
Chapter 1

Curves and Surfaces in R3

The study of curves and surfaces have a long history in mathematics and have been some of the
principal objects of study. In the classical era, we are all familiar with the Euclid’s elements
with its emphasis on parallel lines, straightedge constructions, triangles, and proportions. These
are not very curvy, but perhaps this is because his work on conics (circles, ellipses, parabolas,
and hyperbolas) is lost. But surviving works of Archimedes (Measurement of a Circle, On the
Sphere and Cylinder, Quadrature of the Parabola) and Apollonius show that curves were a topic
of interest and understood in this time.

Though were was some development in the middle ages, particularly in connection with the cubic
equation (Khayyam, Viète), and also indirectly in map making (Mercator), general curves were
not really considered until the arrival of Cartesian coordinates in the 17th century. A notable
early application of this newfound analytical power is seen in the solution to the brachistochrone
curve. This problem, posed by Johann Bernoulli in 1696, challenged mathematicians to find the
curve along which an object influenced only by gravity would travel between two points in the
least amount of time. According to his niece Newton solved the problem literally overnight using
tangents and analysis-type reasoning. In the generations that follow there was an explosion in
the search for finding curves with various special properties.

In the 18th and 19th centuries the tools of calculus were turned to the study of surfaces, notably
with Euler and Gauss exploring different notions of curvatures. A natural question of Lagrange,
asking for the surfaces with the least area, had to wait until non-trivial examples could be found
which gave hints towards general methods.

But perhaps the most important contribution, and the most important for us in this course, was
that of Riemann. All previous mathematicians, as we will do in this first chapter, considered
curves and surfaces inside regular old euclidean three dimensional space. Riemann (1868) gave
the definition for abstract spaces, which he called manifolds. This definition splits the prop-
erties of a space into two type: intrinsic (depending only on the abstract space) and extrinsic
(depending how that object is positioned in space). For example, consider two points on a piece
of paper. The distance between those points along the paper does not depend on whether the
piece of paper is laid flat or bent in an arch, whereas the distance through space clearly does. The
former is an intrinsic property and the latter extrinsic. This program was carried to completion
by the ‘Italians’, who we will meet in later chapters, by around 1900. This was just in time (or
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2 CHAPTER 1. CURVES AND SURFACES IN R3

possibly a precondition) for Einstein to use differential geometry in its mature form as a basis
the general theory of relativity: our universe is a manifold.

That’s enough history; let’s see it in action.

1.1 Space Curves and Length

Remark 1.1. In this chapter, and throughout this script unless otherwise stated, we will assume
that parameterisations are smooth and injective.

Definition 1.2. A curve is a smooth function α : (a, b) →M , for some target space M . A path
is the restriction of a curve to a closed interval [ã, b̃] ⊂ (a, b).

We begin with the example of a helix α : R → R3

α(t) = (a cos t, a sin t, bt),

for constants a, b that describe the size and steepness. In this chapter we will generally consider
a parameterised curve α : [a, b] → R3, called a space curve. Sometimes we will distinguish a
parameterised curve α from an un-parameterised curve imgα, but other times not. A suitable
first question for this curve is to determine its length (or more specifically, the length of any
segment of it). In turn, we then must ask how to define the length of a curve. We know
how to calculate the distance between points in R3, so an approximation would be to choose
points on the curve, compute the distance between those points, and then add up to total. This
approximation will be less than the length, because we are ‘cutting corners’. But as we take
more and more points into our approximation, it should approach the true value. This leads to

Definition 1.3. The length of a path α : [a, b] → R3 is

L(α) = sup

{
m−1∑
i=0

dist(α(ti), α(ti+1)) | m ∈ N, a = t0 ≤ t1 ≤ · · · ≤ tm = b

}
.

Let’s see if we can use this definition to compute one turn of the helix, t ∈ [0, 2π]. The key part
of the calculation is the distance between points

dist(α(s), α(t))2 = (a cos s− a cos t)2 + (a sin s− a sin t)2 + (bs− bt)2

= a2(2− 2 cos s cos t− 2 sin s sin t) + b2(s− t)2

= a2(2− 2 cos(s− t)) + b2(s− t)2

= 4a2 sin2 1
2(s− t) + b2(s− t)2.

This only depends on the difference in parameter values s − t. Thus if we break choose the
points ti to be equally space between 0 and 2π in terms of the parameter, each term of the sum
will be the same. For this choice we have

m−1∑
i=0

dist(α(ti), α(ti+1)) = m×
√

4a2 sin2 π
m + b2

(
2π
m

)2
=
√
4a2m2 sin2 π

m + 4π2b2.

Taking the limit as m→ ∞ gives
√
4π2a2 + 4π2b2 = 2π

√
a2 + b2.
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Exercise 1.4. Complete the proof that this is the length, by showing it is an upper bound.

Though the calculation was straightforward from this example, we should a develop a better
method to calculate the length. What we see is that the length will be given by the sum of
many small pieces, which should remind you of an integral. Indeed

Theorem 1.5 (Speed). Let α : [a, b] → R3 be a continuously differentiable function. Then

L(α) =

∫ b

a
∥α′(t)∥ dt .

Although it appears we have a simple way to calculate the length of any path, be aware that this
integral is often not elementary, with the square root in the norm of the vector being the culprit.
This means we must resort to methods to approximate the integral (numerical integration). An
example of these difficulties is the length of an ellipse.

Proof. We first show L(α) ≤
∫ b
a ∥α′(t)∥ dt. Consider therefore a partition a = t0 ≤ t1 ≤ . . . ≤

tm = b of the interval. We have then the inequality

m−1∑
k=0

dist(α(tk), α(tk+1)) =

m−1∑
k=0

∥α(tk+1)− α(tk)∥ =

m−1∑
k=0

∥∥∥∥∫ tk+1

tk

α′(t) dt

∥∥∥∥
≤

m−1∑
k=0

∫ tk+1

tk

∥α′(t)∥ dt =
∫ b

a
∥α′(t)∥ dt.

Because L(α) is the supremum over all partitions, this gives an upper bound for L(α). This
same argument shows that for the restriction of the curve α|[t1,t2] (with a ≤ t1 < t2 ≤ b) we have

(∗) L(α|[t1,t2]) ≤
∫ t2

t1

∥α′(t)∥ dt.

Consider now the following two functions

s : [a, b] → R, t 7→ L(α|[a,t])

s̃ : [a, b] → R, t 7→
∫ t

a
∥α′(u)∥ du .

These are meant to capture the length at the parameter t from the start of the path, measured
in two ways. Our strategy to finish the proof is not to show the reverse inequality directly.
Rather we will show that these two functions are equal. Clearly they are equal at t = a.

Observe that s has the property that L(α|[t1,t2]) = s(t2) − s(t1), and likewise
∫ t
a ∥α

′(u)∥ du =
s̃(t2)− s̃(t1). Inequality (*) above then says s(t2)− s(t1) ≤ s̃(t2)− s̃(t1). It then follows that

∥α(t2)− α(t1)∥ = dist(α(t1), α(t2)) ≤ L(α|[t1,t2]) = s(t2)− s(t1) ≤ s̃(t2)− s̃(t1).

