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Ross Ogilvie

Partial Differential Equations

Exercise sheet 8

27. Approximation by truncated Sobolev functions.

(a) Let Ω ⊂ Rn be open and u, v ∈ W 1,p(Ω). Show for w(x) := min{u(x), v(x)} that w also

lies in W 1,p(Ω). Determine the weak derivatives of w.

[Hint. Use the identities min{a, b} = min{a − b, 0} + b and min{a, 0} = 0.5(a − |a|), and
apply Propositions 3.29 (Chain Rule) and 3.30.]

(b) Show using (a) that max{u(x), v(x)} ∈W 1,p(Ω) too.

(c) Prove that when u ∈ W 1,p(Ω) then w := min{u, 1} ∈ W 1,p(Ω). Calculate the first deriva-

tives of w.

(d) Show L∞(Ω) ∩W 1,p(Ω) is dense in W 1,p(Ω).

[Hint. For u ∈W 1,p(Ω) consider the sequence of truncations un := max{−n,min{u, n}}.]

Solution.

(a) We can simplify if we write min{u, v} = min{u− v, 0}+ v. Thus we need only consider the

case v = 0. The function f(y) = min{y, 0} is a Lipschitz function with f(0) = 0, so the

chain rule for Sobolev functions (Proposition 3.29) tells us that w ∈W 1,p.

It remains to determine the derivative. The proof of Proposition 3.30 also works with

the Lp norm. But even not assuming this, we know that the weak derivative of ∇|u| =
sign(u)∇u and ∥∇|u|(x)∥ ≤ ∥∇u(x)∥ then shows that it is Lp. The derivative is therefore

(not assuming v = 0)

∇w = ∇
(
v +

1

2
[u− v − |u− v|]

)
=

1

2
∇ [u+ v − |u− v|]

=
1

2
[∇u+∇v − sign(u− v) (∇u−∇v)] .

(b) max{u, v} = −min{−u,−v}.

(c) The difficulty here is that for an Ω with infinite area the constant functions are not Lp and

we can not use part (a). But |min{u(x), 1}| ≤ |u(x)| show us that w ∈ Lp anyway. If we

consider the function restricted to a bounded set Ω′ ⊂ Ω then we can apply part (a) and

see that the weak derivative is given by

∇w = χ{u≥1}∇u.

Since ∥∇w(x)∥ ≤ ∥∇u(x)∥ this is also Lp.

(d) As suggested by the hint, we consider un := max{−n,min{u, n}}. Since min{u, n} =

nmin{u/n, 1} and max{−n, v} = −nmin{−v/n, 1} for n > 0, part (c) applies to un. It

remains to show convergence in norms. But fn(x) := |u(x)− un(x)| = (|u(x)| − n)χ|u(x)|>n

is a decreasing sequence of functions converging pointwise to zero and f0 = |u| ∈ Lp, so by

the dominated convergence theorem we get ∥u − un∥p → 0. A similar result holds for the

derivative with ∂iun = ∂iuχ|u|<n.
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28. More Sobolev functions.

Let p−1 + q−1 = 1, n > q and Ω = B(0, 1) ⊂ Rn. Choose u ∈ C1(Ω\{0}) such that∫
Ω\{0}

|u(x)|p dµ <∞ and

∫
Ω\{0}

|∇u(x)|p dµ <∞.

(a) Choose any ψ ∈ C∞(R) with ψ(r) = 1 for r ≥ 1, ψ(r) = 0 for r ≤ 1
2 , and 0 ≤ ψ(r) ≤ 1.

Let ψk(x) = ψ(k|x|). Show that ψk → 1 in W 1,q(Ω).

(b) Define uk := uψk. Show that ∥∂iu− ∂iuk∥1 → 0 as k → ∞.

(c) Complete the proof that u ∈W 1,p(Ω) and ∂ju is its weak derivative.

