
Chapter 3

Metrics and Connections

3.1 Riemannian Metrics

Finally we come to the definition of a Riemannian metric, the object that gives this field its name.
Let us dispel a common misunderstanding: a Riemannian metric is not a distance function, which
goes against modern terminology (a la metric spaces). Instead it is a generalisation of an inner
product. As we saw for surfaces, an inner product allows us to define a notion of length, so
there is a close relation between distance functions and inner products on manifolds. But a new
student to the field must get used to the change in terminology.

Definition 3.1. A Riemannian metric g on a manifold M is a choice of inner product for every
tangent space TpM . If U is a chart of M , then we can express g in charts using the coordinate
basis vectors:

gi j(p) = g

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
.

A Riemannian metric should be smooth in the sense that the functions gi j are smooth in any
chart. A manifold with a Riemannian metric is called a Riemannian manifold. Length of and
angle between vectors X,Y ∈ TpM is defined in the usual way

∥X∥g :=
√
g(X,X), cos θ =

g(X,Y )

∥X∥ ∥Y ∥

The functions gi j are sufficient to determine the inner product of any two vectors by bilinearity:

g

(
Xi ∂

∂xi
, Y j ∂

∂xj

)
= XiY jg

(
∂

∂xi
,
∂

∂xj

)
= XiY jgi j .

The symmetry and positive definiteness of g imply that the matrix (gi j) is symmetric and
positive definite.

Example 3.2 (Euclidean Space). We have seen in Example 2.3 that any open subset of
euclidean space is a manifold with one chart. It is also a Riemannian manifold with the usual
dot product

gi j = g

(
∂

∂xi
,
∂

∂xj

)
=

∂

∂xi
· ∂

∂xj
= δi j .
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Notice that the matrix of the metric in charts is symmetric and positive definite. This is also
called the standard metric on Rn.

Example 3.3 (Helicoid). In fact we have seen Riemannian metrics already, namely the first
fundamental form of a surface. For the helicoid, in Example 1.21, in the chart U = R2 we
had coordinates x1 = u, x2 = v and

g1 1(u, v) = 1, g1 2(u, v) = g2 1(u, v) = 0, g2 2(u, v) = u2 + b2.

For this example we see that gi j are non-constant functions (at least, g2 2 is non-constant).
We understand that the length coordinate basis vector∥∥∥∥∥ ∂

∂v

∣∣∣∣
(u,v)

∥∥∥∥∥ =
√
u2 + b2

is different at different points of the helicoid.

We can ask how the functions gi j in a chart U are related to those g̃i j in an overlapping chart
Ũ . We know that the inner product should be independent of basis, so we compute it in two
ways:

g̃i j = g

(
∂

∂yi
,
∂

∂yj

)
= g

(
∂xk

∂yi
∂

∂xk
,
∂xl

∂yj
∂

∂xl

)
=
∂xk

∂yi
∂xl

∂yj
g

(
∂

∂xk
,
∂

∂xl

)
=
∂xk

∂yi
∂xl

∂yj
gk l.

Notice the subtle contrast to the equivalence relation for vectors:

vi
∂

∂xi
= vi

∂yj

∂xi
∂

∂yj
= ṽj

∂

∂yj
⇒ ṽj = vi

∂yj

∂xi
.

The term for objects that transform with ∂xk

∂yi
, like gi j , is covariant, whereas those that transform

with ∂yj

∂xi , like the coefficients of vectors, are called contravariant. The convention is to use
lower indices for covariant things, and upper indices for contravariant things. Historically this

convention came before the summation convention. Because ∂xi

∂yj
∂yj

∂xi = 1 by the chain rule, when
covariant and contravariant objects are ‘multiplied’, as in the above formula for g, then the
result is independent of charts. This explains why there are so many sums of upper index with
lower index, and was the motivation of the summation convention.

Clearly one can endow a manifold with functions gi j that satisfy the necessary properties and
thereby make it a Riemannian manifold. But this is not usually how we construct Riemannian
manifolds. It is far more common to ‘inherit’ a metric from a bigger Riemannian manifold. This
is how we got a metric on the helicoid. In general, we use the tangent map to move vectors on
one manifold into the tangent space of another.

Definition 3.4. LetM be a manifold, N a Riemannian manifold with metric g. Let f :M → N
be an immersion. That means that Tpf is injective at every point. Then we define a metric f∗g
on M , called the pullback metric or the induced metric, by

f∗g(v, w) := g (Tpf(v), Tpf(w))

for any v, w ∈ TpM .
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Exercise 3.5. The formula for f∗g is well-defined for all smooth functions f :M → N , so why
is it necessary that f is an immersion?

Let’s go through how the definitions of Section 1.4 fit with the definitions in this section. First
we have the definition of a regular parameterised surface Φ : U → R3, Definition 1.19. Φ is a
function between euclidean spaces, so the tangent map is just the Jacobian TpΦ = JpΦ. The
condition that the Jacobian is rank two is equivalent to it being injective by the rank-nullity
theorem of linear algebra. Therefore regular and immersed are equivalent.

The first fundamental form is exactly the standard metric on R3 pullbacked by Φ. In the
coordinate basis vectors, we have

gi j = Φ∗gR
3

(
∂

∂xi
,
∂

∂xj

)
= gR

3

(
(JpΦ)

k
i

∂

∂xk
, (JpΦ)

l
j

∂

∂xl

)
= (JpΦ)

k
i (JpΦ)

l
jg

R3

(
∂

∂xk
,
∂

∂xl

)
= (JpΦ)

k
i (JpΦ)

l
jδk l =

∂Φk

∂xi
∂Φl

∂xj
δk l =

∂Φ

∂xi
· ∂Φ
∂xj

,

which is the definition of the first fundamental form.

Example 3.6 (Stereographic Projection). What does the induced metric from R2 look like in
stereographic coordinates on S1? Well, we need to compute the pushforward of the coordinates
vector fields and take the dot product. The pushforward was already computed for the UN

chart in Example 2.22:

(Jxϕ
−1
N )(

∂

∂x
) =

2

(x2 + 1)2

(
−x2 + 1

2x

)(
1
)
=

2

(x2 + 1)2

(
−x2 + 1

2x

)
.

Therefore

g1 1 =
4

(x2 + 1)4
[
(−x2 + 1)2 + (2x)2

]
=

4

(x2 + 1)4
[
x4 − 2x2 + 1 + 4x2

]
=

4

(x2 + 1)4
[
x2 + 1

]2
=

4

(x2 + 1)2
.

The matrix of the metric has only one entry because the dimension of the manifold is one.

Using this we can calculate the lengths of vectors. For example ∂x
∣∣
0
has length

∥∂x
∣∣
0
∥2 =

(
1
)T (

g1 1(0)
) (

1
)
= 4.

This is because we saw in Example 2.22 that it pushes forward to (2, 0).

On the other hand ∂x
∣∣
1
has length

∥∂x
∣∣
1
∥2 =

(
1
)T (

g1 1(1)
) (

1
)
= 1.

So although the vector field ∂x appears to be constant in the UN chart, its length is in fact
changing.

Exercise 3.7 (Stereographic Projection). Compute g̃i j in the chart US ⊂ S1 and verify the
change of chart formula for the metric.
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Exercise 3.8 (Stereographic Projection). For the UN chart of S2 verify

g1 1 = g2 2 =
4

(∥x∥2 + 1)2
, g1 2 = g2 1 = 0.

Finally, consider the notion of isometry in Definition 1.38. It says that two parameterised
surfaces are isometric if their parametrisations induce equal metrics. We give the following more
general definition.

Definition 3.9. Let M,N be Riemannian manifolds and let f :M → N be an immersion. We
call f an Riemannian immersion if gM = f∗gN . In words, if the metric on M induced by the
immersion is equal to the existing metric on M . If additionally f is a diffeomorphism (bijective,
smooth, smooth inverse) then we call f an isometry. Two Riemannian manifolds are isometric
if there is a isometry between them.

As above, if M is just a manifold and we have an immersion f : M → N to a Riemannian
manifold, then we can endow M with the pullback metric. Then f becomes a Riemannian
immersion by definition.

Example 3.10. Suppose that we have an Riemannian immersion f : M → R3 and let
R : R3 → R3 be a rotation. Define R ◦ f : M → R3; this is also a Riemannian immersion,
as we will now prove. The essential step of the calculation is to notice that TR = R because
R is a linear transformation, and that R a rotation doesn’t change the inner product gR

3
.

Therefore

(R ◦ f)∗gR3
(v, w) = gR

3
(T (R ◦ f)v, T (R ◦ f)w) = gR

3
((TR ◦ Tf)v, (TR ◦ Tf)w)

= gR
3
(R(Tf(v)), R(Tf(w))) = gR

3
(Tf(v), T f(w))

= f∗gR
3
(v, w) = gM (v, w).

In the last line we used that f is a Riemannian immersion.

Exercise 3.11. Generalise the above example to prove: the composition of two Riemannian
immersions is a Riemannian immersion.

A weaker condition to isometry is that of a conformal map.

Definition 3.12. Let M,N be Riemannian manifolds and let f : M → N be an immersion.
We say that f is conformal if there exists a smooth function λ :M → R such that gM = λf∗gN .

