
Chapter 2

Manifolds

In this chapter we give the ‘patchwork’ definition of manifolds. Manifolds are geometrically
nice spaces and a natural generalisation of Rn. The most common way to define a manifold is
as a special type of topological space, namely a ‘second-countable Hausdorff locally-euclidean
topological space with an atlas’1. Because students usually encounter differential geometry
before abstract topology, the lecturer then gives a speed run of all the definitions in topology.
I think this approach is better suited to the second time you encounter manifolds. Then you
already know a little bit about what makes manifolds nice, and you can appreciate the interesting
but weird topological spaces that need to be excluded from the definition. The standard approach
in effect defines a manifold by saying what a manifold isn’t. In the approach below we avoid
defining general topological spaces and instead use concrete gluing construction of open sets of
Rn. After this construction we will still need to impose certain conditions, so topology cannot
be avoided completely, but hopefully they are suitable for a new-commer to manifolds.

Before we dive into theory, we define a concept that you probably know but have never had
a word for. A partial function from X to Y is a function from a subset S ⊂ X to Y . In the
context of partial functions, a function with S = X is called a total function. Many common
functions are really partial functions: 1

x and
√
x are partial functions from R to R, with S being

respectively R \ {0} and [0,∞). There doesn’t seem to be good standard terminology to talk
about X and S, though S is often called the natural domain. Let’s call X the source of the
function and S the domain, with the symbols src f = X and dom f = S. You are no doubt
familiar with the difference between the codomain codom f = Y (also called the target) and
the image img f = f [S] (also called the range). We will use f : X⇀Y for partial functions
(harpoon arrow), in contrast to f : X → Y for total functions.

Many students in Analysis I are confused about the relationship between injective and surjective,
and those students are correct to be confused. Just as surjective means that the image is equal to
the codomain, total means that the domain is equal to the source; they are the true counterparts
to one another. In fact a partial function that is injective has an inverse partial function. If
f : X⇀Y is injective then

f−1(y) = x if y = f(x)

is a perfectly valid definition of a partial function f−1 : Y ⇀X with dom f−1 = img f and

1Sources differ: some use second-countable, others use the ‘Lindelöff’ property, which is equivalent in this
context, and others use the more general ‘paracompact’
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img f−1 = dom f .

Besides inverses, many of the usual definitions for functions carry over with sensible modifica-
tions. For example, partial functions from X to Y are equal if they have the same domains
and are equal on all inputs. Likewise the composition of two partial functions f : X⇀Y and
g : Y ⇀Z is a partial function g ◦ f : X⇀Z, but the domain of g ◦ f will be smaller than of
the domain of f if the image of f lies partly outside the domain of g. We should also think
about the ‘empty’ partial function. According to the set theory definition of a function, there
is exactly one function from the empty set to any other set. This is usually considered a quirk
in the definition. But the composition of partial functions where img f ∩ dom g = ∅ results in
the empty function, so we cannot ignore it.

Remark 2.1. In this course, functions and partial functions will always have open sets as their
sources and their domains will be open subsets, unless specifically noted otherwise. This is
needed so that derivatives can be defined.

2.1 Manifolds

Fix a dimension n. To keep track of the pieces we will glue together, let us introduce an index
set I. In our examples this will usually be a finite set, but we do not make this assumption
generally. For every i ∈ I let Ui be an open subset of Rn. Ui is called a chart. These are the
pieces we will glue together.

For two charts, we describe how to glue them together using a partial function. A gluing function
φi j : Ui⇀Uj is a partial function that is a homeomorphism from its domain to its image. This
means it is a homeomorphism (bijective, continuous, continuous inverse) between open subsets
Vi ⊂ Ui and Vj ⊂ Uj . The idea is that the point x ∈ Vi is glued to φi j(x) ∈ Vj . Note the order
of the subscripts: “from i to j”. The points of Ui \ Vi are not glued to any points of Uj . Other
names for gluing functions include ‘transition functions’, ‘change of coordinate functions’, and
‘overlap functions’. We allow here the possibility that Vi = Vj = ∅ and φi j : ∅ → ∅ is the empty
function, this represents the situation that Ui and Uj are not glued together at all. To avoid
having too many named sets, we will mostly use domφi j instead of Vi.

This information tells how to glue the pieces together, but how should we represent the completed
glued object? First we define the disjoint union∐

i∈I
Ui = {(i, x) | i ∈ I, x ∈ Ui},

which is a set of pairs. We think of this as saying that even if a point is common to both Ui and
Uj , in the disjoint union we consider it as two separate points. For example, if U1 = (−1, 1) and
U2 = (0, 2) then the normal union is U1 ∪ U2 = (−1, 2) but the disjoint union is two intervals.
We often do not write the index i if it is clear, and even when it is not clear we tend to write it
as a subscript. Continuing the example, U1

∐
U2 has two points that might both be called 0.5,

namely 0.51 ∈ U1 and 0.52 ∈ U2. Formally these points should be written (1, 0.5) and (2, 0.5)
respectively.

We want to create an equivalence relation on the disjoint union of all the charts such that
x ∈ Ui ∼ y ∈ Uj iff φi j(x) = y. If this is to be an equivalence relation, the set of gluing
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functions is required to have certain properties. To get reflexivity of ∼, we need φi i = idUi .
Symmetry of the relation holds if and only if φj i = φ−1

i j . These are simple enough, but expressing
the condition for transitivity is more difficult. The usual way to express the transitivity condition
is that y ∼ x, x ∼ z ⇒ y ∼ z, but if we have symmetry then this is equivalent to x ∼ y, x ∼
z ⇒ y ∼ z. That means for all x ∈ domφi j ∩ domφi k we need y = φi j(x) ∈ domφj k and
z = φi k(x) = φj k(y). In the language of partial functions

φi k = φj k ◦ φi j .

If a set of gluing functions have these three properties, and thus defines an equivalence relation,
we say that fulfill the cocycle conditions.

Definition 2.2. An atlas is a tuple A = (n, I, {Ui}i∈I , {φi j}i,j∈I), where {φi j}i,j∈I fulfills the
cocycle conditions. We have included n in our definition of atlas to make all the charts have the
same dimension (some authors allow spaces with a mix of dimensions). We call M =

∐
Ui/ ∼

the glued space.2 Each ‘point’ in M is an equivalence class of points in different Ui.

