Übung 1

Metrik und Norm

Manhattan-Metrik

Aufgabe 1

Stellt euch die Straßen von Manhatten idealisiert als die Menge aller Punkte $(x, y) \in \mathbb{R}^2$ vor, so dass entweder $x \in \mathbb{Z}$ oder $y \in \mathbb{Z}$.

- Gebe eine einfache Formel für die kürzeste Wegstrecke an, die zwischen zwei Punkte (x_1, y_1) und (x_2, y_2) auf den Straßen von Mannhaten zurückgelegt werden muss.
- Der so definierte Abstand stimmt mit einer aus der Vorlesung bekannten Metrik überein. Um welche handelt es sich?

Norminduzierte Metriken

Aufgabe 2

Sei X ein Vektorraum über ${\rm I\!K}$. Zeige, dass eine Metrik $d:X\times X\to {\rm I\!R}_0^+$ genau dann norminduziert ist, wenn die folgenden zwei Bedingungen gelten:

Translationsinvarianz: Für alle $x, y, z \in X$ gilt

$$d(x,y)=d(x+z,y+z).$$

Homogenität: Für alle $x \in X$ und $\alpha \in \mathbb{K}$ gilt

$$d(\alpha x,0)=|\alpha|d(x,0).$$

Wie hängen die Norm und die Metrik dann genau zusammen? Ist die Norm, die d induziert eindeutig?

Offene Mengen

Aufgabe 3

Sei (X, d) ein metrischer Raum. Zeige, dass jeder offene Ball in (X, d) eine offene Menge in (X, d) ist.