A conformal map does not preserve lengths or distances, but it does preserve angles since

gN (Tf(X), Tf(Y )) = f∗gN (X,Y ) = λgM (X,Y )

implies
gN (Tf(X), Tf(Y ))

∥Tf(X)∥gN ∥Tf(Y )∥gN
=

λgM (X,Y )√
λ∥X∥gM

√
λ∥Y ∥gM

=
gM (X,Y )

∥X∥gM ∥Y ∥gM
.
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Example 3.13 (Stereographic Projection). Consider inverse stereographic projection Φ =
ϕ−1
N as a function between UN = Rn with the standard metric and the sphere Sn with the

induced metric of Rn+1.

For n = 1, and indeed on any one-dimensional manifold, all metrics are conformally equivalent
because there is only one metric coefficient g1 1.

For n = 2, Exercise 3.8 shows us that Φ is not a Riemannian immersion, because the pullback
metric Φ∗gS

2
is not equal to the standard metric δi j . However, Φ is conformal because

Φ∗gS
2
=

4

(∥x∥2 + 1)2
δi j .

Notice for example, that in stereographic coordinates the lines through the origin are lines
of longitude and circles centered at the origin are lines of latitude, and these are always
perpendicular to one another.

A calculation similar to the n = 2 case shows that sterographic projection is conformal for
all n. Therefore stereographic charts have the advantage that the angle between vectors as
naively calculated in the chart is the same as in Rn+1.

Example 3.14 (Helicoid). We have seen the pullback metric of the helicoid in Example 3.3.
It is a metric on U = R2. On the other hand we could give the plane the standard metric δi j .
With these metrics, the immersion Φ is not conformal.

We could use a different parameterisation of the helicoid Φ̃ : R2 → R3

Φ̃(u, v) = (sinhu cos v, sinhu sin v, v).

The pushforwards of the coordinate vectors are

∂Φ̃

∂u
= (coshu cos v, coshu sin v, 0)

∂Φ̃

∂v
= (− sinhu sin v, sinhu cos v, 1).

The pullback of the standard metric on R3 by this map is

(Φ̃∗gR
3
)1 1 = gR

3

(
∂Φ̃

∂u
,
∂Φ̃

∂u

)
= cosh2 u,

(Φ̃∗gR
3
)1 2 = (Φ̃∗gR

3
)2 1 = gR

3

(
∂Φ̃

∂u
,
∂Φ̃

∂v

)
= 0,

(Φ̃∗gR
3
)2 2 = sinh2 u+ 1 = cosh2 u.

That is to say
(Φ̃∗gR

3
)i j = cosh2 u δi j = cosh2 u gR

2

i j

Therefore Φ̃ is a conformal map between R2 and R3 with the standard metrics.
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3.2 Quaternions and S3

In this section we introduce the quaternions as a means to understand the rotations of S3. The
3-sphere is a beautiful manifold because it is also a group. A manifold that is also a group is
called a Lie group. We will not go into the general theory of Lie groups, but they come with a
natural way to move vectors around, something we are trying to achieve in this chapter. The
example of Lie groups is therefore very instructive for us.

The quaternions are a four dimensional real vector space {a0+a1i+a2j+a3k}. A quaternion has
a real part Re a = a0 and an imaginary part Im a = a1i+a2j+a3k. Unlike for complex numbers,
the imaginary part of a quaternion is not real. The quaternionic conjugate is ā = Re a − Im a.
Clearly Re ā = Re a and Im ā = − Im a. Elements of the subspace {a1i + a2j + a3k} are called
imaginary.

Famously the quaternions have an associative but non-commutative multiplication, defined by
i2 = j2 = k2 = ijk = −1 and 1 is the identity. We also use the notation e = 1 to aid clarity.
For example ij = k because we multiply ijk = −1 on the right by k to get ijk2 = −k and use
k2 = −1. On the other hand ji = −k: from ijk = −1 we get 1 = kji and now multiply on the
left by k. This doesn’t mean that every multiplication of quaternions is anti-commuting:

(1 + i)(1 + j) = 1 + 1j+ i1 + ij = 1 + i+ j+ k,

(1 + j)(1 + i) = 1 + 1i+ j1 + ji = 1 + i+ j− k.

According to legend on Monday 16 October 1843, as Hamilton was walking to the Royal Irish
Academy, he had the idea that to define a multiplication on R4 it must be non-commutative,
whereupon he carved the above equations into the side of Brougham Bridge. I have been to
the bridge but was unable to find the carving, so instead I offer the following simple trick
to remember the multiplication rule. Draw i, j,k on a directed circle. Multiplication of two
elements gives the third, with a plus sign if they are in the correct direction and a minus sign if
they are in the reverse direction. This is of course the same rule as for the cross product in R3.

A direct computation shows that aā = āa = a20 + a21 + a22 + a23 is always real and non-negative.
Thus we can define the norm |a| =

√
aā. The norm shows that every non-zero quaternion has a

two-sided inverse, namely a−1 = |a|−2ā. Therefore the quaternions are a non-commutative field.

Exercise 3.15. Prove the following:

a. The dot product can be calculated as a · b = Re(āb),

b. aā = āa = a20 + a21 + a22 + a23,

c. Conjugation is order reversing ab = b̄ ā,

d. The norm is multiplicative |ab| = |a| |b|.

This norm is plainly the same as the usual norm on R4. The unit quaternions (those with norm
1) are as a set S3 ⊂ R4. Therefore the 3-sphere is a Lie group, because we can multiply two
elements of it together in a way that can be undone. This is rather special, the only spheres
that are Lie groups are S0 (S0 = {±1} in R1), S1 (add the angles), and S3.
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If we choose a ∈ S3 we can look at the function La : S3 → S3 defined by La(q) = aq This is
a bijective function, because the inverse is La−1 . And La(e) = ae = a. Therefore the tangent
map of La takes TeS3 to TaS3. Moreover, the tangent map is also bijective: from the chain rule

idTeS3 = T (La ◦ La−1) = TLa ◦ TLa−1

Indeed, this inverse has the property that it takes a to the identity La−1(a) = a−1a = e. This
gives us a way to move any tangent vector of S3 to TeS3. Just as in Example 2.28, this shows us
that TS3 is trivial. The function TaLa−1 : TaS3 → TeS3 is called the left trivialisation. Likewise
we can define Ra(q) = qa and we have the right trivialisation TaRa−1 : TaS3 → TeS3

Example 3.16 (3-Sphere). Let us compute the trivialisations for the point a = i = (0, 1, 0, 0) ∈
S3. The inverse of a is a−1 = −i, since i(−i) = 1. If we have any point q = q0+q1i+q2j+q3k
then

La−1(q) = (−i)(q0 + q1i+ q2j+ q3k) = q1 − q0i+ q3j− q2k.

This does indeed have the property that La−1(a) = 1− 0 + 0− 0 = 1 = e. Next we use some
geometry to avoid using charts. We know that the tangent vectors in TaS3 are perpendicular
to a, because this is a sphere. We write

TaS3 = {v1e+ v2j+ v3k | v1, v2, v3 ∈ R}.

Because La−1(q) is linear in q, we know

TaLa−1(v1e+ v2j+ v3k) = −v1i+ v3j− v2k.

For the right trivialisation

Ra−1(q) = (q0 + q1i+ q2j+ q3k)(−i) = q1 − q0i− q3j+ q2k,

TaRa−1(v1e+ v2j+ v3k) = −v1i− v3j+ v2k.

So these two trivialisations on S3 are different from one another.

Example 3.17. We can generalise the previous example to work for any point a ∈ S3. Just
like i is a right-angle rotation of the complex plane, i, j,k are all right-angle rotations of the
quaternions. Therefore ai, aj, ak is an orthonormal basis of TaS3. Alternatively, since

La(q) = a(q0 + q1i+ q2j+ q3k) = q0a+ q1ai+ q2aj+ q3ak

and i, j,k is a basis for TeS3 we know that

TeLa(v
1i+ v2j+ v3k) = v1ai+ v2aj+ v3ak

is all of TaS3. This shows us that identifying TaS3 with TeS3 is the same as writing it with
respect to the pushforward of a basis. If v ∈ TaS3 then we get

TaLa−1v = a−1v.

We call the vector field on S3 a left-invariant field when it has the form

X|a = av
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for v ∈ TeS3, because every vector X|a corresponds to v using the left trivialisation. Ditto we
have the right-invariant vector fields

Y |a = va.

Example 3.18 (3-Sphere).

X|a = ai = −a1e+ a0i+ a3j− a2k

is a left-invariant vector field on S3. We recognise X|i = −e as a vector in TiS3.
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3.3 Covariant Derivatives

We have seen numerous examples thus far of how we cannot simply move vectors around in a
chart like we can in euclidean space. If you take a tangent vector at one point of the sphere
and translate it in R3 to another point of the sphere, it may not be tangent anymore. As we
observed below Example 2.19, a vector might have the same coordinates at different points in
one chart, but not in another. And in Example 3.3 we saw that one coordinate basis vector
changed its length as you moved around, while the other stayed the same length.

There is also a common thought experiment. Suppose that you are standing on the equator
facing east. You walk forward without turning, until you have walked half way around the
Earth. Then, still without turning, you begin to sidestep to the north. You sidestep all the
way to the north pole, but keep going until you have returned to your original position. The
remarkable fact is, even though at no stage did you turn, you are now facing west.

Exercise 3.19. Can you modify the journey so that you end up facing other directions? What
is the connection between the area your journey encompasses and the final rotation angle?