Example 2.3 (Euclidean Space). Take any open subset U ⊂ Rn. We can construct the trivial
atlas for U as follows. Let the index set I = {0} and U0 = U the only chart. Then φ0 0 = idU
is a gluing function. The cocycle condition is fulfilled, so (n, I, {U}, {φ0 0}) is an atlas. The
corresponding equivalence relation ∼ is the weakest equivalence relation on U , namely x is
equivalent to itself but no other points. Therefore we say M = U .

Example 2.4 (Polar Coordinates). Next we consider an example with two charts: I = {1, 2}.
Consider the plane U1 = R2 and the half-strip U2 = (0,∞)× (−π, π) ⊂ R2. To give an atlas it
is sufficient to describe φ2 1, because the cocycle condition requires φ1 1 = idU1 and φ2 2 = idU2 ,
as well as φ1 2 = φ−1

2 1 . Set

φ2 1 : U2 → U1, (r, θ) 7→ (r cos θ, r sin θ).

This is a homeomorphism from U2 to imgφ2 1 = R2 \ {(x, 0) | x ≤ 0}. Therefore A =
(2, I, {U1, U2}, {φ1 1, φ1 2, φ2 1, φ2 2}) is an atlas. This example shows why φi j is sometimes
called a change of coordinates function.

Every point of U2 is glued to some point of U1, but not every point of U1 is glued to some
point of U2. This leads to the points of the glued space M are of two types: either they
are an equivalence class with two points {(r cos θ, r sin θ), (r, θ)} for (r cos θ, r sin θ) ∈ U1 and
(r, θ) ∈ U2, or they are an equivalence class with a single point {(x, 0)} for (x, 0) ∈ U1 with
x ≤ 0. Every equivalence class in M contains an element of U1, so we might say casually
M = U1.

Example 2.5 (Glued Circle). Consider n = 1, I = {1, 2} and U1 = (−1, 1), U2 = (−1, 1). As
in the previous example, it is sufficient to give φ1 2. Set V1 = U1 \ {0} and V2 = U2 \ {0} and
give the gluing function φ1 2 : V1 → V2 by the formula

φ1 2(x) =

{
x+ 1 for x ∈ (−1, 0),

x− 1 for x ∈ (0, 1).

2If you are familiar with topology, the quotient topology makes M a locally euclidean topological space.
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For example, this tells us that we should glue −0.51 ∈ U1 to φ1 2(−0.5) = 0.52 ∈ U2 and
0.31 ∈ U1 to φ1 2(0.3) = −0.72 ∈ U2. Here the glued space M is a circle, which you can see by
cutting two strips of paper of the same length, drawing a number line from −1 to 1 on each
of them, and then gluing as instructed. Every point of M is equivalent to a point of U1 or to
02.

Example 2.6. Consider everything the same as in Example 2.5, but this time give φ1 2 the
formula

φ1 2(x) = x, x ∈ (−1, 0) ∪ (0, 1).

The space M is a called an interval with two origins. This is because every point of M is
either {x1, x2} for x ̸= 0, or 01, or 02.

The interval with two origins might seem like a harmless curiosity, but in fact it is a weird
topological space that we want to avoid. Let us say that a sequence pn in M converges to a
point p if the sequence ϕi(pn) converges to ϕi(p) in the chart Ui. In Example 2.6 consider the
sequence n−1 for n ∈ N+. We can view this sequence in U1 or U2. In U1 it has the limit 01, but
in U2 is has the limit 02. Therefore in M this sequence has two different limits!

There are other ways that this space is badly behaved. It is not a metric space, because the
distance between the two origins is zero. So although every point has a neighbourhood that
is homeomorphic to an open subset of euclidean space (locally euclidean), it is not really like
euclidean space. We therefore want to exclude such pathological spaces. It turns out that the
above example is the only way a gluing can cause non-unique limits.

Lemma 2.7 (Non-unique Limits). A glued space M has non-unique limits if and only if there is
a sequence xn ∈ domφ1 2 ⊂ U1 such that xn converges to a point x ∈ U1 \ domφ1 2 and φ1 2(xn)
converges to a point y ∈ U2, for some charts U1, U2.

Proof. Suppose first we have a sequence xn ∈ domφ1 2 ⊂ U1 such that xn converges to a point
x ∈ U1 \ domφ1 2 and φ1 2(xn) converges to a point y ∈ U2. By definition, x and y are both
limits of the sequence xn. But x is outside the domain of the gluing function, so by definition is
it not glued to any point of U2. Therefore x and y are distinct points in M .

Conversely suppose a glued space M has a sequence with two distinct limits. In euclidean space
limits are unique, so if there are two limits then they must come from two charts U1 and U2. Let’s
use the notation xn, x ∈ U1 and yk, y ∈ U2 with yn = φ1 2(xn). Suppose x were in the domain
of the gluing function. The gluing function by definition is a continuous function, so we would
have φ1 2(x) = limφ1 2(xn) = lim yn = y. But φ1 2(x) = y means exactly that x ∼ y and this
contradicts our assumption that the limits are distinct inM . Therefore x is not in the domain of
φ1 2, but it is the limit of a sequence in the domain. We have shown that x ∈ U1 \ domφ1 2.

Definition 2.8. We say that an atlas has the unique limit property if it does not not satisfy
the condition of Lemma 2.7. That is, if for every i, j ∈ I and every sequence xn ∈ domφi j that
converges to some x ∈ U1 \ domφi j, the sequence φi j(xn) does not converge in U2.

Observe why this is not an issue with Example 2.5. Consider the sequence xn = n−1 in U1. It
has the limit 01. On the other hand, the sequence yn = φ1 2(xn) = n−1 − 1 converges to −1 in
R, but −1 is not in U2. Therefore this ‘other’ limit point is not in the space M .

https://en.wikipedia.org/wiki/Non-Hausdorff_manifold
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The other way that gluing can produce a topologically bad space is if we glue too many charts
together. We will not provide an example of this; interested students may search for the ‘long
line’ or the ‘long ray’, which are standard examples of this phenomenon.

Definition 2.9. A manifold is an atlas with the unique limit property and such that the index
set is countable.

Exercise 2.10. For students who know topology: show that this is equivalent to the standard
definition of a manifold.

It is very common to talk about the glued space M as the manifold without explicitly stating
the atlas. This is similar to talking about a vector space as the set of vectors, when in fact it is
the operations of addition and scalar multiplication that make a vector space interesting.

There are different sorts of manifolds, based on additional conditions on the gluing functions.
We will use the notation that a function is Cℓ when it is ℓ-times continuously differentiable.
By convention, C0 means that the function is continuous, and C∞ means that the function is
smooth. An atlas (or a manifold) is called Cℓ when all of the gluing functions are Cℓ. Probably
the most common type of manifold that is studied, and the one we will study in this course, are
smooth manifolds. Henceforth, when we say manifold we mean smooth manifold.