After dividing by t2 − t1, we arrive at∥∥∥∥α(t2)− α(t1)

t2 − t1

∥∥∥∥ ≤ s(t2)− s(t1)

t2 − t1
≤ s̃(t2)− s̃(t1)

t2 − t1
.
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When we take the limit as t2 → t1, the left and right terms both tend to ∥α′(t1)∥, by the
definition of derivative and the fundamental theorem of calculus respectively. By the squeeze
law s′(t) = s̃′(t) and therefore s(t) = s̃(t).

The function s in the above proof (using either definition) is called the arc-length function with
respect to the parameterisation α. We see that its derivative is ∥α′∥, which we call the speed of
the parameterisation. Clearly s is weakly monotonically increasing, since it it the integral of a
non-negative function. If it is strongly monotonically increasing, then it is a bijective function
from [a, b] to [0, L(α)]. In this case we can use it to give a new parameterisation of the same
path. The advantage of this new parameterisation is that to find the length between two points,
we can just subtract their parameter values. For obvious reasons this is called the arc-length
parameterisation of a curve.

Example 1.6. In the case of the helix, the speed is

α′(t) = (−a sin t, a cos t, b)

∥α′(t)∥ =
√
a2 + b2,

which is constant. The arc-length function is simply s(t) = t
√
a2 + b2, and the inverse is

t(s) = s/
√
a2 + b2. Hence the helix with arc-length parameterisation is

α(s) =

(
a cos

s√
a2 + b2

, a sin
s√

a2 + b2
,

bs√
a2 + b2

)
.

Note that it is common practice to reuse the name of the curve, even though strictly speaking
it is a new function, α̃ = α ◦ t(s).

Exercise 1.7. Reparameterise the following planar curves by arc-length:

a. The catenary α(t) = (t, cosh t, 0).

b. The astroid α(t) = (cos3 t, sin3 t, 0) for t ∈ (0, π/2).

c. The cardioid α(t) = (2(1− cos t) cos t, 2(1− cos t) sin t, 0).

The arc-length is an intrinsic property of the curve. One can imagine an ant crawling along a
piece of string, counting the distance as it goes. In fact this is the only intrinsic invariant for a
curve, though we do not yet have a clear definition of intrinsic, so we cannot yet prove this.

A sufficient condition that there exists an arc-length parameterisation is that ∥α′(t)∥ ≠ 0 for any
t. We say that a curve with such a parameterisation is regularly parameterised. This condition
also serves to rule out some other curves that have undesirable properties.

Example 1.8. Consider β(t) = (t2, t3). This is called the cusp curve. We have that ∥β′∥2 =
4t2+9t3, and in particular vanishes for t = 0. If you look at a plot of this curve, you see that
it has a cusp singularity at the origin. This is an example of a curve we would like to avoid.
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1.2 Osculating Circles

We have already identified ∥α′∥ with the speed of the parameterisation, but what is α′ itself?
Naturally it is the tangent vector and it spans the tangent line to the curve. Recall the tangent
line is the limit of the line that passes through the points α(t) and α(t + h) as h → 0. Let us
consider the generalisation of this to three points α(t), α(t+ h), α(t− h) as h→ 0. In R3, three
points span a plane, so long as they do not happen to all lie on the same line. The plane which
is the limit of these planes is called the osculating plane of the curve.

The key to describing the osculating plane is to find two linearly independent vectors that lie in
it. Clearly the tangent vector lies in it. The vectors α(t + h) − α(t) and α(t − h) − α(t) lie in
the plane, hence their sum does too. We compute

lim
h→0

α(t+ h)− 2α(t) + α(t− h)

h2
= lim

h→0

α(t+h)−α(t)
h − α(t)−α(t−h)

h

h
= α′′(t).

Thus the osculating plane is spanned by the first and second derivative. Moreover, if we use
the arc-length parameterisation the we know that the tangent vector always has length 1. If we
differentiate the equation α′ · α′ = 1 then we get α′′ · α′ = 0. In words, in this parameterisation
the first and second derivatives are an orthogonal basis of the osculating plane.

In fact we can extract even more information from this three point construction. Three points
determine not just a plane, but a circle within that plane. The limit of this circle as these three
points come together is called the osculating circle. We think of it as the ‘tangent circle’, just
like we have a tangent line.

How should we calculate the osculating circle? As for any circle, we should find its center
and radius. Conceptually we can find the center by considering the chords α(t + h) − α(t)
and α(t − h) − α(t), taking their perpendicular bisectors, and finding the intersection point.
Practically, the difficulty is writing down the perpendicular bisector. Let’s put this difficulty
aside for a moment, and suppose that we have an operator Rh that rotates by a right angle the
plane in spanned by the three points with origin α(t). Then the center is the intersection point:

c = α(t) +
1

2
(α(t+ h)− α(t)) + uh−1Rh(α(t+ h)− α(t))

= α(t) +
1

2
(α(t− h)− α(t))− vh−1Rh(α(t− h)− α(t)).

This is a vector equation in a plane, so u and v are determined by this equation. Really c, u
and v are functions of h, since for every h we have a different plane. Taking the limit h→ 0 we
obtain c(0) = α(t)+u(0)R0α

′(t), so the radius of the osculating circle is u(0)∥α′(t)∥. It remains
to find u(0).

Rearranging the intersection equation gives

α(t+ h)− α(t− h)

2
= −vh−1Rh(α(t− h)− α(t))− uh−1Rh(α(t+ h)− α(t)).

If we just take the limit h→ 0 we see that

0 = −v(0)R0(−α′(t))− u(0)R0(α
′(t)).
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Since α′(t) ̸= 0 it must be that u(0) = v(0) (this justifies the choice of sign and the h−1 in the
equations of the bisectors). If we instead first divide by h and then take the limit, we obtain

α′(t) = − lim
h→0

vRh
α(t− h)− α(t)

h2
+ uRh

α(t+ h)− α(t)

h2

= − lim
h→0

(v − u)Rh
α(t− h)− α(t)

h2
+ uRh

α(t− h)− α(t) + α(t+ h)− α(t)

h2

= − lim
h→0

v − u

h
Rh

α(t− h)− α(t)

h
+ uRh

α(t− h)− 2α(t) + α(t+ h)

h2

= −(v′(0)− u′(0))R0(−α′(t)) + u(0)R0α
′′(t).

Dot product both sides with α′(t):

α′(t) · α′(t) = u(0)α′(t) ·R0α
′′(t)

u(0) =
α′(t) · α′(t)

α′(t) ·R0α′′(t)

Thus we have determined u(0), up to the rotation operator R0. If the curve is parameterised
by arc-length, then ∥α′∥ = 1, so the radius of the osculating circle is u(0). Moreover α′′ is
perpendicular to α′, so α′(t) ·R0α

′′(t) is just the length of α′′. In summary we have proved

Theorem 1.9 (Curvature). For a regular arc-length parameterised curve α, the radius of the
osculating is κ−1, where

κ(s) =

∥∥∥∥d2αds2
∥∥∥∥ ,

a quantity called the curvature. The radius of the osculating circle is also called the radius of
curvature.

