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Ross Ogilvie

Partial Differential Equations

Exercise sheet 7

23. The dual space of Lp(Rn).

Let 1 < p < ∞ (we exclude p = 1 for this exercise). The Banach space Lp(Rn) has the norm

∥ · ∥ : Lp(Rn) → R, f 7→ ∥f∥p =
(∫

Rn

|f |pdµ
)1/p

.

We will show that for q with 1
p + 1

q = 1 the map

j : Lq(Rn) → Lp(Rn)′ = L(Lp(Rn),R), g 7→ j(g) with j(g)(f) =

∫
Rn

fg dµ

is a linear isometry, i.e. ∥g∥q = ∥j(g)∥ holds. One can then show that for 1 ≤ p < ∞ the dual

space of Lp(Rn) is isometrically isomorphic to Lq(Rn).

(a) Show, with the help of the Hölders inequality that j : Lq(Rn) → Lp(Rn)′ is Lipschitz

continuous with Lipschitz constant L ≤ 1.

(b) Given a function g, find a function fg such that |j(g)(fg)| = ∥fg∥p · ∥g∥q.

(c) Show that j is an isometry.

(d) Optional: Use the Radon-Nikodym theorem to prove that j is surjective.

(e) Finish the proof that Lp(Rn)′ and Lq(Rn) are isometrically isomorphic.

(f) Optional: Extend this result to the case p = 1 and q = ∞.

(g) What is the connection to distributions and Proposition 3.22?

Solution.

(a) Hölder’s inequality is ∥fg∥1 ≤ ∥f∥p∥g∥q for such p and q. Since j and j(g) are linear we

compute

∥j∥op = sup
∥g∥q=1

∥j(g)∥op = sup
∥g∥q=1

sup
∥f∥p=1

|j(g)(f)| ≤ sup
∥g∥q=1

sup
∥f∥p=1

∥fg∥1 ≤ 1.

This shows that j is Lipschitz with constant ≤ 1.

(b)

fg(x) =

∥g∥1−q
q |g(x)|q g(x)−1 for g(x) ̸= 0

0 for g(x) = 0

Then ∣∣∣∣∫
Ω
fgg

∣∣∣∣ = ∣∣∣∣∫
g ̸=0

∥g∥1−q
q |g(x)|q

∣∣∣∣ = ∥g∥1−q
q

∫
g ̸=0

|g(x)|q = ∥g∥q

and

∥fg∥pp =
∫
g ̸=0

∥g∥p(1−q)
q |g(x)|p(q−1) =

∫
g ̸=0

∥g∥−q
q |g(x)|q = 1.

(c) As in part (a), we have that

∥j(g)∥op = sup
∥f∥p=1

|j(g)(f)| ≤ ∥g∥q.

Conversely, part (b) shows that equality is obtained and ∥j(g)∥op = ∥g∥q.
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(d) Take an element κ ∈ Lp(Rn)′. This defines a measure κ̃ on Rn via A 7→ κ(χA). If A is a

Lebesgue null set, then χA = 0 in Lp(Rn), so κ̃(A) = 0. This shows that κ̃ is absolutely

continuous with respect to the Lebesgue measure. The Radon-Nikodym theorem then gives

us a measurable function g with

κ̃(A) =

∫
A
g dµ.

In other words

κ(χA) =

∫
χAg dµ.

Using simple functions (linear combinations of indicator functions) and their limits, this

relationship extends to all measurable functions. It remains to show that g ∈ Lq. But this

follows using the function f = |g(x)|qg(x)−1 similar to part (b), since then ∞ > κ(f) =

∥g∥qq. In summary, for any κ ∈ Lp(Rn)′ we have found a g ∈ Lq(Rn) with j(g) = κ.

(e) The isometry property shows that j is injective. Part (c) proved that j was surjective. Part

(a) showed that it was continuous. Hence it is an isomorphism of Banach spaces.

(f) Hölder’s inequality also holds in this case, so part (a) is unchanged.

Part (b) doesn’t work at all. Instead look to the definition of the essential supremum

∥g∥∞ = sup{a ∈ R | µ(g−1[(a,∞)]) ̸= 0}. Take an increasing sequence an converging to

the supremum. Take a nonzero but finite measure subset An of g−1[(an,∞)]. Finally take

a sequence of functions fg,n = χAn . The equality of part (b) holds in the limit, which is

enough to show that j is an isometry in part (c).