Because we have given a non-standard definition of manifolds, we should explain how this
compares to the standard definition. We do this using the example of a sphere and stereographic
projection, which seems to be the first non-trivial example in every book on manifolds.

Example 2.11 (Stereographic Projection). The circle is commonly defined as the set S1 =
{p ∈ R2 | ∥p∥ = 1}, and we name the north pole N = (0, 1) and the south pole S = (0,−1).
If one draws chooses a point p other than the north pole, and considers the line through p
and N , there is a unique intersection point ϕN (p) on the x-axis. This is a bijective function
ϕN : S1 → R called stereographic projection. A nice geometry exercise using similar triangles
gives the formula

ϕN : (p1, p2) 7→ p1

1− p2
.

Likewise stereographic projection from the south pole is

ϕS : S1 \ {S} → R, (p1, p2) 7→ p1

1 + p2
.

Notice that these constructions are ill-defined when applied to the pole itself, because a single
point does not determine a line, so it is naturally a partial function on the circle.

The inverses of the these functions,

ϕ−1
N : R → S1 \ {N}, x 7→ 1

x2 + 1
(2x, x2 − 1),

and

ϕ−1
S : R → S1 \ {S}, y 7→ 1

y2 + 1
(2y, 1− y2),

are regular parametrisations of (parts of) the circle in the sense of Section 1.1. So given a
point p on the sphere, we can apply ϕN to get a point x in R, called its coordinate with

https://en.wikipedia.org/wiki/Long_line_(topology)
https://en.wikipedia.org/wiki/Long_line_(topology)
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respect to ϕN , and putting the coordinate into the parameterisation ϕ−1
N gives back the point

p. If we know the coordinate x with respect to ϕN then y = ϕS ◦ ϕ−1
N (x) is the coordinate

with respect to ϕS . For this reason ϕS ◦ ϕ−1
N : R \ {0} → R \ {0} is the change of coordinates

function. In this example, one can calculate

ϕS ◦ ϕ−1
N (x) = ϕS

(
2x

x2 + 1
,
x2 − 1

x2 + 1

)
=

2x
x2+1

1 + x2−1
x2+1

=
2x

x2 + 1 + x2 − 1
=

1

x
.

Notice that it is not possible to cover the circle by a single regular parameterisation (param-
eterisations must be injective). Thus to deal with spaces generally we must consider multiple
overlapping parameterisations and change of coordinate functions.

In this example we have presented the standard approach to manifolds through coordinate
functions and parameterisations. Let us connect it now with our definition. The index set is
I = {N,S}. The image of the coordinate functions are the charts, UN = R and US = R. And
the gluing function from UN \ {0} to US \ {0} is φN S(x) = x−1. This data forms an atlas.

But what does this atlas have to do with the circle? We indeed see that the equivalence
classes of points are S = {0N}, N = {0S}, or {x, y} for x ∈ UN \ {0} and y = x−1 ∈ US \ {0}.
That is, there are in one-to-one correspondence with the points of S1. The glued space M is
a space that has all the same points as S1 and the same topology, but it is not a subset of a
euclidean space. Whatever we can describe on M must be intrinsic to the circle, independent
of its relationship to R2.

Exercise 2.12 (Stereographic Projection). Repeat the above construction for the n-sphere
Sn = {p ∈ Rn+1 | ∥p∥ = 1}. We choose3 our coordinates on Rn+1 such that the north pole is
N = (0, . . . , 0, 1) and the south pole is S = (0, . . . , 0,−1). Show that stereographic projection
have the formulas

ϕN : Sn \ {N} → Rn, p 7→ 1

1− pn+1
(p1, . . . , pn),

ϕS : Sn \ {S} → Rn, p 7→ 1

1 + pn+1
(p1, . . . , pn),

and inverse stereographic projection is

ϕ−1
N : Rn → Sn \ {N}, x 7→ 1

∥x∥2 + 1
(2x1, . . . , 2xn, ∥x∥2 − 1),

ϕ−1
S : Rn → Sn \ {S}, y 7→ 1

∥y∥2 + 1
(2y1, . . . , 2yn, 1− ∥y∥2).

Finally, show that the transition function is

φN S(x) = ϕS ◦ ϕ−1
N (x) = ∥x∥−2x.

In the standard definition of a manifold you begin withM and coordinate functions ϕi :M⇀Rn.
The procedure in Example 2.11 to go from this data to our definition of a manifold is fully general:
define the charts to be Ui = img ϕi and the gluing functions as φi j = ϕj ◦ ϕ−1

i .

3Another common convention is to zero-index the components the have the ±1 in the zeroth component
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Conversely, if you begin with a manifold in our sense then M is the glued space
∐
Ui/ ∼. There

is of course the canonical projection πM :
∐
Ui →M that sends every element to its equivalence

class, but this is too coarse. We call the restriction Φi := πM |Ui : Ui → M a parameterisation
of πM [Ui] ⊂ M . It sends a point of Ui to its equivalence class in M . We really should think of
this as a parameterisation because an ordinary set Ui in euclidean space is describing part of a
complicated objectM . In the other direction ϕi := (Φi)

−1 : πM [Ui] → Ui ⊂ Rn is the coordinate
function. It sends an equivalence class to its representative that lies in Ui. We usually write ϕ−1

i

for the parameterisation rather than Φi, as it is unnecessary to have two symbols. Thus the two
approaches to manifolds give equivalent information.

Let us summarise our terminology and the relations between the objects. Charts are open sets
of Rn. An atlas is set of charts and gluing functions with the cocycle property. A gluing function
can also be called a change of coordinate function or a transition function. The information of
an atlas allows us to glue the charts together to get a manifold M . Functions from the charts
to the manifold are called parametrisations and functions from the manifold to the charts are
coordinates. The composition of a parameterisation and a coordinate is a transition function.
One of the drawbacks of differential geometry being an old and widely practised field is that
notation and terminology has been around for a long time and is not completely standardised.
Different authors use the word chart to describe ϕi, ϕ

−1
i , Ui, or ϕ

−1
i [Ui].
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2.2 Functions

Next we want to define functions between manifolds. On one hand, there is nothing to do. If
we have manifolds M and M̃ , they are sets, and a function f :M → M̃ is defined in the normal
way. But manifolds are more than sets of points, they have atlases. Let

A = (n, I, {Ui}i∈I , {φi,j}i,j∈I), Ã = (ñ, Ĩ, {Ũi}i∈Ĩ , {φ̃i,j}i,j∈Ĩ)

be atlases for M and M̃ respectively. Then we can look at f ‘in charts’. This means we look at
the partial functions

fi k := ϕ̃k ◦ f ◦ ϕ−1
i : Ui⇀Ũk for i ∈ I and k ∈ Ĩ.