However, the naive definition of the derivative of a vector field

lim
h→0

1

h
(X|p+h −X|p)

asks us to subtract two vectors at different points. Indeed, any non-trivial definition of a deriva-
tive of a vector field is going to require us to compare vectors at different points. Geometrically,
thinking about a surface, what we want to do is to ‘roll’ the tangent plane along the surface
to another point. This idea is called development and the relation between two tangent planes
was called an affine connection, because it was an affine transformation of one plane to another.
In modern terminology it is more common to call this a parallel transport operator, for reasons
that will be explained in Section 3.4. Already from the above thought experiment we see that
a parallel transport operator will depend not just on the two start and end points, but on the
path between those points.

The modern approach, which we will ultimately take, uses a different point of view. It asks: how
much are vector fields are changing? Once we have a basis of vector fields and we know their
changes, then we can measure all other vector fields against them. This leads to the definition of
a covariant derivative, a type of differential operator on vector fields. It is extremely common to
call this an connection, but we will refrain from doing so, at least until we have made clear the
relationship with the parallel transport operator. Though the two approaches are equivalent, the
modern approach is the much easier place to begin. On the other hand, some of the definitions
and motivations for the modern approach only really make sense from the point of view of the
traditional approach.

Definition 3.20. A covariant derivative on a manifold M is a function ∇ that acts on two
vector fields to produce a third. We write it as ∇XY , with X being the ‘direction’. It has the
following properties for all smooth functions f :M → R and vector fields X, X̃, Y, Ỹ :

a. It is C∞-linear in the direction:

∇fX+X̃Y = f∇XY +∇X̃Y.
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b. It is additive in the derivative:

∇X(Y + Ỹ ) = ∇XY +∇X Ỹ .

c. It obeys the product (Leibniz) rule:

∇X(fY ) = X(f)Y + f∇XY.

Example 3.21 (Euclidean Space). Consider euclidean space Rn and let X = Xi∂i, Y = Y i∂i
be vector fields in the chart xi. Then

∇euc
X Y := Xi∂Y

j

∂xi
∂j

is a covariant derivative.

You might be confused, because in Example 2.33 we said this formula didn’t work. Indeed,
this formula is not chart independent. This definition is saying explicitly “use this particular
coordinates to do the derivative and not others”. If you write this covariant derivative in
polar coordinates, then the formula for this covariant derivative will look different. But this
is why we say that it is a covariant derivative, we are not claiming uniqueness.

Exercise 3.22. Check the above example has the three properties that are required of a covari-
ant derivative.

The above example suggests that there are many covariant derivatives on a manifold. At least
for a manifold that can be covered by a single chart, every set of coordinates gives a covariant
derivative. In the following theorem we characterise the set of covariant derivatives.

Theorem 3.23 (Tensorial). Let ∇0,∇1 be two covariant derivatives derivatives. Define their
difference A(X,Y ) := ∇0

XY −∇1
XY . Then A is C∞-linear in both X and Y .

Proof. C∞-linear in X is immediate from Property a of covariant derivatives. C∞-linear in Y
is not too much harder to show, we use Properties b and c:

A(X, fY + Ỹ ) = ∇0
X(fY ) +∇0

X Ỹ −∇1
X(fY )−∇1

X Ỹ

= X(f)Y + f∇0
XY −X(f)Y −∇1

XY +A(X, Ỹ )

= fA(X,Y ) +A(X, Ỹ ).

Exercise 3.24. Prove the converse of Theorem 3.23: Let ∇ is a covariant derivative on M .
For all vector fields X,Y let A(X,Y ) be a smooth vector field. Suppose that this function A is
C∞-linear in both X,Y . Then ∇̃ := ∇+A is also a covariant derivative.

Corollary 3.25 (Affineness). The space of covariant derivatives on M is affine in the following
sense: if t ∈ R is a constant and ∇0,∇1 are two covariant derivatives, so is ∇t := (1−t)∇0+t∇1.

Proof. Observe that ∇t = ∇0 + t(∇1 −∇0). The corollary now follows from Theorem 3.23 and
its converse Exercise 3.24.
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The above theorems give us a way to construct new covariant derivatives from existing ones (and
in fact construct every covariant derivative). But we need one to start with. One can prove1

that every manifold has a covariant derivative, but the proof is technical and not practically
useful. We have seen in Example 3.21 that if one chart covers the whole space, then we can
declare it is special and use the directional derivative. For manifolds that are a submanifold of
a bigger space, the following example is typical.

Example 3.26 (Stereographic Projection,Tangent Connection). Consider the sphere S1 in-
side R2. We can understand any vector field Y on S1 as a function Ỹ : S1 → R2 using the
pushforward. Therefore we can differentiate Ỹ as an R2 valued function in the usual way.

For the sake of a numerical example, let us take both X and Y to be the vector field from
Example 2.19. The pushforward of the vector field is

X =

{
−2x2+2
(x2+1)2

∂
∂p1

+ 4x
(x2+1)2

∂
∂p2

for x ∈ UN

0 for p = N

and interpreting this a function to R2 we have

Y =

{(
−2x2+2
(x2+1)2

, 4x
(x2+1)2

)
for x ∈ UN

0 for p = N
=

{
2

x2+1
(−p2, p1) for p ̸= N

0 for p = N.

If we differentiate Ỹ alongX, then using the product rule to avoid some nasty but unimportant
terms we get

X(Ỹ ) = X

(
2

x2 + 1

)
(−p2, p1) + 2

x2 + 1

(
− 4x

(x2 + 1)2
,
−2x2 + 2

(x2 + 1)2

)
= X

(
2

x2 + 1

)
(−p2, p1)− 4

(x2 + 1)2
(
p1, p2

)
The first term is tangent to the circle, but the second is not. So we see the trouble is that the
directional derivative X(Ỹ ) = Xi ∂Y j

∂pi
∂

∂pj
is no longer be tangent to S1. Therefore this does

not meet the definition of a covariant derivative on S1.

What we can do however is to project this directional derivative onto the tangent space. We
define the tangent covariant derivative as

∇⊤
XY = proj

TpS1
Xi∂Y

j

∂pi
∂

∂pj
.

Let’s check the three required properties. The two linearity properties just follow from the

1Lee Proposition 4.5
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linearity of the projection

∇⊤
fX+X̃

Y = proj
TpS1

(
fXi∂Y

j

∂pi
∂

∂pj
+ X̃i∂Y

j

∂pi
∂

∂pj

)
= f proj

TpS1
Xi∂Y

j

∂pi
∂

∂pj
+ proj

TpS1
X̃i∂Y

j

∂pi
∂

∂pj
= f∇⊤

XY +∇⊤
X̃
Y,

∇⊤
X(Y + Ỹ ) = proj

TpS1

(
Xi∂Y

j

∂pi
∂

∂pj
+Xi∂Ỹ

j

∂pi
∂

∂pj

)
= ∇⊤

XY +∇⊤
X Ỹ .

For the third property, we need to recognise that X(f)Y is already tangent to S1, so the
projection leaves it unaltered:

∇⊤
X(fY ) = proj

TpS1
Xi∂(fY

j)

∂pi
∂

∂pj
= proj

TpS1

(
X(f)Y +Xif

∂Y j

∂pi
∂

∂pj

)
= X(f)Y + f∇⊤

XY.

Nothing in the calculation depended on S1 specifically, so this is a general construction for
immersed submanifolds.

Next we examine what type of derivative a covariant derivative is. We will show that it is a
directional derivative, in a sense that will be developed. To this end, the first property to notice
is that although the direction and the derived vector fields have dramatically different behaviour
under scaling by a smooth function, they are both R-linear. If a is a constant then

∇aXY = a∇XY, ∇X(aY ) = X(a)Y + a∇XY = a∇XY.

Consequently, if either field is zero, then so is the covariant derivative. Moreover, using cut-
off functions, the covariant derivative only depends on local information.2 In fact something
stronger is true of X:

Lemma 3.27 (Directional Derivative). The value of ∇XY at p ∈ M only depends on X|p and
not other values of X.

Proof. By linearity, it suffices to prove that X|p = 0 implies (∇XY )|p = 0. Writing X in a chart
we have X = Xi∂i and X

i(p) = 0 for all the coefficients. Then(
∇Xi∂iY

)
|p =

(
Xi∇∂iY

)∣∣∣
p
= Xi(p)

(
∇∂iY

)∣∣∣
p
= 0.

For this reason we sometimes speak of the covariant derivative ∇vY in a direction v ∈ TpM .
The same is not true for Y : the covariant derivative really is a derivative of Y and depends on
its values in a neighbourhood of a point. However, to compute ∇vY you don’t need to know Y
completely on an open neighbourhood of p, it is enough to know Y on a curve whose tangent is
v.

Lemma 3.28 (Curve Derivative). Let Y, Ỹ be two vector fields and let α : (a, b) → M be a
smooth curve with α(0) = p and α′(0) = v. Suppose that Y ◦ α = Ỹ ◦ α. Then ∇vY = ∇vỸ .

2See Lee Lemma 4.1 for a proof. We prove a stronger statement in Lemma 3.28.
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Proof. Let us consider the situation in a chart, writing v = vi∂i|p, Y = Y i∂i and Ỹ = Ỹ i∂i.
Then by the properties of covariant derivatives,

∇vY = ∇vi∂i|p(Y
j∂j) = vi∇∂i|p(Y

j∂j) = vi
∂Y j

∂xi

∣∣∣∣
p

∂j + viY j(p)∇∂i|p∂j ,

and likewise for Ỹ . Now, Y and Ỹ agree on α, so Y (p) = Ỹ (p). Moreover, by the chain rule

vi
∂Y j

∂xi

∣∣∣∣
p

=
d

dt
(Y j ◦ α)

∣∣∣∣
p

=
d

dt
(Ỹ j ◦ α)

∣∣∣∣
p

= vi
∂Ỹ j

∂xi

∣∣∣∣∣
p

.