Example 1.10. Let’s apply this to the helix. We use the arc-length parameterisation

α(s) =

(
a cos

s√
a2 + b2

, a sin
s√

a2 + b2
,

bs√
a2 + b2

)
α′(s) =

1√
a2 + b2

(
−a sin s√

a2 + b2
, a cos

s√
a2 + b2

, b

)
α′′(s) = − a

a2 + b2

(
cos

s√
a2 + b2

, sin
s√

a2 + b2
, 0

)
κ(s) =

a

a2 + b2
.

Consider the special case b = 0, then our helix is a circle and the curvature is a−1. Increasing
a decreases the curvature and vice versa. This matches our intuition, a car driving on a large
circle only needs to turn slowly. For the general case, we see that increasing either a or b
decreases curvature. We also see that α′′ points towards the central axis of the helix.

Exercise 1.11. Notice in the above argument that the rotation operator Rh is defined as a
rotation of the plane spanned by the three points and only applied to vectors that lie that
plane. We could extend Rh to a linear operator on R3 by declaring that it preserves vectors
perpendicular to the plane. Then the operator can be applied to any vector. Simplify the
above calculation by using this observation and the second order Taylor polynomial α(t+ h) =
α(t) + hα′(t) + 1

2h
2α′′(t) +O(h3).
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Exercise 1.12. Suppose that α is a regular curve but do not assume that it is parameterised
by arc-length. Show that the curvature can be calculated with the formula

κ(t) =
∥α′(t)× α′′(t)∥

∥α′(t)∥3
.
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1.3 Frenet-Serret Equations

Let us return to our thought experiment of an ant on a piece of string. The ant cannot see the
curvature of a piece of string. If the string was a helix, but then you straighten it out into a line,
none of the distances along the string have changes. Therefore it must be that curvature is an
extrinsic property of the curve. But the curvature is invariant under proper euclidean motions
(translations and rotations). This is easy to prove, if β(s) = Oα(s) + b where O is a rotation
and b is a vector, then ∥β′(s)∥ = ∥Oα′(s)∥ = 1 shows that β is also parameterised by arc-length
and β′′(s) = Oα′′(s) shows that the curvatures are equal, because rotation does not change the
length of a vector.

It turns out for curves in R3 up to proper euclidean motions there are only two extrinsic prop-
erties: curvature and torsion. The goal of this section is to find the torsion and prove that there
are no other extrinsic invariants.

We have seen that for an arc-length parameterised curve, the first and second derivatives form an
orthogonal basis of the osculating plane. It is customary to normalise them to an orthonormal
basis. T (s) := α′(s) is already unit length and we set N(s) := κ(s)−1α′′(s). They are called the
unit tangent and unit normal vectors respectively. Additionally we define B(s) = T (s)×N(s),
called the unit binormal vector, so that we have an orthonormal basis of R3. This basis is
also known as the Frenet frame. We can also recover a curve given knowledge of this basis by
integrating T (s), up to a translation

α(s) =

∫ s

a
T (u) du+ α(a).

The advantage of using a basis that comes from the curve, is that if the curve is rotated, this
basis is rotated too. If we use this basis to measure the curve, then we are using the curve to
measure itself. We have seen this already in the fact that the curvature can be computed as the
length of the second derivative. Let us then investigate the derivatives of the other basis vectors.
All these vectors are unit length, so they are perpendicular to their derivatives, eg N · N = 1
implies 2N ·N ′ = 0. Further

0 = T ·N ⇒ 0 = T ′ ·N + T ·N ′ = κ+ T ·N ′

0 = T ·B ⇒ 0 = T ′ ·B + T ·B′ = 0 + T ·B′

0 = N ·B ⇒ 0 = N ′ ·B +N ·B′.

From the second equation, we see that B′ is perpendicular to T as well as B. Therefore it is a
scalar of N .

Definition 1.13. The torsion τ of a curve is defined by the formula B′(s) = −τ(s)N(s). The
minus sign is the most common convention, but be aware some authors choose the opposite sign.

The binormal B is perpendicular to the osculating plane and the tangent vector is always in it.
Therefore the torsion tells us how quickly the osculating plane is rotating around the tangent
vector. For a curve that lies entirely in a plane, the torsion is zero.
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Example 1.14. For the helix, we already know

T (s) =
1√

a2 + b2

(
−a sin s√

a2 + b2
, a cos

s√
a2 + b2

, b

)
N(s) = −

(
cos

s√
a2 + b2

, sin
s√

a2 + b2
, 0

)
.

Therefore

B(s) =
1√

a2 + b2

(
b sin

s√
a2 + b2

,−b cos s√
a2 + b2

, a

)
.

We should now differentiate this

B′(s) =
b

a2 + b2

(
cos

s√
a2 + b2

, sin
s√

a2 + b2
, 0

)
.

As expected, this is a scalar multiple of the normal vector. We can read off the torsion

τ(s) =
b

a2 + b2
.

Helices with b > 0 and b < 0 are mirror images of one another. Ones that have b > 0 are called
right-handed, in accordance with the ‘right hand rule’. Here we see that our sign convention
of torsion gives right-handed helices positive torsion and left-handed helices negative torsion.

We were not yet done with the derivatives of the basis vectors. From the third equation, we
have N ′ · B = −N · (−τN) = τ and from the first N ′ · T = −κ. Thus N ′(s) = −κT + τB.
Together these derivatives are called the Frenet-Serret formulas

d

ds

TN
B

 =

 κN
−κT + τB

−τN

 =

 0 κ 0
−κ 0 τ
0 −τ 0

TN
B


Theorem 1.15 (Local uniqueness of curves). Let α, β be two smooth regular arc-length pa-
rameterised curves in R3 with the same curvature and torsion. For simplicity assume that the
curvature is always positive. Then there is a proper euclidean motion (translation and rotation)
that takes one to the other.

Proof. Both bases {Tα(0), Nα(0), Bα(0)} and {Tβ(0), Nβ(0), Bβ(0)} are right-handed orthonor-
mal bases of R3. Therefore there is a rotation O that transforms one into the other. Let
b = β(0) − Oα(0). Define γ(s) = Oα(s) + b. It is also arc-length parameterised and γ(0) =
Oα(0) + β(0) − Oα(0) = β(0). Moreover, it has the same curvature and torsion as α and
β. By differentiating, we have Tγ(0) = OTα(0) = Tβ(0) and κγNγ = καONα, which implies
Nγ(0) = ONα(0) = Nβ. By the definition of binormals, Bγ(0) = Bβ(0).

It remains to show that β(s) = γ(s) for all s. We give two proofs of this fact. The first lies in
the observation that the Frenet-Serret formulas are in fact a nine-dimensional system of ODEs
(three coordinates for each of the three vectors). By Picard-Lindelöff we know that the initial
value problem, which both β and γ satisfy, has a unique solution. In particular Tβ(s) = Tγ(s)
for all s. But we can integrate this to see that β(s) = γ(s) + c for some constant c. Evaluation
at s = 0 shows that c = 0.
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We can also use apply the Frenet-Serret formulas directly to show uniqueness

1

2

d

ds

(
∥Tβ − Tγ∥2 + ∥Nβ −Nγ∥2 + ∥Bβ −Bγ∥2

)
= (Tβ − Tγ) · (T ′

β − T ′
γ) + (Nβ −Nγ) · (N ′

β −N ′
γ) + (Bβ −Bγ) · (B′

β −B′
γ)

= (Tβ − Tγ) · κ(Nβ −Nγ) + (Nβ −Nγ) ·
(
− κ(Tβ − Tγ) + τ(Bβ −Bγ)

)
+ (Bβ −Bγ) · (−τ)(Nβ −Nγ)

= 0.