These are functions between euclidean spaces, so we can ask whether they are Cℓ.

Definition 2.13. A function f : M → M̃ is Cℓ at a point p ∈ M if there is a chart Ui ∋ ϕi(p)
and chart Ũk ∋ ϕ̃j(f(p)) such that fi k is Cℓ, and it obeys a further technical condition.4 We say
that f is Cℓ on M if it is Cℓ at every point of M .

The definition of Cℓ uses a chart. But we know that a point may belong to more than one chart.
This opens the possibility that f is Cℓ at p according to one chart, but not Cℓ according to
another chart. However, because of the relation

fj l = ϕ̃l ◦ f ◦ ϕ−1
j = (ϕ̃l ◦ ϕ̃−1

k ◦ ϕ̃k) ◦ f ◦ (ϕ−1
i ◦ ϕi ◦ ϕ−1

j )

= φ̃k,l ◦ (ϕ̃k ◦ f ◦ ϕ−1
i ) ◦ φj,i = φ̃k,l ◦ fi k ◦ φj,i,

the definition does not depend on the which charts are used.

Example 2.14 (Euclidean Space). We have already seen that open subsets of euclidean space
are manifolds in a particularly simple way, namely the coordinates and parametrisations are
the identity function. Therefore a function in charts is the same thing as a function. This
shows that a function between euclidean spaces is Cℓ according to the manifold definition if
and only if it is Cℓ according to the ordinary definition.

Example 2.15 (Stereographic Projection). Consider the circle S1 and the function f : S1 → R
given by f(p1, p2) = p2. This is the height function. We can look at this function in charts

fN 0 : UN → R fN 0(x) = ϕ̃0 ◦ f ◦ ϕ−1
N (x) = idR ◦f

(
2x

x2 + 1
,
x2 − 1

x2 + 1

)
=
x2 − 1

x2 + 1
,

and likewise

fS 0 : US → R fS 0(y) =
1− y2

y2 + 1
.

It may help to understand this if we calculate it for a few points. Consider the south pole
S = (0, 0,−1), which has a height f(0, 0,−1) = −1. In ϕN -coordinates the south pole is
0 ∈ UN and fN 0(0) = −1 as expected. Now consider the point p = (0.65, 0.76) ∈ S2. Clearly

4It is necessary to require that ϕi(p) has an open neighbourhood U ⊂ Ui such that f [U ] ⊂ Ũj . If you omit
this condition, it is possible to make an example where f is continuous in every chart but is not continuous on
M as a whole. See Lee “Introduction to Smooth Manifolds” Problem 2-1 for an example.
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is has f(p) = 0.76. In ϕN -coordinates it is 2.7 ∈ UN and in ϕS-coordinates it is 0.37 ∈ US .
So then we compute

fN 0(2.7) =
7.3− 1

7.3 + 1
= 0.76, fS 0(0.37) =

1− 0.137

0.137 + 1
= 0.76.

In conclusion, f in charts is nothing other than a manipulation of the formula for f to use
coordinates; it gives the same result.

Perhaps not unexpectedly, this is a smooth function in the sense of manifolds because both
fN 0 and fS 0 are smooth functions in the usual sense.

Example 2.16 (Glued Circle). We can give a function f that embeds M into euclidean space
R2. It is easier to write the formulas in charts. We define

f1 1(x) = (cosπx, sinπx) ,

f2 1(y) = (cosπ(y + 1), sinπ(y + 1)) .

We can see that this is well-defined in the following way. Take a point x ∈ domφ1 2. Then

f2 1(φ1 2(x)) = (cosπ(φ1 2(x) + 1), sinπ(φ1 2(x) + 1))

=

{
(cosπ(x+ 1 + 1), sinπ(x+ 1 + 1)) for x ∈ (−1, 0)

(cosπ(x− 1 + 1), sinπ(x− 1 + 1)) for x ∈ (0, 1)

=

{
(cos(πx+ 2π), sin(πx+ 2π)) for x ∈ (−1, 0)

(cosπx, sinπx) for x ∈ (0, 1)

= (cosπx, sinπx)

= f1 1(x).

What we have shown is that if x ∈ U1 ∼ y ∈ U2 then f1 1(x) = f2 1(y). This means that it
doesn’t matter which chart you use, the result is the same. In other words we have defined a
function f that doesn’t depend on charts, f is defined on M .

This example shows us how to embed Example 2.5 into R2 to get what we would normally think
of as the circle. But please keep in mind that manifolds are defined as the gluing of charts; they
are defined as an abstract space that does not need live in a bigger space. There are many ways
to embed the circle into euclidean space. Even when we define a manifold starting with a subset
of euclidean space, we leave the embedding behind.
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2.3 Vectors

Our definition of manifolds makes it easy to define (tangent) vectors and vector fields. At any
point x ∈ U1 ⊂ Rn we have the tangent vectors {(v1, . . . , vn) ∈ Rn} and a vector field on U1 is
a function X : U1 → Rn. To make this into a definition on a manifold, however, we need a way
to make this independent of the chart. Alternatively, we need a way to compare vectors that
are defined using different charts. There are essentially two equivalent ways to do this: using
curves and using directional derivatives. We first give an example using curves as motivation.

Example 2.17 (Polar Coordinates). Consider the plane R2 with cartesian coordinates (x1, x2),
but also polar coordinates (y1, y2) = (r, θ), as in Example 2.4. The transition function from
polar to cartesian is φ(r, θ) = (r cos θ, r sin θ). We consider vectors at the point p with
(r, θ) = (1/

√
2, π/4), which is equivalent to (x1, x2) = (0.5, 0.5).

Let α(t) = (t + 1/
√
2, π/4), a curve in U2 with α(0) = p. In the U2 chart it is a horizontal

line with tangent vector α′(0) = (1, 0). But we can also view this curve in the U1 chart. It
has the formula

β(t) = φ2 1(α(t)) =
(
(t+ 1√

2
) cos π

4 , (t+
1√
2
) sin π

4

)
=
(

1√
2
t+ 1

2 ,
1√
2
t+ 1

2

)
.

At p it has the tangent vector β′(0) = (1/
√
2, 1/

√
2).