Hence

∇vY = vi
∂Y j

∂xi

∣∣∣∣
p

∂j + viY j(p)∇∂i|p∂j = vi
∂Ỹ j

∂xi

∣∣∣∣∣
p

∂j + viỸ j(p)∇∂i|p∂j = ∇vỸ

This lemma tells us that we can really view the covariant derivative as a generalisation of a
directional derivative. This is in contrast to other derivatives of vector fields. Recall Exam-
ple 2.37. Now consider the vector fields from that example along the curve α(t) = (t, 0), the
x-axis. We have X ◦ α = ∂1, Y ◦ α = ∂2, and V ◦ α = ∂1. But [X,Y ] = 0 while [V, Y ] = −∂1.
This shows that the Lie bracket is not a covariant derivative.

To break up all this theory, let’s do another example.

Example 3.29 (3-Sphere). We define a covariant derivative ∇L on S3 in the following way.
Given any vector field Y on S3, use left trivialisation to write it as a function Ỹ : S3 → TeS3.
From Example 3.17 we know this has the formula p 7→ p−1Y |p using quaternions. Now that
we have a function to the same vector space, there is no problem differentiating. This gives
us a function X(Ỹ ) : M → TeS3. Use the left trivialisation again to move the result back to
TpS3.

Putting this all in one formula gives

(∇L
XY )|p := (TeLp ◦X ◦ TpLp−1)Y.

This covariant derivative has the property that the derivative of a left-invariant vector field
is always zero. This is because, by definition, after you bring its vectors to e they are all the
same. In other words Ỹ is constant and thus has zero derivative.

So to see an interesting example, we need to use a non-left-invariant vector field. Consider
Y |p = ip. We know that Ỹ (p) = p−1ip. To proceed we need to choose a direction field X. We
know that the value of the covariant derivative at any point only depends on the value of X
at that point. So for simplicity let us calculate for the point i in the direction j = ∂

∂p2
:

X|iỸ =
∂

∂p2
p−1ip

∣∣∣∣
i

= −p−1 ∂p

∂p2
p−1ip+ p−1i

∂p

∂p2

∣∣∣∣
i

= −p−1jp−1ip+ p−1ij
∣∣
i

= −i−1ji−1ii+ i−1ij = j+ j = 2j.
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Finally, we move this back to TiS3

(∇XY )|i = TeLi(2j) = i 2j = 2k.

In the same manner, we can define a covariant derivative ∇R using the right trivialisation.

In the examples above, to define a covariant derivative we really gave a directional derivative. But
what is the minimal information required to specify a covariant derivative? Because covariant
derivatives are local, we give the answer in a chart. Let ∂i be the coordinate vector fields. Then
for each pair i, j we have a vector field ∇∂i∂j . This vector field must be able to be written

∇∂i∂j = Γk
i j∂k,

for some coefficients Γk
i j . These coefficients are called Christoffel coefficients, though be aware

that some authors reserve this name for a special case. This is sufficient information to determine
∇ because

∇XY = Xi∇∂i(Y
j∂j) = Xi∂Y

j

∂xi
∂j +XiY j∇∂i∂j =

(
Xi∂Y

k

∂xi
+XiY jΓk

i j

)
∂k.

Example 3.30 (Polar Coordinates). Let us consider R2 with ∇euc. We see by comparison
of its definition in Example 3.21 with the formula above that Γk

i j is zero for all points and all
indices in the standard chart.

But let us compute it with respect to polar coordinates. By the definition of ∇euc, we have
to calculate in the x1, x2 coordinates. We have

∂

∂r
= cos θ

∂

∂x1
+ sin θ

∂

∂x2
=

x1√
(x1)2 + (x2)2

∂

∂x1
+

x2√
(x1)2 + (x2)2

∂

∂x2

∂

∂θ
= −r sin θ ∂

∂x1
+ r cos θ

∂

∂x2
= −x2 ∂

∂x1
+ x1

∂

∂x2
.

Hence we can calculate

∇ ∂
∂r

∂

∂θ
=

x1√
(x1)2 + (x2)2

∇ ∂
∂x1

∂

∂θ
+

x2√
(x1)2 + (x2)2

∇ ∂
∂x2

∂

∂θ

=
x1√

(x1)2 + (x2)2

(
∂(−x2)
∂x1

∂

∂x1
+
∂x1

∂x1
∂

∂x2

)
+

x2√
(x1)2 + (x2)2

(
∂(−x2)
∂x2

∂

∂x1
+
∂x1

∂x2
∂

∂x2

)
=

x1√
(x1)2 + (x2)2

∂

∂x2
− x2√

(x1)2 + (x2)2
∂

∂x1

= − sin θ
∂

∂x1
+ cos θ

∂

∂x2
=

1

r

∂

∂θ
,

and hence in polar coordinates

Γr
r,θ = 0, Γθ

r,θ =
1

r
.
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The other six coefficients are calculated similarly.

Example 3.31 (Tangent Connection). Let’s calculate the Christoffel coefficients for a sub-
manifold f : M → Rn with the connection ∇⊤ from Example 3.26 in some chart U . Let
Φ = f ◦ ϕ−1 be a parameterisation, a map from a chart U to Rn. Because the definition of
∇⊤ uses the geometry of Rn we need the pushforwards of the coordinate basis vectors. We
use the notation Ei = Tx(f)

∂
∂xi = Jx(Φ)

j
i

∂
∂pj

. From the directional derivative definition of
the pushforward map

Ei(Y
j) = TΦ

(
∂

∂xi

)
(Y j) =

∂

∂xi
(Y j ◦ Φ).

Therefore the covariant derivative is

∇⊤
∂i
∂j = proj

TpM

∂

∂xi
(Ek

j ◦ Φ) ∂

∂pk
.

Finally to give the Christoffel coefficients, we write this vector in the coordinate basis Ei.
This requires solving some linear algebra problem.

Example 3.32 (Stereographic Projection). Let’s calculate the Christoffel coefficients for S1
with the connection ∇⊤ from Example 3.26 in the chart UN . This is a special case of the
previous example. The immersion f is the identity map, so the parameterisation is Φ = ϕ−1

N .
There is only one coordinate vector field

E ◦ Φ = −2
x2 − 1

(x2 + 1)2
∂

∂p1
+

4x

(x2 + 1)2
∂

∂p2
=

2

(x2 + 1)2

(
(1− x2)

∂

∂p1
+ 2x

∂

∂p2

)
.

The composition with Φ is simply saying that we should express the coefficients in the variables
of the chart. We prepare some calculations

∂

∂x
(E1 ◦ Φ) = −8x

(x2 + 1)3
(1− x2) +

2

(x2 + 1)2
(−2x)

∂

∂x
(E2 ◦ Φ) = −8x

(x2 + 1)3
(2x) +

2

(x2 + 1)2
(2)

You can do the orthogonal projection in the standard linear algebra way, but because this is
the plane it’s easy to write down a vector perpendicular to E. This leads to

∂

∂xi
(Ek ◦ Φ) ∂

∂pk
=

−4x

x2 + 1
E +

2

(x2 + 1)2

(
−2x

∂

∂p1
+ 2

∂

∂p2

)
=

−4x

x2 + 1
E +

4

(x2 + 1)3

[
x

(
(1− x2)

∂

∂p1
+ 2x

∂

∂p2

)
+

(
−2x

∂

∂p1
+ (1− x2)

∂

∂p2

)]
=

−2x

x2 + 1
E +

4

(x2 + 1)3

(
−2x

∂

∂p1
+ (1− x2)

∂

∂p2

)
.
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Hence

∇⊤
∂1∂1 = proj

TpS1

∂

∂xi
(Ek

j ◦ Φ) ∂

∂pk
=

−2x

x2 + 1
E ⇒ Γ1

11 =
−2x

x2 + 1
.

Exercise 3.33 (Lee Lemma 4.4). Suppose that M is a manifold covered by a single chart U .
Show that the set of covariant derivatives on M is in one-to-one correspondence with the set
of Christoffel coefficients. That is, show that every choice of n3 functions Γk

i j gives a covariant
derivative.

Exercise 3.34. Derive the transformation formula for Γk
i j between two charts. Observe that it

is neither covariant nor contravariant.

Exercise 3.35 (Stereographic Projection). Repeat the calculation of the Christoffel coefficients
from Example 3.32 for S2 in the chart UN . The following formulas may prove useful. Here we
have the pushforwards of the coordinate vector fields and combinations that align with longitude
and latitude:

E1 =
2

(∥x∥2 + 1)2

−(x1)2 + (x2)2 + 1
−2x1x2

2x1

 x1E1 + x2E2 =
2

(∥x∥2 + 1)2

−x1(∥x∥2 − 1)
−x2(∥x∥2 − 1)

2∥x∥2


E2 =

2

(∥x∥2 + 1)2

 −2x1x2

(x1)2 − (x2)2 + 1
2x2

 x2E1 − x1E2 =
2

∥x∥2 + 1

 x2

−x1
0

 .

