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Ross Ogilvie

Partial Differential Equations

Exercise sheet 10

35. The dual to W 1,2
0 .

At the beginning of Chapter 4 we are introduced to the dual space W 1,2
0 (Ω)∗. In this question

we explore this a little more.

(a) Show that the formula for ⟨g +∇ · f, v⟩ given at the start of Chapter 4 does indeed define

a distribution for v ∈ C∞
0 (Ω). Why does it extend to W 1,2

0 (Ω)?

(b) Give an example of two different choices g, f, g′, f ′ that give the same distribution.

(c) In Chapter 3 we saw that W 1,2
0 (Ω) was a Hilbert space. Recall the definition of its inner

product. What is the relation between this inner product and the norm on W 1,2.

(d) Optional: Use the Riesz representation theorem to show that all extending distributions

have this form.

Solution.

(a) Let K ⋐ Ω and suppose that v ∈ C∞
0 (K). Then

|⟨g +∇ · f, v⟩| ≤
∫
K
|gv|+

∫
K
|f · ∇v| ≤ ∥v∥∞

∫
K
|g|+

∑
∥∂iv∥∞

∫
K
|fi|

≤ C∥g∥2∥v∥K,0 +
∑

C∥fi∥2∥∂iv∥K,ei

This shows it is a distribution.

The product of two L2 function is L1 by Hölder’s inequality, so the formula is well-defined

for v ∈W 1,2. In fact for v, w ∈ C∞
0

|⟨g +∇ · f, v − w⟩| ≤ ∥g∥2∥v − w∥2 +
∑

∥fi∥2∥∂iv − ∂iw∥2 ≤ max{∥g∥2, ∥fi∥2}∥v − w∥W 2,2

so it is uniformly continuous with respect to the operator norm on L(W 1,2(Ω),R) and so

has a unique continuous extension to W 1,2
0 (Ω) = C∞

0 (Ω).

A note: On the left hand side, the expression ∇ · f is not meant to be taken literally,

since f is only L2, but it is meant as a memorisation aid that integration by parts should

be applied. It does hold literally when f is sufficiently regular, as we will see in the next

question.

(b) If f is smooth then

⟨0 +∇ · f, v⟩ =
∫
Ω
−f · ∇v =

∫
Ω
∇ · fv = ⟨∇ · f + 0, v⟩.

(c)

(u, v) =
∑
|γ|≤1

∫
Ω
∂γu∂γv =

∫
Ω
uv +∇u · ∇v

Note that the norm induced by this inner product is

∥u∥Hilbert =
√
(u, u) =

∑
|γ|≤1

∥∂γu∥22

1/2

̸=
∑
|γ|≤1

∥∂γu∥2.
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So the norm induced by the inner product is different to the Sobolev norm. However the

two norms are equivalent, so what is continuous with respect to one norm is continuous

with respect to the other.

(d) We have seen that the pairing is a continuous linear functional on the Hilbert spaceW 1,2
0 (Ω).

Therefore the Riesz representation theorem tells us that there is an element u ∈ W 1,2
0 (Ω)

with (u, v) = ⟨g +∇ · f, v⟩ for all v ∈ W 1,2
0 (Ω). Examining the left hand side we see that

g = u and f = −∇u.

36. On the weak solutions of elliptic differential equations.

Let Ω ⊂ Rn be open, u ∈ W 1,2(Ω), f ∈ W 1,2
0 (Ω)∗, and L be an elliptic differential operator in

the sense of Definition 4.1.

(a) State what it means for u to be a weak solution of Lu ≥ f .

(b) Show that the following is a distribution:

C∞
0 (Ω) ∋ ϕ 7→ −L(u, ϕ).

(c) Suppose that u is a weak solution of both

Lu ≥ f and Lu ≤ f, (∗)

in the sense of Definition 4.1. Show for all v ∈W 1,2
0 (Ω) that −L(u, v) = ⟨f, v⟩. Note: there

is no requirement for v to be non-negative.

(d) How should we interpret Lu as a distribution, if it is not L1
loc? Hence prove that if (∗) holds

then Lu = f in the sense of distributions.

(e) Suppose now that u ∈ W 1,2
loc (Ω), f ∈ L2

loc(Ω) such that △u ≥ f and △u ≤ f hold in the

weak sense. Show for all ϕ ∈ C∞
0 (Ω) that

△(ϕu) = (△ϕ)u+ 2∇ϕ · ∇u+ fϕ

holds in the sense of distributions.

Solution.

(a) From Definition 4.1, to an elliptic operator L in divergence form we associate a bilinear

form L. We say that u is a solution of Lu ≥ f in the weak sense if for all non-negative

v ∈W 1,2
0 (Ω) we have −L(u, v) ≥ ⟨f, v⟩. The pairing ⟨f, v⟩ is nothing other than the action

of the dual, but we write it with this notation because we have a special description of some

of these dual elements and their action given in the formula before Definition 4.1.
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(b) It is clearly linear, so let’s show it is continuous as distribution directly from the form of

L. Choose a compact subset K ⊂ Ω and a test function ϕ ∈ C∞
0 (K). Then

| − L(u, ϕ)| ≤
∑∫

K
|aij∂iu∂jϕ|+

∑∫
K
|biu∂jϕ|+

∑∫
K
|ci∂iuϕ|+

∫
K
|duϕ|.

Taking the leading term for example∫
K
|aij∂iu∂jϕ| ≤ Λ∥ϕ∥K,1

∫
K
|∂iu| ≤ Λ∥∂iu∥L1(K)∥ϕ∥K,1 ≤ Λ∥∂iu∥L2(K)∥ϕ∥K,1,

because K is a compact set so we know that L2(K) ⊂ L1(K) (apply Hölder’s inequality

with the function times 1). All the other terms are bound similarly.