But these two charts represent the same points of manifold; the curves α and β have the same
points under the gluing equivalence relationship. Likewise we should think of the two tangent
vectors, v = α′(0) = (1, 0) at (1/

√
2, π/4) in the U2 chart and w = β′(0) = (1/

√
2, 1/

√
2) at

(0.5, 0.5) in the U1 chart, as equivalent.

Both methods have the same setup. Let U1, U2 ⊂ Rn be two charts and φ : U1⇀U2 the
transition (we leave off the subscripts for this explanation to simplify notation). Let x be a
point in domφ, y = φ(x), and v = (v1, . . . , vn) be a vector on U1 and w = (w1, . . . , wn) be a
vector on U2.

Curve method: Consider the curve α(t) = x+vt ∈ U1. This curve has α(0) = x and α′(0) = v.
Using the transition, we also have a curve β = φ ◦ α in U2 with β(0) = φ(x) = y. The idea is
that v in the first chart is transformed to w = β′(0) in the second chart. Using the chain rule

w = β′(0) = (Jxφ)α
′(0) = (Jxφ) v,

where Jxφ is the matrix of partial derivatives of φ, also called the Jacobian matrix, evaluated
at the point x.

Directional derivative method: Take any function h : U2 → R. We can use the transition
function to write h as a function on U1, at least near x, namely h◦φ. We compute the derivative
in the direction of v at the point x and apply the chain rule

n∑
j=1

vj
∂(h ◦ φ)
∂xj

(x) =
n∑

i,j=1

vj
∂h

∂yi
(φ(x))

∂yi

∂xj
(x) =

n∑
i,j=1

vj
∂h

∂yi
(y)(Jxφ)ij =

n∑
i=1

(Jxφv)i
∂h

∂yi
(y).

We see that the derivative of h ◦ φ at x in the direction of v is equal to the derivative of h at y
in the direction w = Jxφv. From both of these methods we get the same answer:
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Definition 2.18. The vector v at x ∈ U1 is equivalent to the vector w at y ∈ U2 when w = Jxφv.
This formula is called the change of coordinates for vectors. We denote the set of equivalence
classes of vectors at a point p ∈M by TpM , called the tangent space to M at p.

Because of the second method, it is common to write a tangent vector as
∑n

i=1 v
i ∂
∂xi

∣∣
p
. This

notation has two advantages. First that the change of coordinates is built into the notation via
the chain rule, as above. And second, if we leave out the point at which we should evaluate the
derivative then ∂

∂xi is a vector field. In fact it gives a basis of the vector fields. Every vector
field on U1 can be written as a function

X : x 7→
n∑

i=1

vi(x)
∂

∂xi

for functions vi : U1 → R. Because vector fields thought of this way can be evaluated at a point
to give a tangent vector as well as act on a function, the notation X(x) is potentially ambiguous.
We will use X|p for evaluation and X(f) for action on a function.

Example 2.19 (Stereographic Projection). Let’s see how the coordinate vector fields trans-
form between the two charts of stereographic projection on S1. In particular y = φN S(x) =
x−1 has the Jacobian matrix

Jφ =
(
∂y
∂x

)
=
(
−x−2

)
.

Therefore

∂

∂x
=
∂y

∂x

∂

∂y
= −x−2 ∂

∂y
= −y2 ∂

∂y
.

We should note that this equality, which is really equivalence of vectors as per Definition 2.18,
holds on the overlap between the two charts, namely away from the north and south poles.
In particular, the vector ∂

∂x is not defined at the north pole, this expression only has meaning
on the chart UN . If we were to define a vector field by the formula

X =

{
∂
∂x for x ∈ UN ,

−y2 ∂
∂y for y ∈ US

then this is a well-defined vector field on all of S1, because it gives a vector at every point
and on overlaps the two cases give equivalent vectors. Observe that X|y=0 is the zero vector.

On the other hand, if we consider the vector field x3∂x on U1 then it corresponds to the vector
field

x3
∂

∂x
= (y−3)

(
−y2 ∂

∂y

)
= −y−1 ∂

∂y

on U2 \ {y = 0}. This has no continuous extension to all of S1.

The main lesson of this example is that what looks like the ‘same vector’ at two different points
in one chart look like completely different vectors in another chart. From the above example,
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∂
∂x

∣∣
x=1

and ∂
∂x

∣∣
x=2

look the same in the UN chart, but in the US chart these two vectors are

− ∂

∂y

∣∣∣∣
y=1

and − 1

4

∂

∂y

∣∣∣∣
y=0.5

respectively. This is because the Jacobian Jxφ has a dependence on x, on the point in the
manifold. Hence the equivalence relation is different at different points. The consequence is
that there is no easy way to identity tangent vectors at different points of a manifold. We will
examine how this problem can be overcome in the next chapter, which concerns ‘connections’
between different points of a manifold.

Example 2.20 (Stereographic Projection). Let us continue Example 2.19 to see that equiv-
alent vectors give the same directional derivatives. Consider how the vector field

X =

{
∂
∂x for x ∈ UN ,

−y2 ∂
∂y for y ∈ US

acts on the height function f from Example 2.15. In the chart UN we have

(Xf)N =
∂fN
∂x

=
∂

∂x

(
x2 − 1

x2 + 1

)
=

2x(x2 + 1)− 2x(x2 − 1)

(x2 + 1)2
=

4x

(x2 + 1)2
.

Likewise in the chart US we have

(Xf)S = −y2∂fS
∂y

= −y2 ∂
∂y

(
1− y2

y2 + 1

)
= −y2

(
− 4y

(y2 + 1)2

)
=

4y3

(y2 + 1)2

So in the UN chart for the point x = 0.5 we have that the function f is changing in the
direction X by (Xf)N (0.5) = 1.28. And in the US chart for the corresponding point y = 2 we
have that the function f is changing in the direction X by (Xf)S(2) = 1.28. The directional
derivatives in the two charts agree. This is a demonstration that everything is all well-defined.

Example 2.21 (Glued Circle). Because the Jacobian of the transition function is just the
constant 1, the following is a well-defined vector field:

X =

{
∂
∂x for x ∈ U1,
∂
∂y for y ∈ U2

We can act this vector field on the function f : S1 → R defined in charts as

f1 1(x) = cosπx, f2 1(y) = cosπ(y + 1),

which is just the first component of the function from Example 2.16. We get

(Xf)1 1(x) =
∂

∂x
cosπx = −π sinπx, (Xf)2 1(y) =

∂

∂y
cosπ(y + 1) = −π sinπ(y + 1).