Therefore the sum of squares of the differences is constant. Because it is zero at s = 0, it must
stay zero for all s. In particular, the tangent vectors are equal. The argument can be finished
similarly to the other proof.

This shows that a curve is uniquely determined in R3 up to proper euclidean motion by κ and
τ . This proves our assertion that these are the only two invariants. Thus the only curves whose
curvature and torsion are constant functions are helices. As a special case, the circle is the only
curve in the plane with constant curvature (torsion is zero).

In the first half of this chapter dealing with curves, we have already seen several important
themes. First there is the difference between intrinsic and extrinsic quantities. Second is the
use of special coordinates, in this case arc-length parameterisations. And finally is the idea of
measuring the change of vector fields to learn about a space. All three of these ideas will occur
repeatedly throughout this course.

Exercise 1.16. Show for a helix

a =
κ

κ2 + τ2
, b =

τ

κ2 + τ2
.
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1.4 Surfaces

In the second half of this chapter, we consider the example of the helicoid Φ : R2 → R3

Φ(u, v) = (u cos v, u sin v, bv).

We see that for any fixed value of u that we have a helix. Conversely, for any fixed value of v we
have a straight line in a plane with z = bv. Surfaces which are ‘made up of’ straight lines are
called ruled surfaces and were a major topic of study in the theory of surfaces, though we will
not go too far down that path. We will also use Φ to represent a general parameterised surface
from an open subset U ⊂ R2 in R3. Again, we blur the distinction between a parameterised
surface Φ and an un-parameterised surface Σ = imgΦ.

We will try to reproduce many of the useful tools for curves in the situation of surfaces. Given
a curve α̃ in U , that is a function α̃ : (a, b) → U , we can compose it with Φ to get a curve on R3

on the surface. We will call this curve α = Φ ◦ α̃ a space curve and α̃ a curve in coordinates if
it necessary to distinguish them. The helices and straight lines of the previous sections are then
α̃v(t) = (t, v) and β̃u(t) = (u, t). The tangent vector of a general curve Φ ◦ α̃ on the surface can
be computed using the chain rule

d

dt
(Φ ◦ α̃) = ∂Φ

∂u

dα̃1

dt
+
∂Φ

∂v

dα̃2

dt
=
(

∂Φ
∂u | ∂Φ

∂v

)
α̃′.

In this way we see that ∂Φ
∂u and ∂Φ

∂v are a basis for the tangent vectors to the surface, called the
coordinate basis vectors.

There are two considerations to make now. Just as we restrict ourselves to regular curves, so
too should we restrict ourselves to regular surfaces.

Definition 1.17. A parameterised surface Φ : U → R3 is called regular if JΦ (the Jacobian of
Φ, the matrix of partial derivatives) has rank two at every point. Equivalently, if the vectors ∂Φ

∂u

and ∂Φ
∂v are linearly independent.

The relation to regular curves should be clear. If the two vectors are linearly dependent at some
point Φ(c1, c2), i.e. w1 ∂Φ

∂u +w2 ∂Φ
∂v = 0, then the curve α̃(t) = (w1t+ c1, w2t+ c2) would produce

a curve α on the surface that was not regular.

The second consideration would be to try to make an ‘arc-length’ parameterisation. However this
is not possible for a surface, for deep reasons that we will explore in the chapter on curvature. For
now we can gain a simple understanding through a thought experiment on the sphere. Suppose
that there existed a parameterisation like longitude-latitude coordinates on the unit sphere, but
instead of angle it used distance. Choose a point on the equator. We can walk the distance π
east along a latitude. This is half-way around the sphere. Then we can go a short distance ε
north, walk distance π west, and then ε south. In the coordinate chart, this is a rectangle and
we are back where we started. But on the sphere, the line of latitude north of the equator is
shorter than the equator, so when we walked a distance π on it, we walked too far. At the end
we ended up west of our starting point. You have probably already experienced this problem,
because no map of the earth can represent the distances correctly to scale. Some maps represent
the distances accurately in one direction (cylindrical equidistant projection preserves distance
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on lines of longitudes, azimuthal equidistant projection preserves distance on radial lines), but
most maps do not try to represent distance at all and instead try to preserve angle or area.

So if we can’t find a parameterisation of a surface that is arc-length in every direction, what data
do we need to be able to calculate angle and distance in a given parameterisation? We know
from Theorem 1.5 that to calculate length of a curve we only need the length of the tangent
vectors. In R3 both the length of vectors and the angle between two vectors is given by the dot
product

∥v∥ =
√
v · v, ang(v, w) =

v · w
∥v∥ ∥w∥

.

Abstractly the dot product is an example of an inner product: a function on pairs of vectors that
is bilinear, symmetric, and positive definite. The restriction of an inner product to a subspace
is again an inner product. Thus we can restrict the inner product of R3 (the dot product)
to an inner product on the tangent space of the surface at any point. This is called the first
fundamental form. It has the symbol I or g. The word ‘form’ is an old fashioned term for a
function from vectors to scalars, which still appears in certain names.

Practically, how can we describe g at some point? We know that every tangent vector to the
surface is in the span of ∂Φ

∂u and ∂Φ
∂v . So we compute

g
(
v1 ∂Φ∂u + v2 ∂Φ∂v , w

1 ∂Φ
∂u + w2 ∂Φ

∂v

)
= v1w1g

(
∂Φ
∂u ,

∂Φ
∂u

)
+ v1w2g

(
∂Φ
∂u ,

∂Φ
∂v

)
+ v2w1g

(
∂Φ
∂v ,

∂Φ
∂u

)
+ v2w2g

(
∂Φ
∂v ,

∂Φ
∂v

)
=
(
v1 v2

)(∂Φ
∂u · ∂Φ

∂u
∂Φ
∂u · ∂Φ

∂v
∂Φ
∂v · ∂Φ

∂u
∂Φ
∂v · ∂Φ

∂v

)(
w1

w2

)
=: vT

(
g1 1 g1 2
g2 1 g2 2

)
w.

This is called writing g with respect to the coordinate basis. The symmetry of the dot product
means that gi j is a symmetric matrix, g1 2 = g2 1. The point here is not that we have some
short-cut to avoid taking dot products; when you are doing an example it will often be fast to
use the dot product in R3. The point is that we only need part of the information of the dot
product of R3, namely how it acts on the tangent space of the surface, to compute lengths and
angles on the surface. We are trying to separate intrinsic information from extrinsic information.
If we allow the point on the surface to vary, then we obtain functions gi j(u, v) : U → R.

Remark 1.18. Observe here that vi and wi have superscripts instead of subscripts: these are
not powers! This is part of a larger notational convention in the field. It’s a little annoying
at first, especially when you have to write (v2)2, but it’s worth it in the long run. Roughly
speaking, coordinates and components of vectors should use superscripts, and forms should use
subscripts.