The derivatives are

∂

∂x1
E1 =

−4x1

∥x∥2 + 1
E1 +

4

(∥x∥2 + 1)2

[
−p+ 1

2
(∥x∥2 + 1)(x1E1 + x2E2)

]
∂

∂x2
E1 =

−4x2

∥x∥2 + 1
E1 +

2

∥x∥2 + 1

[
x2E1 − x1E2

]
,

and

∂

∂x1
E2 =

−4x1

∥x∥2 + 1
E2 −

2

∥x∥2 + 1

[
x2E1 − x1E2

]
∂

∂x2
E2 =

−4x2

∥x∥2 + 1
E2 +

4

(∥x∥2 + 1)2

[
−p+ 1

2
(∥x∥2 + 1)(x1E1 + x2E2)

]
.

With the derivatives in this form, you should be able to calculate the Christoffel coefficients
easily. For example, from

∇⊤
∂1∂1 =

−2x1

∥x∥2 + 1
E1 +

2x2

∥x∥2 + 1
E2

we read that

Γ1
11 =

−2x1

∥x∥2 + 1
, Γ2

11 =
2x2

∥x∥2 + 1
.

For the other derivative of E1, the projection is trivial, and

Γ1
21 =

−2x2

∥x∥2 + 1
, Γ2

21 =
−2x1

∥x∥2 + 1
.
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And from the derivatives of E2 we obtain:

Γ1
12 =

−2x2

∥x∥2 + 1
, Γ2

12 =
−2x1

∥x∥2 + 1
,

Γ1
22 =

2x1

∥x∥2 + 1
, Γ2

22 =
−2x2

∥x∥2 + 1
.
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3.4 Parallel Transport

We began Section 3.3 with the motivation that we want to compare different tangent spaces to
one another and a thought experiment about walking around the Earth. Then we went on to
define covariant derivatives. Now it is time to connect the two (pardon the pun).

Definition 3.36. Let M be a manifold with a covariant derivative ∇, α : (a, b) →M a smooth
curve and Y a vector field. We say that Y is parallel along α (with respect to ∇) if ∇α′Y = 0
at all points on the curve.

The inspiration of the name parallel is that the vectors of the vector field at different points
are meant to be (in some sense) parallel to one another. Phrased different: we have a field
of parallel vectors. Even though α′ is not a vector field on M , this is well-defined due to
Lemma 3.27. Similarly, we really only need to values of Y along the curve α to compute this
condition, due to Lemma 3.28. Therefore many books build a theory of ‘vector fields on curves’.
We will avoid this extra theory by assuming the main result: so long as the curve α is injective
and not pathological, every vector field on α can be extended to a vector field on M .

In a chart we have α′(t) = dαi

dt ∂i, so the condition becomes

(3.37) 0 =

(
dαi

dt

∂Y k

∂xi
+ Γk

i j

dαi

dt
Y j

)
∂j =

(
dY k

dt
+ Γk

i j

dαi

dt
Y j

)
∂j ,

where we treat the vector field as a function of t, i.e. Y (α(t)). Since Γk
i j and dαi

dt are specified,

we treat this as a system of ODEs for the functions Y i(t) : (a, b) → R. By the uniqueness of
solutions to ODEs, a parallel vector field is uniquely determined by its value at one point of
the curve. On the other hand the existence of solutions to ODEs ensures that given a vector
v ∈ Tα(t0) there exists a unique parallel field Y along α with Y (t0) = v.

Let us make our thought experiment rigorous by using the tangent covariant derivative. We can
expand the thought experiment in the following way: while we are walking around the world
without turning, we are holding a stick. The stick represents a vector field along the curve of
our journey. Suppose at the start of our journey, the stick is pointing south (recall we are facing
east). As we walk east around the world, our stick will continue to point south. Thus we ask
whether the vector field Y |p = (0, 0,−1) ∈ TpS2 is parallel with respect to ∇⊤ along the equator
α(t) = (cos t, sin t, 0). Indeed it is, since Y is constant with respect to p,

∇⊤
α′Y = proj

TpS2

(
− sin t

∂Y j

∂p1
∂

∂pj
+ cos t

∂Y j

∂p2
∂

∂pj
+ 0

∂Y j

∂p3
∂

∂pj

)
= 0.

Now what about the original thought experiment? This time as we walk around the world, let
the stick point forward. Clearly, if we don’t turn, it should continue to point forward. In other
words

Y = α′(t) = (− sin t, cos t, 0). = (−p2, p1, 0).

This is not constant as a function into R3. Now when we compute

∇⊤
α′Y = proj

TpS2

(
− sin t (1)

∂

∂p2
+ cos t (−1)

∂

∂p1
+ 0

)
= proj

TpS2
(−p) = 0.
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We see from the calculation that the derivative of Y along the curve points towards the center
of the sphere, so when projected to the tangent plane it becomes zero. In summary, parallel
transport by ∇⊤ on the sphere matches our intuition of ‘walking without turning’. Of course
there are many other covariant derivatives on the sphere, and with respect to them perhaps
these two vector fields are not parallel.

Example 3.38 (3-Sphere). Let us consider the covariant derivative ∇L on S3 from Exam-
ple 3.29. We noted there that left-invariant vector fields have ∇L-derivative zero at any point
and in any direction. Hence left-invariant fields are parallel along every curve in S3.

Conversely, suppose Y is parallel along α. It follows from the definition of ∇L that t 7→
Tα(t)Lα(t)−1Y (α(t)) is constant. In words, if we consider Y as a function of t, ie Y (α(t))
and move the vectors to e using the tangent map of the left action, ie Tα(t)Lα(t)−1 , then this
function is constant. Though we don’t have a formal definition, it is fair to say that Y is
left-invariant along the curve.

The final observation for this example is that given any vector w ∈ TpS3 there is a unique
left-invariant vector field Y with Y |p = w. Let v = TpLp

−1w. Then Y |p = pv is the field.
Therefore there is a unique way to parallel transport any vector to any other point of S3.
Manifolds with this property are called parallelisable. It is equivalent to having a trivial
tangent bundle.

In the above example, we encountered the idea of taking a vector v at one point α(t0), finding
a vector field Y with Y |α(t0) that is parallel along α, and in particular calculating the parallel
vector at another point w = Y |α(t1). We call w the parallel transport of v along α. This is
a function P (α)st : Tα(t)M → Tα(s)M called the parallel transport operator. Because the ODE
is linear in Y , the parallel transport operator is linear: If Y is the parallel vector field with
Y |α(t) = v and Ỹ is the parallel vector field with Ỹ |α(t) = ṽ, then Y + Ỹ is also parallel and

(Y + Ỹ )|α(t) = v + ṽ. The same idea works with scaling v.

Some other properties of P (α)st follow easily from its definition as the solution of an ODE. We
have semi-group properties P (α)tt = id and P (α)us ◦ P (α)st = P (α)ut . By the uniqueness of the
solutions to ODEs, we have that P (α)st is injective, and therefore an isomorphism of vector
spaces. And so on.

Conversely, if one has the parallel transport operator for a curve α, the we can recover the
covariant derivative in the direction α′ through the formula

∇α′(0)Y = lim
h→0

1

h

[
P (α)0hY |α(h) − Y |α(0)

]
∈ Tα(0)M.

Exercise 3.39. Prove the above formula. Hint: Take a basis of Tα(0)M and parallel transport
it along α. As a reward for solving this exercise, you may now use the word connection for a
covariant derivative.

Exercise 3.40. Argue that parallel transport with respect to ∇L on S3 is P (α)st = α(t)α(s)−1.
If we insert this into the above equation we obtain

∇L
α′(0)Y = α(0) lim

h→0

1

h

[
α(h)−1Y |α(h) − α(0)−1Y |α(0)

]
.

Explain why this is the same formula as Example 3.29.
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So intuitively the two approaches, covariant derivatives and parallel transport operators, are
equivalent. The reason that it is difficult to start with parallel transport operators is that is
tricky to characterise exactly when a set of linear functions between tangent spaces, one for every
curve, correspond to a covariant derivative. Note our logic above: if we begin with a covariant
derivative, then we have a parallel transport operator, and taking a limit we can recover the
covariant derivative. But if you begin with a arbitrary set of operators, there is no guarantee
that the limit will exist. You need to have some type of smooth dependence of P (α)st on t and s.
Further, what conditions should you impose on the dependence of P (α) on α such if two curves
are tangent at a point, the above limit produces the same result. Hopefully, these questions give
you an appreciation of the difficulty involved.

Special mention should go to Appendix B in Sharpe, which does start with the classical idea of
rolling a plane (or another space) around on a surface and shows how that gives various modern
structures on the manifold.



3.5. TORSION 65

3.5 Torsion

In this section we discuss a quantity called torsion that is derived from a covariant derivative.
There is a relation between the torsion of a connection and the torsion of a space curve, but
we will not be explore it in this course3. Ultimately we will only be interested in covariant
derivatives with zero torsion, so in a sense we are introducing it only to rule it out. Which
brings us to the point: how should we motivate the definitions in this section without going
deep into theory we will not use? We ask some natural questions and give some reasonable
answers.

In euclidean space we have Schwarz’ theorem, also known as Clairaut’s theorem, that the partial
derivatives with respect to different variables commute (for smooth functions among others).
This result is embedded in the definition of the Lie bracket, where it was necessary to have
the second order terms cancel. In fact sometimes the theorem is expressed as [∂i, ∂j ] = 0. So
naturally we ask this question of the covariant derivative, but the answer is negative in general:

∇∂i∂j −∇∂j∂i = Γk
i j∂k − Γk

j i∂k =
(
Γk
i j − Γk

j i

)
∂k.