(d) Let u : Ω \ {0} → R be defined by u(x) := ∥x∥γ . Show ∂αu(x) = Pα(x)∥x∥γ−2|α|, where Pα

is a homogeneous degree |α| polynomial. The exact form of Pα is unimportant.

(e) Using u from the previous part show that u belongs to W k,p(Ω) for γ > k − n
p .

Solution.

(a) These functions converge pointwise almost everywhere to 1 and are bounded, so the domi-

nated convergence theorem shows they converge in Lq. We know that outside of B(0, k−1)

that ψ′
k is zero, so they converge pointwise to zero. However it remains to show the deriva-

tives converge to zero in Lq. ∂iψk = ψ′(k|x|)kxi|x|−1, so

∥∂iψk∥qq =
∫
Ω
|ψ′(k|x|)|qkq|xi|q|x|−q =

∫
B(0,1/k)

|ψ′(k|x|)|qkq|xi|q|x|−q

≤
∫
B(0,1/k)

∥ψ′∥q∞kq = ∥ψ′∥q∞kq × ωkk
−n → 0

using the assumption that n > q.

(b) ψk is identically zero on B(0, (2k)−1) so uk := uϕk is C1(Ω):

∥∂1u− ∂1uψk − u∂1ψk∥1 ≤ ∥∂1u− ∂1uψk∥1 + ∥u∂1ψk∥1

≤ ∥∂1u∥p∥1− ψk∥q + ∥u∥p∥∂iψk∥q → 0.

(c) If we try to directly compute the distributional derivative

−
∫
Ω
u∂iϕ = −

∫
Bε

u∂iϕ−
∫
Ω\Bε

u∂iϕ

= −
∫
Bε

u∂iϕ+

∫
∂Bε

uϕ
xi
r
dσ +

∫
Ω\Bε

∂iuϕ

then we see that we have no good way to estimate the surface integral term. However∣∣∣∣∫
Ω
uk∂iϕ−

∫
Ω
u∂iϕ

∣∣∣∣ ≤ ∥∂iϕ∥∞∥uψk − u∥1 ≤ ∥∂iϕ∥∞∥u∥p∥ψk − 1∥q → 0
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and ∣∣∣∣∫
Ω
∂iukϕ−

∫
Ω
∂iuϕ

∣∣∣∣ ≤ ∥ϕ∥∞∥∂iuk − ∂iu∥1 → 0

due to part (b). Together this shows

−
∫
Ω
u∂iϕ = lim−

∫
Ω
uk∂iϕ = lim

∫
Ω
∂iukϕ =

∫
Ω
∂iuϕ,

i.e ∂iu is the weak derivative of u. By the given assumptions both are Lp.

(d) As a base case, we have ∂0u = u = 1× |x|γ−0. Inductively

∂iPα(x)|x|γ−|α| = P ′
α(x)|x|γ−|α| + (γ − |α|)Pα(x)|x|γ−|α|−1xi|x|−1

=
[
P ′(x)α|x|2 + (γ − |α|)Pα(x)xi

]
|x|γ−|α|−2

and Pα+ei := P ′
α(x)|x|2 + (γ − |α|)Pα(x)xi is indeed homogeneous of degree |α+ ei|.

(e) For any homogeneous polynomial of degree |α| we can bound its growth crudely for all x

using the triangle inequality

|Pα(x)| =

∣∣∣∣∣∣
∑

|β|=|α|

Cβx
β

∣∣∣∣∣∣ ≤
∑

|β|=|α|

|Cβ| |xβ| ≤ |x||α|
∑

|β|=|α|

|Cβ| = C|x||α|.

(For non-homogeneous polynomial, we can only bound their growth for sufficiently large

x.)

So for ∂αu to belong to Lp it is sufficient for

∥∂αu∥pp =
∫
Ω
|Pα|p |x|p(γ−2|α|) ≤ C

∫
Ω
|x|p(γ−|α|) = Cnωn

∫ 1

0
rp(γ−|α|) rn−1 dr

to be finite, which holds when p(γ− |α|)+n− 1 > −1. This is equivalent to γ > |α| −n/p.