The modification for part (d) is probably similar, but I haven’t thought about it.

(g) j(g) is very similar to the distribution Fg; they have the same formula but are defined on

different spaces, Lp and C∞
0 respectively. We know from Proposition 3.19 (or more generally

Proposition 3.24) that test function are dense in Lp. So when the associated distribution Fg

is bounded with respect to the operator norm on L(Lp,R) then it extends to a continuous

operator on Lp. The condition on Proposition 3.22 uses the Lq norm instead of the operator

norm, but we have just seen that these are isometric.

24. Sobolev Functions.

(a) Write the definition of a Sobolev space using distributions.

(b) Let f : R → R be the function

x 7→


1 + x für − 1 ≤ x ≤ 0

1− x für 0 ≤ x ≤ 1

0 otherwise.

(i) Describe the first derivative of the distribution F : C∞
0 (R) → R, ϕ 7→ F (ϕ) =∫

R f(x)ϕ(x)dx.
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(ii) Show that the second derivative of the distribution F (ϕ) =
∫
R f(x)ϕ(x)dx is a linear

combination of Dirac distributions.

(iii) Show: f ∈ W 1,1(R), but f /∈ W 2,1(R).

(c) Let Ω = Rn and u ∈ W 2,1
loc (R

n) so that ∂αu = 0 for all α with |α| = 2 in the weak sense.

Show that u is affine, i.e. u(x) = a · x+ b a.e. with a ∈ Rn and b ∈ R.
[Hint. Proposition 3.22.]

(d) Let Ω = B(0, 0.5) ⊂ R2 and u(x) =
(
ln 1

∥x∥

)1/4
. Show that u ∈ W 1,2(Ω) but that it is not

continuous.

Solution.

(a) The definition given in the script is

W k,p(Ω) =

{
u ∈ Lp(Ω) | ∀|γ| ≤ k ∃uγ ∈ Lp(Ω) ∀φ ∈ C∞

0 (Ω) :

∫
Ω
uγφ = (−1)γ

∫
Ω
u∂γφ

}
.

We can recognise that∫
Ω
uγφ = Fuγ (φ), (−1)γ

∫
Ω
u∂γφ = (−1)γFu(∂

γφ). = ∂γFu(φ).

So the definition becomes

W k,p(Ω) =
{
u ∈ Lp(Ω) | ∀|γ| ≤ k ∃uγ ∈ Lp(Ω) : Fuγ = ∂γFu

}
.

In other words, we require that the γ-derivative of the distribution corresponding to u

corresponds to some Lp function, for all γ up to and including order k.

(b) (i)

∂F (ϕ) = −
∫ 0

−1
(1 + x)∂ϕ−

∫ 1

0
(1− x)∂ϕ

= − [(1 + x)ϕ]0−1 +

∫ 0

−1
ϕ− [(1− x)ϕ]10 +

∫ 1

0
(−1)ϕ

= −ϕ(0) +

∫ 0

−1
ϕ+ ϕ(0)−

∫ 1

0
ϕ

=

∫
R
(χ[−1,0] − χ[0,1])ϕ

(ii)

∂2F (ϕ) = −
∫ 0

−1
∂ϕ+

∫ 1

0
∂ϕ = −ϕ(0) + ϕ(−1) + ϕ(1)− ϕ(0)

= ϕ(−1)− 2ϕ(0) + ϕ(1)

(iii) f and χ[−1,0] − χ[0,1] are both L1(R) functions so f ∈ W 1,1. However we know that

there is no L1(R) function g with Fg = δ−1 − 2δ0 + δ1 so f ̸∈ W 2,1.
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(c) Consider uei . By assumption,∇uei = 0 and so using Proposition 3.23 we know that uei = ai,

a constant. Consider the function v(x) = a · x. Now we see that ∂i(u − v) = ai − ai = 0.

So we can again apply Proposition 3.23 to get that u = v + b = a · x+ b.

(d) It is not continuous because as x → 0 we have u → (∞)0.25.

∥u∥22 =
∫ 2π

0

∫ 0.5

0
(− ln r)0.5r dr dθ

Observe that r2 ln r → 0 as r → 0 so the integrand is a continuous function and the integral

is therefore finite.