This is a well-defined function on S1, which we know because it is −π multiplied by the second
component from Example 2.16.
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These two examples illustrate that a vector field X applied in a chart to a function fi is another
function (Xf)i. The fact that we used the chain rule to define equivalence of vectors is precisely
the condition to ensure that the resulting functions in charts piece together to give a well-defined
function Xf on the whole manifold.

If we have a function between two manifolds f : M → M̃ , the tangent map or pushforward of
f at p is a function between the tangent spaces Tpf : TpM → TpM̃ . We will define it in two
ways. The easiest definition is using the curve method of vectors. If we have a vector v ∈ TxM
then in a chart Ui the curve α(t) = x + vt is a representative of this vector. Observe that
f ◦α : (a, b) → M̃ is a curve in M̃ . We define Tpf(v) to be the tangent vector of the curve f ◦α
at t = 0.

We also give a practical formula for calculating the tangent map. The curve f ◦ α must lie in
some chart Ũj of M̃ . In charts we have αi : (a, b) → Ui and fi j : Ui⇀M̃j . So the tangent vector
of the curve is

d

dt
fi j(α(t))

∣∣∣∣
t=0

= (Jα(t)fi j)α
′(t)
∣∣∣
t=0

= (Jα(0)fi j)α
′(0) = (Jxfi j) v,

using the chain rule and the fact that α(0) = x, α′(0) = v. Thus we see in charts that the
tangent map is the Jacobian of fi j .

We could have also given a definition of the pushforward based on the directional derivative
idea. If w = Tpf(v) ∈ Tf(p)M̃ is the pushforward of a vector v ∈ TpM , then we can ask how w

acts on a function g : M̃ → R. The observation is that g ◦ f :M → R and

w(g) = Tpf(v)(g) = v(g ◦ f).

Example 2.22 (Stereographic Projection). Consider the inclusion map ι : S1 → R3. As a
formula it is just identity, but we consider it as a function between manifolds. We can ask how
the vector ∂x

∣∣
0
∈ TSS1, a coordinate vector of the UN chart, is pushed forward by this map

to a vector in T(0,−1)R2, since 0 ∈ UN = S ∈ S1 is mapped to ι(S) = (0,−1). Let us calculate

the tangent map in the chart UN . As per above, this is Jacobian of ιN 0 = idR3 ◦ι◦ϕ−1
N = ϕ−1

N :

Jxϕ
−1
N =

(
∂(ϕ−1

N )1

∂x
∂(ϕ−1

N )2

∂x

)
=

 ∂
∂x

(
2x

x2+1

)
∂
∂x

(
x2−1
x2+1

)
=

2

(x2 + 1)2

(
−x2 + 1

2x

)
and at x = 0 we have

J0ϕ
−1
N =

(
2
0

)
In coordinates, the vector ∂x

∣∣
0
is just 1, so its pushforward in coordinates is

(TSι)(∂x
∣∣
0
) = (J0ϕ

−1
N )(1) =

(
2
0

)(
1
)
=

(
2
0

)
= 2

∂

∂p1

∣∣∣∣
(0,−1)

+ 0
∂

∂p2

∣∣∣∣
(0,−1)

.
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Note that this vector is tangent to S1 in the usual sense.

An important observation should be made about the previous example. We were careful to
stress that the tangent map was applied to a vector at a particular point and not a vector field.
That is because the tangent map does not, as students sometimes assume, take vector fields to
vector fields. There are two ways it fails to do this. We could easily generalise this example to
∂x at any point of UN , which would then give a vector on R2. But not every point of R2 gets a
vector. Only the points in the image of ϕ−1

N get a vector. Therefore the result is not a vector
field on R2.

The other way that the tangent map can fail to transform a vector field into another vector field,
which does not apply to the above example, is if the function is not injective. In that case some
points in the image get multiple vectors from the tangent map. Since a vector field is a certain
type of function, and functions must have exactly one output, the pushforward of a vector field
may not be a function.

Exercise 2.23 (Stereographic Projection). Verify the following formula for the tangent map of
ι : S2 → R3 in the UN chart.

Jx(ϕ
−1
N ) =

2

(∥x∥2 + 1)2

−(x1)2 + (x2)2 + 1 −2x1x2

−2x1x2 (x1)2 − (x2)2 + 1
2x1 2x2

 .

We end this section by highlighting a distinction that we have elided until now. A tangent
vector is an intrinsic concept on a manifold, it does not require the manifold to be immersed in
euclidean space. And yet in the previous chapter we repeatedly talked about tangent vectors to
surfaces as a vector in R3 that was tangent in the geometrical sense. The connections between
these two ideas is exactly the idea of immersion and pushforward.

Definition 2.24. A function f :M → M̃ is an immersion at p ∈M if Tpf is injective.

We commented on this at the end of Example 2.22. Another possible example would be Ex-
ample 2.16. We saw that a manifold can be mapped into a euclidean space by a function. The
pushforward of its tangent vectors by this function are exactly the tangent vectors in the intu-
itive picture. Thus for an immersion, it is possible to consider the elements of TpM as certain
elements of TpM̃ , and this is unambiguous because by definition Tpf is injective.
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2.4 Vector Bundles

This section will not be used later in the script. It exists just to flex how natural the construction
of the tangent bundle is in our approach to manifolds.

Above we have defined the tangent space TpM to a manifold M at a point p ∈M and discussed
how the vectors of TpM and TqM should be thought of as distinct, even if p and q are in the
same chart. But we also worked with examples of vector fields, whose values are vectors at
different points. We can reconcile this tension by putting all the vectors of a manifold together
into a new manifold:

Definition 2.25. Let M be a manifold with atlas A = (n, I, {Ui}i∈I , {φi j}i,j∈I). We construct
a new atlas TA = (2n, I, {TUi}i∈I , {Tφi j}i,j∈I), where TUi = Ui × Rn and

Tφi j : domφi j × Rn → imgφi j × Rn, (x, v) 7→ (φi j(x), (Jxφi j)v).

The corresponding manifold is called the tangent bundle TM . There is a function π : TM →M
in charts by

πi i(x, v) = x.

We tend to think of the tangent bundle ofM as all the vectors ofM , with the understanding that
vectors at different points are distinct from one another. The function π is called the canonical
projection of the bundle. Intuitively it takes a tangent vector to its base point. Hence π−1[{p}]
are all the vectors which live at the same point, in other words TpM .