If γ > k−n/p then this holds for all |α| ≤ k and all derivatives of u up and including order

k belong to Lp.

29. An inequality for functions in W 2,2
0 (Ω).

Let Ω ⋐ Rn be open and bounded, and u ∈W 2,2
0 (Ω). Prove the following inequality:

∥∇u∥L2(Ω) ≤ ∥u∥1/2
L2(Ω)

· ∥△u∥1/2
L2(Ω)

.

[Hint. Consider u ∈ C∞
0 (Ω) and integrate

∫
Ω |∇u|2 dµ by parts.]

Solution. For smooth functions note the identity |∇u|2 = ∇ · (u∇u)− u△u. Let uk ∈ C∞
0 (Ω)

converge to u ∈W 2,2
0 (Ω). Then

∥∇u∥22 =
∫
Ω
|∇u|2 = lim

∫
Ω
|∇uk|2 = lim

∫
Ω
∇ · (uk∇uk)− uk△uk

= lim

∫
∂Ω
uk∇uk ·N dσ −

∫
Ω
uk△uk = lim0−

∫
Ω
uk△uk

≤ lim ∥uk∥2 ∥△uk∥2 = ∥u∥2 ∥△u∥2.
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30. The Divergence theorem for Lipschitz continuous vector fields.

Let Ω ⋐ Rn be an open and bounded subset with boundary ∂Ω ∈ C0,1. We will show that the

divergence theorem also holds for f = (f1, . . . , fn) ∈ (C0,1(Ω))n:∫
Ω
∇ · f dµ =

∫
∂Ω
f ·N dσ. (∗)

Firstly we must modify Definition 1.7 appropriately. Concretely: We choose a finite open cover-

ing of coordinate charts {Vl}Nl=1 and appropriate diffeomorphisms Φl : Ul → Vl, for open subsets

Ul ⊂ Rn−1. Next take a partition of unity (hl)
N
l=1 and define

∫
∂Ω
f ·Ndσ =

N∑
l=1

∫
Ul

hl(f ·N) ◦ Φl

√
det(Φ′

l)
tΦ′

ldµ. (∗∗)

(a) Show : ∂Ω is continuously differentiable when, after a permutation of coordinates, Φl has

the form Φl(y) = (y, φl(y)), with φl ∈ C1(Ul,R).

(b) Show : When ∂Ω is continuously differentiable and Φl has the form as in (a), then (∗∗)
becomes ∫

∂Ω
f ·N dσ =

N∑
l=1

∫
Ul

hlf(y, φl(y)) · (∇yφl(y),−1) dn−1y. (∗ ∗ ∗)

(c) Let A ∈ O(n,R) be an orthogonal matrix and f a smooth function.

Show : For fA = A · f ◦ A−1 the normal vector NA of the transformed domain ΩA = A[Ω]

satisfies the equation NA(x) = A · N(A−1x) and the divergence theorem (∗) holds for

(fA,ΩA), if and only if it folds for (f,Ω).

(d) Let φ ∈ C0,1(Bn−1(0, ρ)) with ∥φ∥∞ < M and f ∈
(
W 1,∞

0 (Bn−1(0, ρ)× (−M,M))
)n

.

Then the following holds∫
Bn−1(0,ρ)

∫ M

φ(y)
∇ · f(y, t) dn−1y dt =

∫
Bn−1(0,ρ)

f(y, φ(y)) · (∇yφ,−1) dn−1y.

[Hint: Approximationssatz 3.33]

(e) Show that for f = (f1, . . . , fn) ∈ (C0,1(Ω))n the divergence theorem (∗) hold.
[Hint: Show first that the expression in (c) holds also for f ∈ (C0,1(Ω))n and ∂Ω ∈ C0,1.

Then use (d).]
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