This leads to the following definition

Definition 3.41. We say that a covariant derivative is torsion-free (in some chart) if ∇∂i∂j −
∇∂j∂i = 0. Equivalently in terms of Christoffel coefficients, if Γk

i j = Γk
j i at every point.

In this first definition, torsion of a covariant derivative is a measure of the non-commutativity
of coordinate vector fields. It seems natural therefore that this should depend on the choice of
chart as much as the covariant derivative. But if you have done Exercise 3.34, you may already
know that if Γk

i j = Γk
j i at a point in one chart then it also holds at that point in any overlapping

chart. We will return to this idea shortly.

Example 3.42 (Euclidean Space). We have Rn with one chart, and ∇euc from Example 3.21.
In Example 3.30 computed that the Christoffel coefficients are all zero. Thus this covariant
derivative is torsion-free in this chart.

Example 3.43 (Stereographic Projection). In Exercise 3.35 you found all the Christoffel
coefficients. Observe that they are symmetric in the lower two indices

Γ1
21 =

−2x2

∥x∥2 + 1
= Γ1

12, Γ2
21 =

−2x1

∥x∥2 + 1
= Γ2

12.

This shows that the covariant derivative ∇⊤ of S2 is torsion-free on UN . Since the torsion is
a continuous function, it must also be zero at the north pole.

We have the expectation that the coordinate vector fields should commute, or that this is a

3See the ‘American football example’ Lee Problem 6-1
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desirable property, but we do not have that expectation for general vector fields X,Y . We find

∇XY −∇YX = Xi∇∂i(Y
j∂j)− Y j∇∂j (X

i∂i)

=

(
Xi∂Y

k

∂xi
+XiY jΓk

i j

)
∂k −

(
Y j ∂X

k

∂xi
+ Y jXiΓk

j i

)
∂k

=

(
Xi∂Y

k

∂xi
− Y j ∂X

k

∂xi

)
∂k +XiY j

(
Γk
i j − Γk

j i

)
∂k

= [X,Y ] +XiY j
(
Γk
i j − Γk

j i

)
∂k.

The meaning of this equation is that the ‘covariant derivative commutator’ of two vector fields
is their Lie bracket plus a factor coming from the fact that the coordinate vector fields do not
‘covariantly commute’.

Definition 3.44. Given a covariant derivative ∇, we define the torsion of two vector fields X,Y
to be a third vector field

T (X,Y ) = ∇XY −∇YX − [X,Y ].

Remarkably the value of T (X,Y ) at any point p only depends on X|p, Y |p, with the formula

T (X,Y ) = XiY jT k
i j∂k for T k

i j = Γk
i j − Γk

j i.

The definition of T (X,Y ) is in terms of three vector fields ∇XY , ∇YX, and [X,Y ], so clearly
is independent of charts. A covariant derivative is torsion-free if T k

i j = 0, and so this too is
independent of charts. The second formula is just a rearrangement of the calculation preceding
the definition. We say that the second formula is remarkable because although T is defined
using derivatives both of which depend on the local behaviour of vector fields, the torsion only
depends on the pointwise values of the vector fields. Because the Lie bracket is an antisymmetric
function of X,Y , so too is the torsion T (X,Y ) = −T (Y,X).

Example 3.45 (3-Sphere). In this example we show that the torsion of the covariant deriva-
tive ∇L on S3 from Example 3.29 is non-zero. The trick is to not work with coordinate
vector fields, but rather work with left-invariant vector fields. Let E1|p = pi and likewise
E2|p = pj, E3|p = pk denote the left-invariant vector fields that are obtained by pushing for-
ward i, j,k ∈ TeS3. We have already noted in Example 3.38 that ∇L

vEi = 0 for any vector
v ∈ TpM .

Further at any point E1|p, E2|p, E3|p is a basis for TpS3. This means that every vector field
X on S3 can be written as

X = X1E1 +X2E2 +X3E3.

Thus Ei have similar properties to the coordinate vector basis field, except that they do not
come from coordinates. A set of vector fields with this basis property is called a frame, but
we will not explore this concept in generality. In this frame, the covariant derivative can be
reckoned with

∇L
XY = ∇L

X

(
Y jEj

)
= X(Y j)Ej + Y j∇L

XEj = X(Y j)Ej .
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Similarly the Lie bracket simplifies

[Ei, Y ] = [Ei, Y
jEj ] = Ei(Y

j)Ej + Y j [Ei, Ej ]

[X,Y ] = [XiEi, Y ] = Xi[Ei, Y ]− Y (Xi)Ei

= XiEi(Y
j)Ej +XiY j [Ei, Ej ]− Y jEj(X

i)Ei

= X(Y j)Ej +XiY j [Ei, Ej ]− Y (Xi)Ei.

Together this yields

TL(X,Y ) = ∇L
XY −∇L

YX − [X,Y ]

= X(Y j)Ej − Y (Xj)Ej −X(Y j)Ej −XiY j [Ei, Ej ] + Y (Xi)Ei

= −XiY j [Ei, Ej ].

Thus the torsion comes down to the Lie brackets of this frame.

For this example we will evaluate [E1, E2]:

[E1, E2] = [pi, pj] = [−p1 + p0i+ p3j− p2k,−p2 − p3i+ p0j+ p1k]

= [−p1∂0 + p0∂1 + p3∂2 − p2∂3,−p2∂0 − p3∂1 + p0∂2 + p1∂3]

= −p1∂2 + p0∂3 + p3(−∂0)− p2(−∂1)−
[
− p2∂1 − p3(−∂0) + p0(−∂3) + p1∂2

]
= −2p3∂0 + 2p2∂1 − 2p1∂2 + 2p0∂3 = 2E3.

We can generalise this argument; set i1 = i, i2 = j, i3 = k so that we can use index notation.

[Ei, Ej ] = [p∂i, p∂j ] = pii∂j − pij∂i = p(iiij − ijii).

When i = j, the quaternions commute and the bracket is zero (as expected). If they are
not equal then the quaternions anti-commute. This gives [E2, E3] = 2E1 and [E3, E1] = 2E2.
(There is in fact a close relationship between the Lie bracket of S3 and the cross product of
R3).

Example 3.46 (3-Sphere). We can also ask for the torsion of ∇R on S3. Of course we could
do the same as the previous example, except using a right-invariant frame, and get a similar
answer. But to make the two examples comparable, let us compute the torsion of ∇R using
the left-invariant frame Ei.

What changes about the calculation is that ∇R
Ei
Ej ̸= 0. Instead we must generalise the

calculation from Example 3.29:

Ei(p) = p∂ip = pii,

∇R
Ei
Ej =

(
Ei(pijp

−1)
)
p =

(
Ei(p)ijp

−1 − pijp
−1Ei(p)p

−1
)
p = piiij − pijii = [Ei, Ej ].

The covariant derivative of an arbitrary vector field is

∇R
XY = X(Y j)Ej +XiY j∇R

Ei
Ej = X(Y j)Ej +XiY j [Ei, Ej ].
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Hence

TR(X,Y ) = ∇R
XY −∇R

YX − [X,Y ]

= X(Y j)Ej +XiY j [Ei, Ej ]− Y (Xj)Ej −XiY j [Ej , Ei]

−X(Y j)Ej −XiY j [Ei, Ej ] + Y (Xi)Ei

= XiY j [Ei, Ej ].

Thus the torsion of ∇R is the negative of the torsion of ∇L.

Recall Exercise 3.24 that given one connection we can create another by the addition of a vector
valued function A(X,Y ). We can ask how the torsion of the new covariant derivative related to
the torsion of the original. This follows easily, for ∇̃ = ∇+A,

T ∇̃(X,Y ) = ∇̃XY − ∇̃YX − [X,Y ] = ∇XY +A(X,Y )−∇YX −A(Y,X)− [X,Y ]

= T∇(X,Y ) +A(X,Y )−A(Y,X).

Purely algebraically, for any function of two variables we can split it into a symmetric and
antisymmetric parts

A(X,Y ) =
1

2

(
A(X,Y ) +A(Y,X)

)
+

1

2

(
A(X,Y )−A(Y,X)

)
.

If A is already symmetric or antisymmetric, then it is just equal to its symmetric or antisym-
metric part respectively and the other part is zero. Thus we can express the relationship of the
torsions by the dictum “adding A to a covariant derivative adds twice the antisymmetric part
of A to its torsion”. In particular, for any covariant derivative, we can absorb the torsion. This
means we construct a new torsion-free covariant derivative ∇̃ := ∇− 1

2T .

Example 3.47 (3-Sphere). We have just seen in Examples 3.45 and 3.46 that with respect
to the left-invariant fields Ei the covariant derivatives are

∇L
Ei
Ej = 0 ∇R

Ei
Ej = [Ei, Ej ]

TL(Ei, Ej) = −[Ei, Ej ] TR(Ei, Ej) = [Ei, Ej ].

(Aside: the formula on the right makes it seem as if ∇R and TR are equal. They are not
in general, only for left-invariant vector fields. Remember: a covariant derivative has the
product rule in Y , whereas the torsion is C∞-linear.)

If we absorb the torsion on these two connections we get the torsion-free connection

∇LC
Ei
Ej =

1

2
[Ei, Ej ] = ∇L

Ei
Ej +

1

2
[Ei, Ej ] = ∇R

Ei
Ej −

1

2
[Ei, Ej ].