For the derivative, we try to see if the distributional derivative comes from a L1
loc function,

and then if that function is L2.∫
Ω
u∂1ϕ =

(∫
Bε

+

∫
Ω\Bε

)
u∂1ϕ =

∫
Bε

u∂1ϕ+

∫
Ω\Bε

∇ ·

(
uϕ

0

)
− ∂1uϕ

=

∫
Bε

u∂1ϕ−
∫
∂Bε

uϕ
x

r
dσ −

∫
Ω\Bε

∂1uϕ

We have three integrals to consider. The first integral vanishes by Hölder’s inequality

∥u∂1ϕ∥L1(Bε) ≤ ∥u∥L2(Bε)∥∂1ϕ∥L2(Bε) → 0. The second integral self-cancels, but would

vanish for power reasons even if it didn’t:∫
∂Bε

uϕ
x

r
dσ = (− ln ε)0.25ε

∫ 2π

0
cos θ dθ = 0.

And the final integral shows us that the distributional derivative of u is associated to

the function ∂1u for x ̸= 0, provided this function is locally integrable. Since ∂1u =

0.25(− ln ∥x∥)−0.75x∥x∥−1 and

∥∂1u∥22 ≤ 0.0625× 2π

∫ 0.5

0
(− ln r)−1.5r dr < ∞

we see that ∂1u ∈ L2. The same clearly holds for ∂2u as well.

Note that the criterion in Proposition 3.22 is not so useful, because you have to do all the

same analysis, including showing that ∂1u ∈ L2. Then you can apply Hölder’s inequality

to get ∣∣∂1F (ϕ)
∣∣ ≤ ∥∂1u∥p ∥ϕ∥q,

and set M = ∥∂1u∥p.

25. Another “fundamental lemma” for L1
loc-functions

Let Ω ⊆ Rn be open and connected. Show that for u ∈ L1
loc(Ω) if∫

Ω
u(x)∇ϕ(x) dx = 0 for all ϕ ∈ C∞

0 (Ω),
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then u is constant on Ω. [Hint. Modify the proof of Proposition 3.23.]

Solution. Consider the ball B(x0, 2ρ) ⊂ Ω. For ε < ρ the mollification uε = λε ∗ u is a

smooth function on B(x0, ρ) and especially y 7→ λε(x − y) ∈ C∞
0 (B(x0, 2ρ)) ⊂ C∞

0 (Ω) for all

x ∈ B(x0, ρ). Therefore

∇uε(x) =

∫
Ω
∇λε(x− y)u(y) dy = 0,

showing that uε is a constant for each ε. We know that uε → u in L1
loc (Proposition 3.18) so u

is a constant on B(x0, ρ). A locally constant functions on a connected set is constant.

The lesson here was that we didn’t really need to know that u ∈ W 1,1
loc in Proposition 3.18, only

that u ∈ L1
loc and that its distributional derivatives are zero.

26. An integration by parts.

Let Ω ⊂ Rn be open and u ∈ W 1,2
0 (Ω), v ∈ W 1,2(Ω). Prove∫

Ω
ueivej dµ =

∫
Ω
uejvei dµ

[Hint. Approximate u with functions from C∞
0 (Ω).]

Solution. The choice of p = 2 guarantees that the integrals exist with Hölder’s inequality.

W 1,2
0 (Ω) is by definition the closure of C∞

0 (Ω) in W 1,2(Ω). So let un → u for smooth compactly

supported functions. But then∣∣∣∣∫
Ω
ueivej −

∫
Ω
∂iunvej

∣∣∣∣ ≤ ∫
Ω
|uei − ∂iun| |vej | ≤ ∥uei − ∂iun∥2 ∥vej∥2 → 0.

So we can approximate the integral with uei by one with ∂iun. Since these are test functions

and v is Sobolev ∫
Ω
∂iunvej = −

∫
Ω
∂j∂iunv =

∫
Ω
∂junvei .

Putting it all together for clarity∣∣∣∣∫
Ω
ueivej −

∫
Ω
uejvei

∣∣∣∣ = ∣∣∣∣∫
Ω
ueivej −

∫
Ω
∂iunvej +

∫
Ω
∂junvei −

∫
Ω
uejvei

∣∣∣∣
≤
∣∣∣∣∫

Ω
ueivej −

∫
Ω
∂iunvej

∣∣∣∣+ ∣∣∣∣∫
Ω
∂junvei −

∫
Ω
uejvei

∣∣∣∣
→ 0 + 0.
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