Example 1.19. For the helicoid, we have remarked that for constant v we have straight lines
u 7→ (u cos v, u sin v, bv), so

∂Φ
∂u = (cos v, sin v, 0).

Similarly we remarked that for constant u we have helices. We have already computed the
tangent vector of a helix, though it is simple enough to repeat it

∂Φ
∂v = (−u sin v, u cos v, b).
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With respect to this basis, we have

g1 1(u, v) =
∂Φ
∂u · ∂Φ

∂u = 1,

g1 2(u, v) = g2 1(u, v) =
∂Φ
∂u · ∂Φ

∂v = 0,

g2 2(u, v) =
∂Φ
∂v · ∂Φ

∂v = u2 + b2.

Notice that g1 2 is always zero for this example, so the coordinate basis vectors are perpen-
dicular at every point of the surface.

Let us introduce one more tool inspired by the previous sections before we dive into the geometry
of surfaces. We saw how useful the Frenet frame was, and it would be nice to have something
similar for surfaces. We already have two vectors that span the tangent space, although they
are not necessarily unit length or orthogonal. The cross product ∂Φ

∂u × ∂Φ
∂v is perpendicular to

both coordinate basis vectors and is non-zero because these vectors are linearly independent.
We define the surface normal ν to the unit length rescaling of this cross product.

Notice that there are two possible unit length vectors perpendicular to the tangent plane. Per
our definition, which one we choose comes down to which coordinate we call u and which we
call v. This is effectively the choice of an orientation for the surface, and we will refer to this
choice of sign of ν as the orientation. Intuitively this can be thought of as choosing one side of
the surface to be the ‘plus’ side. The choice of sign is determined if we think of ν as a function
in the coordinates, but it is potentially ambiguous if we think of it as a function from the un-
parameterised surface Σ. Fortunately, many definitions using ν do not depend on the sign or do
so only in a trivial way. Mirroring the notation for curves on the surface, we will use ν : Σ → R3

and ν̃ = ν ◦ Φ : U → R3 for the two closely related functions.

Finally, the output of ν is a unit length vector in R3. These are the points of the unit sphere
S2. It is customary therefore to write the target of ν as a sphere and not R3. Particularly when
we think of ν : Σ → S2 it is common to call it the Gauss map.

Example 1.20. We can compute the surface normal of the helicoid

∂Φ
∂u × ∂Φ

∂v = (b sin v,−b cos v, u)∥∥∂Φ
∂u × ∂Φ

∂v

∥∥2 = b2 + u2

ν̃ =
∂Φ
∂u × ∂Φ

∂v∥∥∂Φ
∂u × ∂Φ

∂v

∥∥ =
1√

b2 + u2
(b sin v,−b cos v, u).

Notice that this is basically the same formula as the binormal B of the helix. This is because
∂Φ
∂u is the negative of the normal of the helix, but we are also taking the cross product in the
other order.

The normal, or rather ∂Φ
∂u × ∂Φ

∂v , also gives a definition of surface area. The example of the
Schwarz lantern shows that for a surface unlike a curve, we cannot make a definition just by
taking straight line approximations. Instead we approximate a surface by the parallelogram
spanned by the coordinate vector basis. The area of this parallelogram is the length of the cross
product. Thus we make the definition that the surface area is

Area =

∫
U

∥∥∂Φ
∂u × ∂Φ

∂v

∥∥ du dv.
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1.5 Curvatures

But let us turn to our main focus: curvature. We want to use curves on the surface to say
something about the curvature of the surface itself. But this is not as simple as it might first
appear. Consider the example of a plane. This is a surface that has no curvature (by any
reasonable definition). But we can take circles of any size in the plane, and therefore there are
curves with any amount of curvature. The question is how to distinguish curvature that arises
because of the choice of curve from curvature that is forced by the surface itself. The answer is
to define the normal curvature of a curve on a surface and prove Meusnier’s theorem.

Definition 1.21. Let α = Φ ◦ α̃ be a curve on a regular surface Σ with normal ν. Suppose that
α is parameterised by arc-length as a curve in R3. The normal curvature is κn := α′′ · ν.

Recall that for an arc-length parameterised curve α′′ = κN , where N is the normal of the curve.
So the normal curvature is κ cos θ for θ the angle between the normal of the curve and the
normal of the surface. This shows that the normal curvature is at most the curvature. There is
also the possibility of a sign, but this depends on the choice of orientation.

Example 1.22. We mentioned already the case of a plane Σ, of which Φ(u, v) = (u, v, 0) is
an example. The normal to the surface is ν = (0, 0, 1), which is constant with respect to the
point on the surface. Since Σ is a plane, it must be the osculating plane of every curve on it.
Hence N is always perpendicular to ν, and the normal curvature of every curve is zero.

Example 1.23. Next we consider a sphere of radius R. Let’s argue geometrically so we don’t
have to do any calculations. Consider the curve which is the equator of the sphere. It is a
circle in the plane z = 0, so this plane is its osculating plane and the circle is its osculating
circle. Its curvature is κ = R−1. The normal of the curve is unit vector that points towards
the center of the sphere. The normal of the surface is the unit vector points either towards or
away from the center of the sphere. Therefore the normal curvature of the equator is ±R−1.
This argument applies not just to the equator, but to any great circle of the sphere.

Example 1.24. Our main example for this chapter is the helicoid, so of course we must
examine its normal curvatures. We have considered two special sets of curves on the helicoid:
the helices and the radial lines. The radial lines are lines, and so have zero curvature. Thus
their normal curvature is also zero. The helix αu(t) = (u cos t, u sin t, bt) has curvature u(u2+
b2)−1. But the normal of this curve is −∂Φ

∂u , as we remarked upon in Example 1.20 and
therefore the dot product with the surface normal is zero. This shows that the helices also
have zero normal curvature in the helicoid.

Let us examine several curves at once, all of which pass through the point Φ(1, 0) = (1, 0, 0).
Consider

α(t) = Φ(w1t+ 1, w2t) =
(
(w1t+ 1) cos(w2t), (w1t+ 1) sin(w2t), bw2t

)
.

There is not a nice arc-length parameterisation for this curve. Indeed

α′(t) = w1 ∂Φ
∂u + w2 ∂Φ

∂v

= w1
(
cos(w2t), sin(w2t), 0

)
+ w2

(
− (w1t+ 1) sin(w2t), (w1t+ 1) cos(w2t), b

)
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shows that the length of the tangent vector of this curve is quite a complicated function.
However, we are mainly interested in the behaviour at the point with t = 0, where

α′(0) =
(
w1, w2, w2b

)
.

We can simplify the calculations a little if we choose the constants w1, w2 such that this is a
unit length. That means ∥α′(0)∥2 = (w1)2 + (w2)2(1 + b2) = 1. The osculating plane of the
curve is spanned by the first and second derivatives, regardless of the parameterisation, since

(1.25)
d2α

dt2
=

d

dt

(
∥α′∥T

)
=
dt

ds

d

ds

(
∥α′∥T

)
= ∥α′∥

(
d∥α′∥
ds

T + ∥α′∥κN
)
.