This fits nicely with Corollary 3.25, because ∇LC can also be understood as the average of
the left and right covariant derivatives: ∇LC = 1

2∇
L + 1

2∇
R. I’ll give you one guess what the

LC stands for!

We have seen now that for a torsion-free connection that the coordinate vector fields will ‘co-
variant commute’ but general vector fields will not.
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Definition 3.48. A smooth family of curves is a function αs(t) : (−ε, ε) × (a, b) → M . By
smooth family we mean that it is smooth in both variables s and t. We typically think of the
main curves of the family t 7→ αs(t) for fixed s. But we also have the transverse curves, where
we fix t and allow s to vary. We can write α(s, t) to emphasise this duality.

Therefore we have two vector fields: the tangents in the main direction and the tangents in
the transverse direction. Well, this is not completely true as we do not really have vector fields
because the curves may cross each other, giving multiple vectors at the same point. (Technically
what we have is the pushforwards of two vector fields.) Regardless, for each value of (s, t) it
makes sense to ask how the derivative ∂sα is changing in comparison to ∂tα.

Lemma 3.49 (Mixed Derivatives). Let ∇ be a torsion-free covariant derivative and α(s, t) :
(−ε, ε)× (a, b) →M a smooth family of curves. Then ∇∂sα∂tα = ∇∂tα∂sα.

Proof. This is a purely computational proof. In a chart, the tangent vectors are

∂sα =
∂αk

∂s
∂k, ∂tα =

∂αk

∂t
∂k.

Then

∇∂sα∂tα =

(
∂2αk

∂s∂t
+ Γk

i j

∂αi

∂s

∂αj

∂t

)
∂k,

∇∂tα∂sα =

(
∂2αk

∂t∂s
+ Γk

i j

∂αi

∂t

∂αj

∂s

)
∂k.

By the symmetry of the Christoffel coefficients for torsion-free covariant derivatives, these are
equal.

We should comment about why the expression ∇∂sα∂tα is well-defined even though the tangents
do not necessarily form a vector field. We know that the direction of ∇ depends only on the
pointwise value, so this is no issue. And for ∂tα we need to know its values along a curve in the
direction of ∂sα, but this is exactly the meaning of partial derivative. So understood correctly,
these expressions are valid. This is an instance where a fleshed out notion of ‘vector field on
a curve’ would have been more precise, but hopefully you see that not much has been lost by
skipping this concept.
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3.6 The Levi-Civita connection

Let us once more return to the thought experiment of walking along the equator α(t) =
(cos t, sin t, 0) with our stick. We now understand that we are parallel transporting our stick. But
consider the vector field Z(α(t)) = (0, 0,− cos2 t). To push the metaphor into silliness, it is an
telescoping selfie stick that is lengthening and shortening. The vector field Z always points south,
but it is not parallel according to definition. If we write Z = cos2 tY for Y (α(t)) = (0, 0,−1), a
known parallel vector field, then

∇⊤
α′Z = ∇⊤

α′(cos2 t Y ) =
d

dt

(
cos2 t

)
Y + cos2 t∇⊤

α′Y = −2 sin t cos t Y ̸≡ 0.

This illustrates the point that parallel is about more than just direction, it also concerns length
(which is unlike how we use the term in elementary geometry and linear algebra). Therefore,
among the many covariant derivatives that exists on a Riemannian manifold, we are interested
in those whose parallel transport preserves length and angle.

Let us now turn this intuition into a definition. Suppose M is a Riemannian manifold with
metric g and that ∇ is a connection that preserves the lengths and angles of parallel transport
vectors. For any curve γ, let X,Y be parallel fields along γ with respect to ∇. This means that
g(X,Y ) is a constant function along γ. For all smooth functions a, b, we must have

d

dt
g(aX, bY ) =

d

dt

(
ab g(X,Y )

)
=
da

dt
bg(X,Y ) + a

db

dt
g(X,Y ) + ab

d

dt
g(X,Y )

= g(a′X, bY ) + g(aX, b′Y ) + 0.

On the other hand
∇γ′(aX) = a′X + a∇γ′X = a′X.

Therefore we make the definition

Definition 3.50. A covariant derivative ∇ is called metric-compatible or a metric connection
if for all vector fields X,Y, Z

Z
(
g(X,Y )

)
= g
(
∇ZX,Y

)
+ g
(
X,∇ZY

)
.

The choice to define this property using a third vector field Z instead of the tangent vector γ′ is
purely a matter of style. The converse of the above argument is immediate: if X,Y are parallel
along a curve γ then the right hand side is zero and thus g(X,Y ) is constant on the curve.

Example 3.51 (3-Sphere). We can show that the left and right covariant derivatives are
compatible with the metric on S3 coming from R4. Write vector fields X = XiEi and Y =
Y iEi with respect to the left-invariant basis fields from Example 3.45. By the property of
quaternions that a · b = Re āb we see that

Ei · Ej = Re piipij = Re īip̄pij = Re īiij = ii · ij ,

since p ∈ S3 has unit length. In particular it is constant on all of S3. Additionally, the covariant
derivatives of the Ei are zero in every direction. Therefore, similar to the calculation before
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the definition, we have

Z(X · Y ) = Z(XiY j Ei · Ej) = Z(Xi)Y j Ei · Ej +XiZ(Y j)Ei · Ej

=
(
Z(Xi)Ei

)
· Y +X ·

(
Z(Y j)Ej

)
=
(
Z(Xi)Ei +Xi∇L

ZEi

)
· Y +X ·

(
Z(Y j)Ej + Y j∇L

ZEj

)
=
(
∇L

ZX
)
· Y +X ·

(
∇L

ZY
)
.

This shows that ∇L is metric-compatible.

For ∇R we can reuse some of this calculation. What changes is that ∇R
ZEi may not be zero.

Instead ∇R
ZEi = Zk[Ek, Ei]. We need to prove a version of the cyclic property for the triple

product (for vectors in R3 we have a · (b× c) = b · (c× a)):

[Ek, Ei] · Ej + Ei · [Ek, Ej ] = Re (ikii − iiik)ij +Re īi(ikij − ijik)

= Re(iiikij − ikiiij − iiikij + iiijik)

= Re(−ikiiij + iiijik) = 0.

This allows us to write

Z(X · Y ) =
(
Z(Xi)Ei

)
· Y +X ·

(
Z(Y j)Ej

)
+XiY jZk([Ek, Ei] · Ej + Ei · [Ek, Ej ])

=
(
Z(Xi)Ei

)
· Y +X ·

(
Z(Y j)Ej

)
+Xi∇R

ZEi · Y + Y jX · ∇R
ZEj

=
(
∇R

ZX
)
· Y +X ·

(
∇R

ZY
)
.

This proves that ∇R is also metric-compatible.

It is useful to reduce the metric-compatibility condition to a condition on the Christoffel coeffi-
cients in some chart.

Lemma 3.52. Let a connection ∇ in some chart be described by the Christoffel coefficients Γk
i j.

It is compatible with the metric if and only if

∂kgi j = Γl
k igl j + Γl

k jgi l(3.53)

Proof. Notice that the formula for metric-compatibility is C∞-linear in Z, so it enough to show
it holds for each coordinate basis vector. The following calculation is a set of equivalences:

∂k
(
g(X,Y )

)
= g
(
∇∂kX,Y

)
+ g
(
X,∇∂kY

)
∂k
(
XiY jgi j

)
= g
(
(∂kX

i +X lΓi
k l)∂i, Y

j∂j
)
+ g
(
Xi∂i, (∂kY

j + Y lΓj
k l)∂j

)
∂kX

iY jgi j +Xi∂kY
jgi j +XiY j∂kgi j = (∂kX

i +X lΓi
k l)Y

jgi j +Xi(∂kY
j + Y lΓj

k l)gi j

XiY j∂kgi j = X lΓi
k lY

jgi j +XiY lΓj
k lgi j

∂kgi j = Γl
k igl j + Γl

k jgi l.

In other words, a covariant derivative is metric-compatible if and only if its Christoffel coefficients
satisfy (3.53).

The above equation seems to say that metric-compatibility is a rather strong condition. We
know that there are n3 choices of smooth functions for the Christoffel coefficients, and counting
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the possible values for i, j, k gives n3 conditions. It is almost enough to guarantee uniqueness,
but not quite, because the we get the same condition if we swap i and j. However, metric-
compatibility and torsion-free are enough to ensure uniqueness. This result is given a rather
impressive sounding name, though sometimes it is called a theorem and other times a lemma.
We have our cake and eat it too:

Theorem 3.54 (Fundamental Lemma of Riemannian Geometry). On every Riemannian man-
ifold there exists a unique metric-compatible torsion-free covariant derivative.

Proof. Our strategy for the proof is as follows. First we will establish the so-called Koszul
formula. Uniqueness is then a direct consequence. To prove existence we will show that the
Koszul formula defines a torsion-free metric-compatible covariant derivative in every chart. Since
we already have uniqueness, we can conclude that these give a well-defined covariant derivative
on the whole manifold.

The idea of the Koszul formula is to use the symmetries of the metric and the Lie bracket to get
an expression with exact one covariant derivative. Begin with the metric-compatibility property
and then use the fact that torsion is zero:

Z
(
g(X,Y )

)
= g
(
∇ZX,Y

)
+ g
(
X,∇ZY

)
= g
(
∇ZX,Y

)
+ g
(
X,T (Z, Y ) +∇Y Z + [Z, Y ]

)
= g
(
∇ZX,Y

)
+ g
(
X,∇Y Z

)
+ g
(
X, [Z, Y ]

)
.

