) > 0. This is a contradiction, proving that p = p′.

A vector space with a non-degenerate symmetric bilinear form is called an inner product space,
which should already be familiar to you. Non-degeneracy is equivalent to a signature of (n, 0).
Hence all inner product spaces of the same finite dimension are essentially the same. The above
proof in this case yields an orthonormal basis. In fact, we can insert the Gram-Schmidt process
to make the above proof fully constructive. After we have normalised v to have B(v, v) = ±1
choose more vectors to have a basis (v, v′2, . . . v

′
n) of the whole vector space. Observe that

B

(
v, v′i −

B(v, v′i)

B(v, v)
v

)
= B(v, v′i)−

B(v, v′i)

B(v, v)
B(v, v) = 0.

Hence vi := v′i −
B(v,v′i)
B(v,v) v is a basis of v⊥.

Slightly more can be said about a symmetric bilinear form on an inner product space. This is
a situation we often find ourselves in in Riemannian geometry, were the metric g is the inner
product and we have another symmetric bilinear form such as the second fundamental form h.
In particular, in this context we can identity a preferred class of bases, namely the orthonormal
bases. The transformation from one orthonormal basis to another is an orthogonal matrix, so

det(λI −OTAO) = detOT (λI −A)O = detOOT (λI −A) = det(λI −A).

The characteristic polynomial (and hence eigenvalues, determinant, trace) of the matrix of a
symmetric bilinear form in an orthonormal basis is an invariant. This explains Lemma 1.37. We
essentially defined the principal curvatures to be the eigenvalues of the second fundamental form
(with respect to g-orthonormal bases). The Gauss curvature is their product, ie the determinant.
The determinant can then be taken with respect to any orthonormal basis and be the same.

Finally, a vector space with a non-degenerate antisymmetric bilinear form is called an symplectic
space. Antisymmetric bilinear forms can only be non-degenerate if the dimension is even. For
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a symplectic space it is possible to find a basis (Darboux basis) such that the matrix of the
bilinear form is (

0 In
−In 0

)
.

Just like for inner product spaces, there is essentially only one symplectic vector space in every
even dimension. Symplectic vector spaces are the starting point for symplectic geometry in the
same way that inner product spaces are the starting point for Riemannian geometry. Unlike in
Riemannian geometry, which has curvature, symplectic geometry does not have local invariants.
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Examples

Throughout this script certain examples are used repeatedly. Here we link them together.

Helix

• Definition: Equation (1.3)

• Arc-length parameterisation: Example 1.7

• Curvature: Example 1.11

• Torsion: Example 1.15

• Relation of curavture and torsion to radius and slope: Example 1.17

Helicoid

• Definition: Equation (1.18)

• First fundamental form: Example 1.21

• Surface normal: Example 1.22

• Normal curvature: Example 1.26

• Second fundamental form: Example 1.30

• Principal curvatures: Example 1.35

• Metric: Example 3.3

• Conformality: Example 3.14
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Euclidean Space

• Atlas: Example 2.3

• Continuous differentiability: Example 2.14

• Tangent bundle: Example 2.27

• Lie bracket: Example 2.37

• Metric: Example 3.2

• Covariant derivative: Example 3.21

• Torsion: Example 3.42

• Metric-compatibility: Example 3.57

• Riemannian curvature: Example 5.2

Polar Coordinates

• Definition: Example 2.4

• Equivalence of tangent vectors: Example 2.17

• Ill-definedness of vector field differentiating a vector field: Example 2.33

• Lie bracket: Example 2.35

• Covariant derivative: Example 3.30

Glued Circle

• Definition: Example 2.5

• Embedding in R2: Example 2.16

• Directional derivative: Example 2.21

• Tangent bundle: Example 2.28

• Tangent bundle in R4: Exercise 2.31

Stereographic Projection

• Definition of S1: Example 2.11

• Definition of Sn: Exercise 2.12

• Height function in charts: Example 2.15
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• Coordinate vector fields on S1: Example 2.19

• Derivative of height function: Example 2.20

• Pushforward on S1: Example 2.22

• Pushforward on S2: Exercise 2.23

• Metric on S1: Example 3.6

• Change of charts for the metric: Exercise 3.7

• Metric on S2: Exercise 3.8

• Conformality: Example 3.13

• Covariant derivative: Example 3.26

• Christoffel coefficients of S1: Example 3.32

• Christoffel coefficients of S2: Exercise 3.35

• Torsion-free: Example 3.43

• Riemannian curvature tensor: Example 5.4

• Ricci curvature tensor: Example 5.10

• Einstein manifold: Example 5.11

• Gauss curvature: Example 5.16

• Sectional curvature: Example 5.23

3-Sphere

• Trivialisations: Example 3.16

• Left invariant vector field: Example 3.18

• Left covariant derivative: Example 3.29

• Parallel transport: Example 3.38

• Torsion of left connection: Example 3.45

• Torsion of right connection: Example 3.46

• Torsion-free connection: Example 3.47

• Metric-compatibility: Example 3.51

• Levi-Civita connection: Example 3.58
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Tangent Connection

• Definition: Example 3.26

• Christoffel coefficients: Example 3.31

• Definition for Riemannian immersions: Definition 3.59

• Geodesics of sphere: Example 4.9

Hyperbolic Plane

• Definition, Metric, Connection, Isometries, and Geodesics: Section 4.2

• Length of geodesics: Example 4.16

• Exponential map and normal chart: Example 4.31

• Distance function: Example 4.35

• Metric coefficients in normal chart: Example 4.37
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