In fact, with this formula we almost have the answer, because T is orthogonal to the surface
normal ν. Taking the dot product on both sides

α′′ · ν = ∥α′∥2κN · ν = ∥α′∥2κn.

Thus it only remains to carry out this calculation, using the surface normal N from Exam-
ple 1.20:

α′′(t) = 2w1w2
(
− sin(w2t), cos(w2t), 0

)
− (w2)2

(
(w1t+ 1) cos(w2t), (w1t+ 1) sin(w2t), 0

)
α′′(0) =

(
− (w2)2, 2w1w2, 0

)
ν̃(0, 1) =

1√
1 + b2

(0,−b, 1)

κn = ∥α′(0)∥−2α′′(0) · ν̃(0, 1) = 1√
1 + b2

(
0− 2bw1w2 + 0

)
=

−2b√
1 + b2

w1w2.

This last example shows that the calculation for the normal curvature is not too bad. But we
can simplify the calculation in such a way that we don’t even have to calculate α′′! Consider
any curve α on the surface Σ. Because the surface normal is unit length, if we differentiate
ν(α(t)) · ν(α(t)) = 1 we obtain

2ν · d
dt

(
ν(α(t))

)
= 0.

Therefore the derivative of the surface normal lies in the tangent plane. First we do a little
parameter function shuffle: ν ◦ α = ν ◦ Φ ◦ α̃ = ν̃ ◦ α̃. Now when we apply the chain rule the
‘middle’ stage is the coordinate chart U ⊂ R2:

d

dt

(
ν(α(t))

)
=

d

dt

(
ν̃(α̃(t))

)
=
∂ν̃

∂u

dα̃1

dt
+
∂ν̃

∂v

dα̃2

dt

Likewise we know that along the curve α′(t) · ν(α(t)) = 0, so we can differentiate this relation
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and obtain

κn = ∥α′∥−2 α′′ · ν = −∥α′∥−2 α′ · d
dt

(
ν(α(t))

)
= −∥α′∥−2

(
∂Φ

∂u

dα̃1

dt
+
∂Φ

∂v

dα̃2

dt

)
·
(
∂ν̃

∂u

dα̃1

dt
+
∂ν̃

∂v

dα̃2

dt

)
= ∥α′∥−2

(
dα̃1

dt
dα̃2

dt

)(−∂Φ
∂u · ∂ν̃

∂u −∂Φ
∂u · ∂ν̃

∂v

−∂Φ
∂v · ∂ν̃

∂u −∂Φ
∂v · ∂ν̃

∂v

)(
dα̃1

dt
dα̃2

dt

)
This matrix defines the second fundamental form on the tangent plane of the surface, notated
with II or h. We have proved

Theorem 1.26 (Meusnier). All curves on a regular surface Σ having at some point the same
tangent vector w have at that point the same normal curvature. Their normal curvature is given
by

κn = g(w,w)−1h(w,w).

Because of this theorem it makes sense speak of the normal curvature κn(w) of a surface in a
direction w. For this reason we say that the normal curvature is telling us something about the
curvature of the surface itself, rather than the curves on the surface.

Exercise 1.27. Prove the follow corollaries of Meusnier’s theorem. Try as much as possible to
argue geometrically rather than relying on calculation. Fix a tangent vector w to the regular
surface Σ and let κn be the normal curvature in this direction.

a. Consider the plane P spanned by w and ν. Argue that the intersection Σ ∩ P is a curve
with tangent vector w whose curvature is |κn|.

b. Extend this argument to show that for every κ ≥ |κn| there is a curve ακ with tangent
vector w and curvature κ.

c. Argue that the union of the osculating circles of every curve with tangent vector w form
a sphere with radius κ−1

n .

Let us investigate the second fundamental form a little more. We know that ∂Φ
∂u · ν̃ = ∂Φ

∂v · ν̃ = 0.
Differentiating these with respect to the coordinates u and v give the relations

∂2Φ

∂u∂u
· ν̃ + ∂Φ

∂u
· ∂ν̃
∂u

= 0 h1 1 =
∂2Φ

∂u∂u
· ν̃,

∂2Φ

∂u∂v
· ν̃ + ∂Φ

∂u
· ∂ν̃
∂v

= 0 h1 2 =
∂2Φ

∂u∂v
· ν̃,

∂2Φ

∂v∂u
· ν̃ + ∂Φ

∂v
· ∂ν̃
∂u

= 0 h2 1 =
∂2Φ

∂u∂v
· ν̃ = h1 2,

∂2Φ

∂v∂v
· ν̃ + ∂Φ

∂v
· ∂ν̃
∂v

= 0 h2 2 =
∂2Φ

∂v∂v
· ν̃.

Not only do these relations give an easier method to calculate h, but they show that the second
fundamental form is a symmetric bilinear form. We have already seen in Example 1.24 that the
normal curvature can be both positive and negative for different directions at the same point,
therefore the second fundamental form is not positive definite in general.
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Example 1.28. We use these formulas to calculate the second fundamental form of the
helicoid. Recall

∂Φ
∂u =

(
cos v, sin v, 0

)
∂Φ
∂v =

(
− u sin v, u cos v, b

)
ν̃ =

1√
b2 + u2

(b sin v,−b cos v, u)

so

∂2Φ
∂u∂u =

(
0, 0, 0

)
∂2Φ
∂u∂v =

(
− sin v, cos v, 0

)
∂2Φ
∂v∂v =

(
− u cos v,−u sin v, 0

)
.

Hence

h1 1 =
∂2Φ

∂u∂u
· ν̃ = 0

h1 2 = h2 1 =
∂2Φ

∂u∂v
· ν̃ =

−b√
b2 + u2

h2 2 =
∂2Φ

∂v∂v
· ν̃ = 0.

The fact that h1 1 = h2 2 = 0 explains the behaviour in Example 1.24 that the normal curvature
in the direction of the coordinate basis vectors was zero. Indeed, we easily reproduce the result
from that example for any point on the helicoid not just (1, 0, 0):

κn = g(w,w)−1h(w,w) = 1
(
w1 w2

)( 0 −b√
b2+u2

−b√
b2+u2

0

)(
w1

w2

)
=

−2b√
b2 + u2

w1w2

for all w with g(w,w) = (w1)2 + (u2 + b2)(w2)2 = 1.

The formula for the normal curvature shows that it is invariant under rescaling of the tangent
vector w. The geometric explanation is of course that the normal curvature was defined using an
arc-length parameterised curve. This motivates us to consider at each point of the surface the
normal curvature as a function of unit-length tangent vectors. The set of unit-length tangent
vectors is a circle in the tangent plane. So we have a continuous function from a circle to R,
hence it must have a maximum and minimum. Actually this function is extremely well-behaved

Theorem 1.29 (Euler). Fix a point on a regular surface Σ and let κ1 be the maximum of
the normal curvatures and κ2 the minimum. Let e1 be a unit-length tangent vector such that
κn(e1) = κ1. Let e2 be a unit-length tangent vector perpendicular to e1. Then for any unit-length
tangent vector w = cosφe1 + sinφe2 the normal curvature is

κn(w) = κ1 cos
2 φ+ κ2 sin

2 φ.