Now write this equation two more times with the vector fields permuted

Y
(
g(Z,X)

)
= g
(
∇Y Z,X

)
+ g
(
Z,∇XY

)
+ g
(
Z, [Y,X]

)
X
(
g(Y,Z)

)
= g
(
∇XY, Z

)
+ g
(
Y,∇ZX

)
+ g
(
Y, [X,Z]

)
.

Notice that of the six possible permutations, only ∇ZX, ∇Y Z and ∇XY occur. This is a result
of using the torsion-free property. Each of the three covariant derivatives occurs twice. Now,
add any two equations and subtract the other. We will add the second and third and subtract
the first, but it’s not important which you choose.

X
(
g(Y, Z)

)
+ Y

(
g(Z,X)

)
− Z

(
g(X,Y )

)
= 2g

(
Z,∇XY

)
+ g
(
Z, [Y,X]

)
+ g
(
Y, [X,Z]

)
− g
(
X, [Z, Y ]

)
.

If you like, you can clean this up a little, though the role each of the vector fields play in
g
(
Z,∇XY

)
is different, so there cannot be perfect symmetry in the formula. Here is a version I

like:

2g
(
∇XY,Z

)
= X

(
g(Y, Z)

)
− g
(
X, [Y,Z]

)
+ Y

(
g(X,Z)

)
− g
(
Y, [X,Z]

)
− Z

(
g(X,Y )

)
+ g
(
Z, [X,Y ]

)
This is the Koszul formula. Since the metric is non-degenerate, what it shows is that if there is
a metric-compatible torsion-free covariant derivative then it can be calculated purely in terms
of Lie brackets and inner products. Therefore we have established uniqueness.

For existence, it is possible to take the Koszul formula as the definition and directly check all
the required properties. It is easier however to first reduce the Koszul formula to an expression
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in charts. Choose any chart and suppose that X = ∂i, Y = ∂j , Z = ∂k are coordinate vector
fields. The Lie brackets are zero. We get

2g(Γl
i j∂l, ∂k) = 2Γl

i jgl k = ∂igj k + ∂jgi k − ∂kgi j .

If we view the left hand side in matrix notation rather than index notation, we see that to solve
for Γ we need to invert the matrix G = (gi j). There is a sneaky convention that the components
of the inverse matrix use upper indices (gi j) = G−1. With this convention, the fact that these
matrices are inverse can be written gi jgj k = δik. In index notation, multiplying by the inverse
matrix looks like Γl

i jgl kg
km = Γl

i jδ
m
l = Γm

i j . Thus we can write

(3.55) Γm
i j =

1

2
gkm

(
∂igj k + ∂jgi k − ∂kgi j

)
.

So given a metric g, define a covariant derivative on this chart using this formula for the Christof-
fel coefficients. Exercise 3.33 tells us that this does indeed define a covariant derivative on this
chart, but it remains to show that it is metric-compatible and torsion-free. Torsion-free is an
easy because the above formula is symmetric in i and j. Using the Christoffel coefficients defined
through the Koszul formula, we see that the condition of Lemma 3.52 satisfied:

2Γl
k igl j + 2Γl

k jgi l =
(
∂kgi j + ∂igk j − ∂jgk i

)
+
(
∂kgj i + ∂jgk i − ∂igk j

)
= 2∂kgi j .

Therefore the covariant derivative that we have defined in each chart is metric-compatible and
torsion-free. As mentioned at the outset of the proof, it only remains to show that this definition
in each chart agrees, but this follows due to uniqueness.

We celebrate this result with more terminology. It honours the Italian mathematician Tullio
Levi-Civita, who developed much of the ‘tensor calculus’ (covariant, contravariant, indices, etc).
His name tricks many students (myself included) into thinking there are two mathematicians
Levi and Civita. In response to being asked what he liked best about Italy, Einstein once said
“spaghetti and Levi-Civita”.

Definition 3.56. The unique metric-compatible torsion-free covariant derivative on a Rieman-
nian manifold is called the Levi-Civita connection or the Riemannian connection.

Example 3.57 (Euclidean Space). On any open subset of Rn with the dot product as metric,
the Levi-Civita connection is ∇euc from Example 3.21. Because its Christoffel coefficients
are identically zero, obviously it is torsion-free and satisfies Equation (3.53) so is metric-
compatible.

Example 3.58 (3-Sphere). A corollary of Lemma 3.52 is that the set of metric-compatible
covariant derivatives has a affine structure. Corollary 3.25 shows us that the affine combi-
nation of covariant derivatives is again a covariant derivative. The Christoffel coefficients
of the new covariant derivative is the same affine combination of Christoffel coefficients
(Γt)ki j = (1 − t)(Γ0)ki j + t(Γ1)ki j . Inserting this into Equation (3.53) shows that such an
affine combination is also metric-compatible.

We saw in Example 3.51 that both ∇L and ∇R were metric-compatible. Therefore ∇LC =
1
2∇

L+ 1
2∇

R is metric-compatible. Additionally, we proved in Example 3.47 that it is torsion-
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free. Therefore ∇LC really is the Levi-Civita connection for S3.

Another obvious example of a Levi-Civita connection would be ∇⊤ on S2. Instead of proving
it for the specific case, instead we generalise the construction to any Riemannian immersed
submanifold.

Definition 3.59 (Tangent Connection). Let M → N be an Riemannian immersed submanifold.
We identify the manifold M with its image under the immersion to simplify the statement. Let
∇N be the Levi-Civita connection of N . We define the tangent connection on M to be the
covariant derivative

(∇⊤
XY )|p = proj

TpM
∇N

XY.

This is definition extends the previous definition from Example 3.26 because ∇euc is the Levi-
Civita connection of Rn.

Theorem 3.60 (Gauss Formula). The tangent connection is the Levi-Civita connection of M .

Proof. The proof that it is in fact a covariant derivative is entirely similar to the corresponding
statement in Example 3.26. We check the three properties of a covariant derivative:

∇⊤
fX+X̃

Y = proj
TpM

∇N
fX+X̃

Y = proj
TpM

(
f∇N

XY +∇N
X̃
Y
)
= f∇⊤

XY +∇⊤
X̃
Y,

∇⊤
X(Y + Ỹ ) = proj

TpM

(
∇N

XY +∇N
X Ỹ
)
= ∇⊤

XY +∇⊤
X Ỹ ,

∇⊤
X(fY ) = proj

TpM

(
X(f)Y +∇N

XY
)
= X(f)Y + f∇⊤

XY,

using that Y is already tangent to M . You might observe that this part of the proof works for
any covariant derivative and that we have not yet used the metric-compatibility or torsion-free
of ∇N .

For torsion-free, we need to know that if X,Y are tangent to M that [X,Y ] is too, even when
we consider them as vector fields on N . To prove this fact requires a proper investigation of
submanifolds, and the construction of a special chart on N that aligns with a chart on M . This
is beyond the scope of this course, which has tried to avoid manifold theory as much as possible.
We have seen an example of this phenomenon though: in Example 3.45 the Lie bracket of the
Ei fields was again an Ei field. Assuming this result,

T⊤(X,Y ) = ∇⊤
XY −∇⊤

YX − [X,Y ] = proj
TpM

(
∇N

XY −∇N
Y X − [X,Y ]

)
= proj

TpM
TN (X,Y )

is zero. The generalised statement for arbitrary connections would be that the tangent connec-
tion is torsion-free iff the torsion of ∇N is perpendicular to TpM at every point of M . Though
we hadn’t defined it, one could also say iff TN lies in the normal bundle of M .

Lastly, we need to show that the tangent connection is metric-compatible. This is where we
need to use that M is Riemannian immersed, so that the metric on M and the metric on N
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agree for tangent vectors to M .

Z
(
gM (X,Y )

)
= Z

(
gN (X,Y )

)
= gN

(
∇N

ZX,Y
)
+ gN

(
X,∇N

Z Y
)

= gN
(
proj
TpM

∇N
ZX,Y

)
+ gN

(
X,proj

TpM
∇N

Z Y
)

= gN
(
∇⊤

ZX,Y
)
+ gN

(
X,∇⊤

ZY
)

= gM
(
∇⊤

ZX,Y
)
+ gM

(
X,∇⊤

ZY
)
.

To explain the working here a little, for any vector in TpN we can split it into a part in TpM
and a part perpendicular to TpM . Because Y ∈ TpM , the inner product of Y with a vector
perpendicular to TpM is zero. Thus we can go from the first to the second line.

Now we know that ∇⊤ is a metric-compatible torsion-free covariant derivative on M . By the
uniqueness in Theorem 3.54, it is the Levi-Civita connection.

To close the chapter, we revisit the question “why torsion-free”? Our first answer was that it is a
natural expectation, based on the commutativity of partial derivatives in the euclidean setting.
Our second answer is that torsion-free is a matter of convenience:

• The most common connections, namely the euclidean connection ∇euc and the tangent
connection ∇⊤ are torsion-free.

• The Levi-Civita connection is unique and the Koszul formula allows it to be calculated.

• For many applications, whether or not a connection has torsion makes no difference. So
absorbing the torsion doesn’t lead to a loss of generality. We will see this in action in the
next chapter.