(c) Given any v ∈ W 1,2
0 we can write it in positive and negative parts v = v+ − v−, where

v+ = max{v, 0} and v− = max{−v, 0}. We know from Exercise 27 that both parts are also

W 1,2. To see that they belong to W 1,2
0 , first take a sequence vn in C∞

0 that converges to

v, take the positive part v+n and then mollify v+n,ε. For sufficiently small ε the mollification

v+n,ε also belongs to C∞0(Ω). A standard diagonal argument now shows v+ lies in their

limit.

Given this splitting, the question is straightforward

−L(u, v) = −L(u, v+) + L(u, v−) = ⟨f, v+⟩ − ⟨f, v−⟩ = ⟨f, v⟩.

(d) The important idea here, not explicit in the lecture script, how to understand Lu as a

distribution. Really, it doesn’t seem well defined with only the conditions given in Definition

4.1. But when u and the coefficients are sufficiently differentiable then it is well defined and

equal to −L(u, ·) as a distribution. Taking a sequence of operators and functions Lmum we

can take a limit and there is a unique extension of the association of Lu with a distribution,

namely the one given by −L(u, ·).
With this understanding, the equality follows immediately from the previous parts, since

we have just seen that −L(u, ·) acts the same as f on W 1,2
0 (Ω) ⊃ C∞

0 (Ω).

(e) The essential point here (that is new to this course) is that the product of u ∈ W 1,2 with

a test function is again W 1,2 and the product rule holds (Proposition 3.28 Product rule for

Sobolev functions with p = r = 2 and q = ∞). We must however avoid second derivatives

of u, which may not exist. If suppψ = K then u ∈W 1,2(K), ie the fact that they are only

locally Sobolev is not a problem. Hence we calculate∫
K
((△ϕ)u+ 2∇ϕ · ∇u+ fϕ)ψ =

∫
K
uψ(∇ · ∇ϕ) + 2ψ∇ϕ · ∇u+ fϕψ

=

∫
K
∇ · (uψ∇ϕ)− ψ∇u · ∇ϕ− u∇ψ · ∇ϕ+ 2ψ∇ϕ · ∇u−∇u · ∇(ϕψ)

=

∫
K
−u∇ψ · ∇ϕ+∇u · [ψ∇ϕ−∇(ϕψ)]

= −
∫
K
[u∇ϕ+∇uϕ] · ∇ψ

= −△(ϕu, ψ).
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We can justify the vanishing of the divergence term by taking a smooth approximation, to

which we can apply the divergence theorem.

37. Weak solutions of the Poisson equation.

In the following we demonstrate an example of functions u, f ∈ C0(Ω) such that △u = f in the

weak sense, but u /∈ C2(Ω). Let Ω = B(0, 12) ⊂ R2 and u(x, y) := (x2 − y2) log | log(r)| with
r = (x2 + y2)1/2.

(a) Show that u ∈ C2(B(0, 12)\{0}) and lim
r→0

u(x, y) = 0. In other words, u extends to a

continuous function on B(0, 12).

(b) Compute the following derivatives of u on B(0, 12)\{0}

∂

∂x
u(x, y) = 2x log | log(r)|+ (x3 − y2x)

1

r2 log(r)
,

∂2

∂x2
u(x, y) = 2 log | log(r)|+ (5x2 − y2)

1

r2 log(r)
− (x4 − x2y2)

2 log(r) + 1

r4(log(r))2
.

(c) Argue that ∂2

∂y2
u(x, y) = − ∂2

∂x2u(y, x) and hence

△u = (x2 − y2)

(
4

r2 log(r)
− 1

r2(log(r))2

)
.

Conclude therefore that lim
r→0

△u(x, y) = 0.

(d) Let f ∈ C(B(0, 12)) be the continuous extension of △u on B(0, 12). Prove that △u = f

weakly on B(0, 12).

Solution.

(a) ln | ln r| is well-defined and smooth except for r = 0 and ln r = 0, ie r = 1.

|u| ≤ r2 ln | ln r| →
1

r| ln r|

−2r−3
=

r2

−2 ln r
→ 0.

(b) Damn it, Jim. I’m a doctor, not a calculator.

(c) One could do this calculation directly, but this is a way to avoid more calculation. Consider

the reflection t(x, y) = (y, x) and note that u ◦ t = −u. Then ∂yu = −∂y(u ◦ t) = −∂xu ◦ t
and ∂2yu = −∂y(∂xu ◦ t) = −∂2xu ◦ t. The Laplacian now follows from part (b).

|△u| ≤ 4

log(r)
− 1

(log(r))2
→ 0.
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(d) We need to show −△(u, ϕ) = ⟨f, ϕ⟩ for all test functions ϕ ∈ C∞
0 (B(0, 1/2)). Let Ωε :=

B(0, 1/2) \B(0, ε). On Ωeps we have △u = f since everything is smooth. So∫
Ωε

∇u · ∇ϕ+ fϕ =

∫
Ωε

∇u · ∇ϕ+∇ · ∇uϕ =

∫
∂Ωε

∇u · ∇ϕ+∇ · ∇uϕ

= −
∫
∂B(0,ε)

(ϕ∇u) ·N dσ.

When plug everything in, you get a factor times an integral
∫ 2π
0 cos 2θ dθ = 0. Taking the

limit now as ε→ 0 shows that △u = f in the weak sense.
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