There are some special cases to observe. If the normal curvature is constant at a point, such as
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for the sphere, then this formula still works, as κ1 cos
2 φ + κ1 sin

2 φ = κ1. Points where this is
the case are called umbilic points. For umbilic points, every direction can be chosen for e1. If
the normal curvature is not constant at a point, then we see that the maximum and minimum
occur exactly twice, φ = 0, π for the maximum and φ = π/2, 3π/2 for the minimum. Essentially
there is one maximum and one minimum direction (up to sign) and they are perpendicular to
one another. They are called the principal directions and κ1, κ2 are call the principal curvatures.

Proof. Let e1, e2, w be as in the statement of the theorem. We expand using bilinearity and
symmetry

h(w,w) = κ1 cos
2 φ+ 2h(e1, e2) cosφ sinφ+ h(e2, e2) sin

2 φ.

Taking the derivative with respect to φ gives

dh(w,w)

dφ

∣∣∣∣
φ=0

= 0 + 2h(e1, e2)(0 + 1) + 0.

Thus e1 is a maximum point only if h(e1, e2) = 0. Further

h(w,w) = κ1 cos
2 φ+ h(e2, e2) sin

2 φ ≥ h(e2, e2) cos
2 φ+ h(e2, e2) sin

2 φ = h(e2, e2).

again using that κ1 is the maximum value. This shows that h(e2, e2) = κ2 is the minimum
normal curvature.

Remark 1.30. The proof shows, particularly the part where h(e1, e2) = 0, that in this orthonor-
mal basis e1, e2 that the second fundamental form is diagonalised with the principal curvatures
on the diagonal.

Remark 1.31. Suppose that you have a curve α in a principal direction and you investigate the
derivative of the surface normal ν(α(t)). Then it transpires that this derivative, which must lie
in the tangent plane, is in the principal direction. This is an alternative method of characterising
principal directions, and perhaps the more common one in textbooks.

Example 1.32. For the plane and the sphere of radius R, the normal curvature is constant
and equal at every point, respectively 0 and R−1.

Example 1.33. For the helicoid we have already computed the normal curvature function,
but we have not determined the principal curvatures and directions. Write a unit-length
vector as w1 = cosϕ,w2 = 1√

u2+b2
sinϕ with respect to the coordinate vector basis. Then

κn =
−2b

u2 + b2
cosϕ sinϕ =

−b
u2 + b2

sin(2ϕ) =
b

u2 + b2
cos(2φ) =

b

u2 + b2

(
cos2 φ− sin2 φ

)
,

for ϕ = φ − π/4. Therefore we see that the principal curvatures of the helicoid are ± b
u2+b2

,
and the principal directions are half-way between the helix and radial directions.

If this were a course purely about curves and surfaces, we would spend a lot more time here
investigating special surfaces. For example, the only surfaces where every point is umbilic are
(all or parts of) the plane or the sphere. One can also try to find curves on the surface whose
tangent vector is always a principal direction, a so-called line of curvature. And so on. This
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would lead us naturally to the definitions of elliptic and hyperbolic points of a surface, and to
Gauss curvature. Instead we will give definitions and claim some properties before moving on.

From Euler’s theorem, we see that the normal curvatures at a point are completely characterised
by the principal curvatures. From these we define two types of curvature. Conversely, if we know
the Gauss and mean curvatures, it is possible to solve for the principal curvatures. Thus the
normal curvatures at a point are equivalently described by these two quantities.

Definition 1.34. The Gauss curvature of a surface at a point is K = κ1κ2 and the mean
curvature is H = 1

2(κ1 + κ2).

We include a useful formula.

Lemma 1.35. Let v, w are an orthonormal basis for TpM and write h with respect to this basis.
Then the Gauss curvature at p is h1 1h2 2 − h21 2 and the mean curvature is 1

2(h1 1 + h2 2).

Proof. Be careful: this looks like a determinant but the formula is only true for an orthonormal
basis. Although the determinant of the matrix of a linear map is basis-independent, this is not
true of the matrix of a bilinear form.

Any unit-length vector of TpM can be written as v cos θ + w sin θ. Meusnier’s theorem and
bilinearity tells us

κn = h11 cos
2 θ + 2h12 cos θ sin θ + h22 sin

2 θ

= h11
1 + cos 2θ

2
+ h12 sin 2θ + h22

1− cos 2θ

2

=
1

2
(h11 + h22) +

1

2
(h11 − h22) cos 2θ + h12 sin 2θ.

To put this into the simplest form, or the form of Euler’s theorem, we should try to combine
both terms with θ into a single cos. This can be done through polar coordinates: find R and ϕ
such that

(R cosϕ,R sinϕ) =

(
1

2
(h11 − h22), h12

)
.

In particular R2 = 1
4(h11 − h11)

2 + h212. Then

κn =
1

2
(h11 + h22) +R cosϕ cos 2θ +R sinϕ sin 2θ

=
1

2
(h11 + h22) +R cos(2θ − ϕ).

We see that this obtains its maximum and minimum for cos(2θ − ϕ) = ±1. Hence

K = κ1κ2 =
1

4
(h11 + h22)

2 −R2 = h11h22 − h212,

H =
1

2
(κ1 + κ2) =

1

2
(h11 + h22).

What we have effectively done is to deduce the angle between our orthonormal basis and the
principal directions, and make a change of basis for the second fundamental form. The principal
direction with highest normal curvature is v cosϕ/2 + w sinϕ/2, for example, because θ = ϕ/2
makes κn maximum.
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Despite the fact that these our formulas for these quantities depend on the first and second
fundamental form, it turns out that it is possible to calculate the Gauss curvature using only
the first fundamental form. We say that the Gauss curvature is intrinsic to the surface, whereas
the mean curvature is extrinsic. This is known as Gauss’ Theorem Egregium (the extraordinary
theorem) and we will prove a generalisation of it in Chapter 5. In fact, we are finally in a
position where we can give good definitions of intrinsic and extrinsic.

Definition 1.36. Suppose we have two parameterised regular surfaces Φ and Φ̃ from the same
open subset U ⊂ R2 to R3. If both first fundamental forms gi j , g̃i j, considered as functions on
U , are equal, then we say that the surfaces are isometric. Geometrically, this means that the
distances between corresponding points on both surfaces are equal. Quantities that depend only
on the first fundamental form are said to be intrinsic.

Example 1.37. The classic example of an isometric transformation is rolling a sheet of paper
into a cylinder. Consider U = (−π, π) × R and the two parameterisations Φ(u, v) = (1, u, v)
and Φ̃(u, v) = (cosu, sinu, v). The domain has been chosen so that both parameterisations
are injective, as we require. We compute the first fundamental forms

∂Φ
∂u = (0, 1, 0), ∂Φ

∂v = (0, 0, 1) g1 1 = 1, g1 2 = g2 1 = 0, g2 2 = 1,

∂Φ̃
∂u = (− sinu, cosu, 0), ∂Φ̃

∂v = (0, 0, 1) g̃1 1 = 1, g̃1 2 = g̃2 1 = 0, g̃2 2 = 1.

So these are indeed isometric surfaces.

From Example 1.22 we know that the normal curvature of the plane is identically zero. Thus
so too are the Gauss and mean curvatures.