The tangent bundle allows us to speak and reason formally about tangent vectors as a whole.
We can define a vector field on M as a function X from M to TM with the property that
π ◦X = idM . This property says that for every point p ∈M the vector X|p must have the base
point π(X|p) = p, which is exactly what a vector field is.

Exercise 2.26. Check that the tangent bundle is a manifold. In particular you must check the
unique limit condition.

Example 2.27 (Euclidean Space). Since the trivial atlas for an open subset U ⊂ Rn has
only one chart U0 = U , so too does its tangent bundle TU0 = U ×Rn. Therefore the tangent
bundle is just the cartesian product. The only difference between TU and usual way we think
about vectors in euclidean space is that the base point of the vector is important for the
tangent bundle.

Example 2.28 (Glued Circle). We saw in Example 2.21 that there was a vector field X on
S1 that was never zero. Because TpS1 is one dimensional, every vector in it must be a scalar
multiple of X|p. This means we can define a function from TpM to R

v 7→ a, where v = aX|p.

Allowing p to change gives us a function from TS1 to S1 ×R. Thus the tangent bundle of the
circle is also a product. Tangent bundles that a products are called trivial.
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Example 2.29. In this example we want to show a non-trivial tangent bundle, but it’s
actually somewhat difficult to prove non-triviality. Instead we will try to convey the idea.
The tangent bundle of S2 is non-trivial. If it were trivial, that would mean there would exist a
smooth bijective correspondence between TS2 and S2×R2. We could use this correspondence
to write any vector field X on S2 as (p, X̃(p)) with X̃(p) ∈ R2. Conversely there would exist
a vector field with the form (p, (1, 0)). This vector field is never zero.

But it is a theorem that every vector field on the sphere has at least one zero. This is called
the hairy ball theorem or the hedgehog theorem. There are many intuitive interpretations of
this theorem; one is that there must be somewhere on earth where the wind is not blowing.
Try imagining different wind maps, and perhaps you will convince yourself of the truth of this
theorem. This is one reason that the tangent bundle of S2 cannot be trivial.

The tangent map takes its nicest form when expressed with the tangent bundle. We can collect
together all the tangent maps Tpf : TpM → TpN into a single map Tf : TM → TN . Using the
formula in charts in terms of the Jacobian we get

(Tf)i j(x, v) =
(
fi j(x), (Jxfi j) v

)
∈ Vj × Rn = TVj .

This formula shows that the tangent map is the generalisation of the Jacobian, and all local
properties of the Jacobian carry over to the tangent map.

Exercise 2.30. Prove that the above formula for the tangent map is well-defined (in different
charts) by using the chain rule for Jacobians: for y = φM,i,j(x) and z = fj k(y)

Jx(φN,k,l ◦ fj k ◦ φM,i,j) = (JzφN,k,l)(Jyfj k)(JxφM,i,j).

Exercise 2.31 (Glued Circle). Calculate the tangent map for f from Example 2.16. Use
this to give an alternative description of the tangent bundle TS1 by locating it as a set inside
TR2 = R2 × R2.

https://en.wikipedia.org/wiki/Hairy_ball_theorem
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2.5 Summation Convention

As you have seen, when working with vectors in charts, there are many Σ summations, but all of
them are just from i = 1 to n. There is a convention, called the Einstein summation convention
or the Einstein rule, that allows us to omit all these sigmas.

Definition 2.32 (Einstein Summation). We apply the following notational rule: when an index
occurs twice in a term, once as an upper index and once as a lower index, we sum that index
over its range. For the purposes of this rule ∂

∂xi = ∂i counts as a lower index.

In this notation, the chain rule reads

∂

∂x1
=
∂y1

∂x1
∂

∂y1
+
∂y2

∂x1
∂

∂y2
=

2∑
i=1

∂yi

∂x1
∂

∂yi
=
∂yi

∂x1
∂

∂yi
.

A vector field X that has coefficients Xi with respect to a chart can neatly be written as
X = Xi∂i, and its expression with respect to a second chart y might be written using the
equivalences of vectors as

X = Xi ∂

∂xi
= Xi∂y

j

∂xi
∂

∂yj
.

This convention is useful for even ordinary linear algebra. If you have a matrix A we would
normally write the entries Ai j . However if we instead write it Ai

j with a mix of upper and lower
indices then we can write matrix multiplication in the following way

Av =
(
Ai

j

)(
vj
)
=

n∑
j=1

Ai
jv

j = Ai
jv

j .

Likewise matrix multiplication AB would be (AB)ik = Ai
jB

j
k. The saying to turn matrix algebra

into index algebra with summation convention is “Upper indices go up to down; lower indices
go left to right”.

We know that bilinear functions can also be represented as a matrix; in usual matrix notation:

g(v, w) = vT
(
gi j

)
w =

n∑
i,j=1

vigi jw
j .

In summation convention we write this as gi jv
iwj , with the vector components having upper

indices, which forces g to have two lower indices. This is actually an advantage of index notation
over matrix notation. Though linear transforms and bilinear transforms can both be represented
as a matrix, those matrix representations behave differently under change of basis. We can see
that they are different in index notation, but not in matrix notation.

Some authors do not have the condition that you need one upper and one lower index, and allow
summation over any repeated index. I do not like this, because it makes it impossible to talk
about the diagonal elements gi i. If you need to sum over two indices on the same level, you can
of course use a summation sign. Alternatively you can use an identity matrix, whose entries are
usually called δi j . For example

tr
(
gi j

)
=

n∑
i=1

gi i = δi,jgi j .
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Finally, some useful rules of calculation are

∂xi

∂yj
∂yj

∂xk
= δik and viδji = vj .
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2.6 The Lie Bracket

We have seen examples of how vectors are a type of directional derivative of functions and that
a vector field applied to a function gives another function. A natural question is to ask whether
we can also differentiate a vector field using a vector field. The answer is yes: in fact vector
fields can differentiate many objects on manifolds using a process called the Lie derivative LX ,
but the process complicated and we won’t explain it here. We show with the following example
why the ‘obvious’ way to differentiate vector fields doesn’t work.

Example 2.33 (Polar Coordinates). You might guess that you can differentiate a vector field
just by differentiating its coefficient functions:

Y (X)

?︷︸︸︷
:=

n∑
i=1

Y (Xi)
∂

∂xi
,

but this doesn’t produce a well-defined vector field, because in different charts it produces
inequivalent vectors.