For the cylinder, we compute the normal and second fundamental form

ν = (cosu, sinu, 0), ∂2Φ̃
∂u2 = (− cosu,− sinu, 0), ∂2Φ̃

∂v∂u = ∂2Φ̃
∂v2

= 0

h̃1 1 = −1, h̃1 2 = h̃2 2 = 0.

This is already diagonalised, so we see that the principal curvatures are −1 and 0. (The minus
sign is because our cylinder has the outward pointing normal ν but the curve in the surface
have an inward pointing normal N .) The Gauss curvature is everywhere zero, same as the
plane, but the mean curvature is everywhere −1

2 .
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1.6 Minimal Surfaces

In the final section of this chapter we will indulge my tastes and look at a class of special surfaces
related to my own research. A minimal surface is one that has the smallest surface area for a
given boundary. To simplify matters, we will consider only graphs. Let U be a bounded region
of the plane with smooth boundary, and let g : ∂U → R be a continuous function. We consider
the set of functions

Fg = {f ∈ C2(U) | f |∂U = g},
and their graphs Φf (u, v) = (u, v, f(u, v)). Graphs are always regular surfaces. The area is

Area(f) =

∫
U
∥∂Φ
∂u × ∂Φ

∂v ∥ du dv =

∫
U
∥
(
∂f
∂u ,

∂f
∂v , 1

)
∥ du dv =

∫
U

√(
∂f
∂u

)2
+
(
∂f
∂v

)2
+ 1 du dv.

If a surface is a minimal surface, then it must be a critical point for the area. That means, for
all variations that don’t change the boundary h ∈ F0 we have

d

ds
Area(f + sh)

∣∣∣∣
s=0

= 0.

We compute

d

ds
Area(f + sh)

∣∣∣∣
s=0

=

∫
U

d

ds

√
(∂uf + s∂uh)2 + (∂vf + s∂vh)2 + 1

∣∣∣∣
s=0

du dv

=

∫
U

∂uf∂uh+ ∂vf∂vh√
(∂uf)2 + (∂vf)2 + 1

du dv

=

∫
U

∂uf√
(∂uf)2 + (∂vf)2 + 1

∂uh du dv +

∫
U

∂vf√
(∂uf)2 + (∂vf)2 + 1

∂vh du dv

= −
∫
U

∂

∂u

(
∂uf√

(∂uf)2 + (∂vf)2 + 1

)
h du dv −

∫
U

∂

∂v

(
∂vf√

(∂uf)2 + (∂vf)2 + 1

)
h du dv,

using partial integration and the fact that h is zero on the boundary. The only way that this
can be zero for all h ∈ F0 is if

∂

∂u

(
∂uf√

(∂uf)2 + (∂vf)2 + 1

)
+

∂

∂v

(
∂vf√

(∂uf)2 + (∂vf)2 + 1

)
= 0.

This can also be written in vector notation as

(1.38) ∇ ·
(

∇f
∥∇f∥2 + 1

)
= 0.

This is called the minimal graph equation, which is treated in the course Partial Differential
Equations. If you expand out the derivatives you obtain

∂2uf + ∂2vf√
(∂uf)2 + (∂vf)2 + 1

− 1

2

∂uf (2∂uf∂
2
uf + 2∂vf∂u∂vf) + ∂vf (2∂uf∂u∂vf + 2∂vf∂

2
vf)√

(∂uf)2 + (∂vf)2 + 1
3

=
(∂2uf + ∂2vf)((∂uf)

2 + (∂vf)
2 + 1)− ∂uf (∂uf∂

2
uf + ∂vf∂u∂vf)− ∂vf (∂uf∂u∂vf + ∂vf∂

2
vf)√

(∂uf)2 + (∂vf)2 + 1
3

=
∂2uf((∂vf)

2 + 1) + ∂2vf((∂uf)
2 + 1)− 2∂uf∂vf∂u∂vf√

(∂uf)2 + (∂vf)2 + 1
3 .
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We pause our calculation here to compute the mean curvature of a graph. As in the previous
section, we need the second derivatives of the parameterisation

∂2f
∂u2 = (0, 0, ∂2uf),

∂2f
∂u∂v = (0, 0, ∂u∂vf),

∂2f
∂v2

= (0, 0, ∂2vf),

h =
1√

(∂uf)2 + (∂vf)2 + 1

(
∂2uf ∂u∂vf
∂u∂vf ∂2vf

)
Unfortunately, there is no reason that this will be a diagonal matrix in general, so how should
we find the principal curvatures? We will use a little bit of linear algebra. We define a linear
transformation A on the tangent space using the formula h(v, w) = g(v,Aw). This is well-defined
because g is positive definite. If we use the basis e1, e2 of principal directions then we have

0 = h(e1, e2) = g(e1, Ae2), 0 = h(e2, e1) = g(e2, Ae1).

We conclude that Ae2 is orthogonal to e1. Therefore it must be a multiple λ2 of e2. Likewise
Ae1 = λ1e1. Further

κi = h(ei, ei) = g(ei, Aei) = λig(ei, ei) = λi.

In other words, the principal curvatures are the eigenvalues of this matrix A. Hence the mean
curvature is H = 1

2(κ1 + κ2) = 1
2 trA. In terms of the coordinate basis, the matrix A is the

product of the inverse of g with h.

A =

(
1 + (∂uf)

2 ∂uf∂vf
∂uf∂vf 1 + (∂vf)

2

)−1
1√

(∂uf)2 + (∂vf)2 + 1

(
∂2uf ∂u∂vf
∂u∂vf ∂2vf

)
=

1

det(g)
√

(∂uf)2 + (∂vf)2 + 1

(
1 + (∂vf)

2 −∂uf∂vf
−∂uf∂vf 1 + (∂uf)

2

)(
∂2uf ∂u∂vf
∂u∂vf ∂2vf

)
=

1

∗

(
(1 + (∂vf)

2)∂2uf − ∂uf∂vf∂u∂vf ∗
∗ −∂uf∂vf∂u∂vf + (1 + (∂uf)

2)∂2vf

)
,

where we have used ∗ to abbreviate expressions that are too long and not important. Hence

H =
1

2
trA =

(1 + (∂vf)
2)∂2uf − 2∂uf∂vf∂u∂vf + (1 + (∂uf)

2)∂2vf

det(g)
√
(∂uf)2 + (∂vf)2 + 1

.

But notice, the numerator of H is exactly the same as the numerator in the minimal graph
equation. Thus one is zero if and only if the other is too. In summary, a surface solves the
minimal graph equation if and only if it has zero mean curvature.

We can turn this around to give a geometric characterisation of mean curvature: it is a measure
of how far a surface deviates from being locally area minimising. For example, the plane has
zero mean curvature because if you draw a loop on the plane, the least area surface with that
boundary is a plane. The same is true if you draw a small circle on a sphere: a flat circle would
have less area then the spherical cap. This is a geometric argument that a sphere has non-zero
mean curvature.

Remarkably, the helicoid is a minimal surface! We have seen in Example 1.33 that the principal
curvatures are ± b

u2+b2
. Therefore the mean curvature is zero. Minimal surfaces have a rich and

fascinating theory. Just one example would be that the helicoid along with the catenoid belongs
to a family of minimal surfaces, all of which are (locally) isometric to one another.
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