Let us give an example. Consider the vector fields

X = x1
∂

∂x1
+ x2

∂

∂x2
, Y = x2

∂

∂x1
− x1

∂

∂x2
,

on U1 = R2. For example, if we act Y on X with this definition, in U1 we have[
x2
∂x1

∂x1
− x1

∂x1

∂x2

]
∂

∂x1
+

[
x2
∂x2

∂x1
− x1

∂x2

∂x2

]
∂

∂x2
= x2

∂

∂x1
− x1

∂

∂x2
= Y.

But in U2, polar coordinates, we have

r
∂

∂r
= r

∂xi

∂r

∂

∂xi
= r cos θ

∂

∂x1
+ r sin θ

∂

∂x2
= X,

− ∂

∂θ
= −∂x

i

∂θ

∂

∂xi
= r sin θ

∂

∂x1
− r cos θ

∂

∂x2
= Y.

So the same calculation in polar coordinates gives[
−∂r
∂θ

]
∂

∂r
= 0.

Hence this operation depends on which coordinates one uses. It is not well-defined on the
manifold.

It turns out the correct way to differentiate vector fields is to take the commutator of the above
guess.

Definition 2.34. The Lie derivative of a vector field Y with respect to a vector field X, also
called the Lie bracket, acts on a function f by

(LXY )(f) = [X,Y ](f) := X(Y (f))− Y (X(f)).
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From this definition we can ask how to write it in charts:

[X,Y ](f) = X(Y (f))− Y (X(f)) = X

(
Y j ∂f

∂xj

)
− Y

(
Xi ∂f

∂xi

)
= Xi ∂

∂xi

(
Y j ∂f

∂xj

)
− Y j ∂

∂xj

(
Xi ∂f

∂xi

)
= Xi∂Y

j

∂xi
∂f

∂xj
+XiY j ∂2f

∂xi∂xj
− Y j ∂X

i

∂xj
∂f

∂xi
− Y jXi ∂2f

∂xj∂xi

=

[
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

]
∂f

∂xi
=
[
X(Y i)− Y (Xi)

] ∂f
∂xi

.

So even though the definition of [X,Y ] appears to have second derivatives of f , these cancel out
and what remains is indeed a (first order) vector field acting on f .

Example 2.35 (Polar Coordinates). Let us take the vector fields from the previous example
and compute their Lie bracket. In the U1 chart

[X,Y ] =

[(
x1

∂

∂x1
+ x2

∂

∂x2

)
(x2)−

(
x2

∂

∂x1
− x1

∂

∂x2

)
(x1)

]
∂

∂x1

+

[(
x1

∂

∂x1
+ x2

∂

∂x2

)
(−x1)−

(
x2

∂

∂x1
− x1

∂

∂x2

)
(x2)

]
∂

∂x2

=
[
x2 − x2

] ∂

∂x1
+
[
−x1 + x1

] ∂

∂x2
= 0.

and in the U2 chart

[X,Y ] =

[(
r
∂

∂r
+ 0

∂

∂θ

)
(0)−

(
0
∂

∂r
− ∂

∂θ

)
(r)

]
∂

∂r

+

[(
r
∂

∂r
+ 0

∂

∂θ

)
(−1)−

(
0
∂

∂r
− ∂

∂θ

)
(0)

]
∂

∂θ
= 0.

Whenever we have an expression in charts, it is good to check that in different charts it produces
equivalent vectors. We do so in the following lemma. This is not strictly necessary, because the
[X,Y ](f) = X(Y (f))− Y (X(f)) definition doesn’t use charts, but good practice none-the-less.

Lemma 2.36. The above chart expression gives a vector field that is independent of the choice
of chart.

Proof. If X = Xi(x) ∂
∂xi and Y = Y i(x) ∂

∂xi are the expressions of two vector fields in the x-chart,
then the expression of these fields in the y-chart is

X = Xj ∂y
i

∂xj
∂

∂yi
, Y = Y j ∂y

i

∂xj
∂

∂yi
.
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In this chart, the ith component of [X,Y ] is

X(Ỹ i)− Y (X̃i) = X l ∂y
k

∂xl
∂

∂yk

(
Y j ∂y

i

∂xj

)
− Y j ∂y

k

∂xj
∂

∂yk

(
X l ∂y

i

∂xl

)
= X l ∂y

k

∂xl
∂

∂yk

(
Y j ∂y

i

∂xj

)
− Y j ∂y

k

∂xj
∂

∂yk

(
X l ∂y

i

∂xl

)
= X l ∂

∂xl

(
Y j ∂y

i

∂xj

)
− Y j ∂

∂xj

(
X l ∂y

i

∂xl

)
= X l ∂Y

j

∂xl
∂yi

∂xj
+X lY j ∂nyi

∂xl∂xj
− Y j ∂X

l

∂xj
∂yi

∂xl
− Y jX l ∂nyi

∂xj∂xl

= X l ∂Y
j

∂xl
∂yi

∂xj
− Y l ∂X

j

∂xl
∂yi

∂xj
=

[
X l ∂Y

j

∂xl
− Y l ∂X

j

∂xl

]
∂yi

∂xj
.

In total then, in the vector field [X,Y ] in the y-chart is

[X,Y ] =

[
X l ∂Y

j

∂xl
− Y l ∂X

j

∂xl

]
∂yi

∂xj
∂

∂yi
.

But we see that this is equivalent to the expression in the x-chart. Therefore the definition
produces a well-defined vector field.

There are of course many things that can be said about the Lie bracket. The first observation is
that it is R-bilinear and antisymmetric: [aX+ bX̃, Y ] = a[X,Y ]+ b[X̃, Y ] and [X,Y ] = −[Y,X].
If you have two coordinate vector fields, then their Lie bracket is zero. Thus one interpretation of
the Lie bracket is that it is a measurement of how far two vector fields are from being coordinate
vector fields. The final property that we will give is a product rule: if f is a function, then

[X, fY ] = X(f)Y + f [X,Y ],

[fX, Y ] = −[Y, fX] = −Y (f)X − f [Y,X] = f [X,Y ]− Y (f)X.

Example 2.37 (Euclidean Space). We give some euclidean examples. Consider the plane
R2. Let X = ∂1 and Y = ∂2. Then plugging in the definitions

[X,Y ] = X(Y i)∂i − Y (Xi)∂i = X(1)∂2 − Y (1)∂1 = 0.

Next consider V = (1 + x2)∂1. Then

[V, Y ] = V (1)∂2 − Y (1 + x2)∂1 = −∂1.

Finally, set W = x2∂1 − x1∂2. then

[V,W ] = V (x2)∂1−V (x1)∂2−W (1+x2)∂1 = 0−(1+x2)∂2−(0−x1)∂1 = −(1+x2)∂2+x
1∂1.


