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Partial Differential Equations

Exercise sheet 6

18. A detail from the proof of Schauder’s fixed point theorem.

Optional: Let K and K̃ be bounded, closed, convex subets of Rn with non-empty interiors.

Prove that K and K̃ are homeomorphic.

Solution. Because homeomorphic is a transitive relation, it is enough to prove this for K̃ =

B(0, 1).

We can assume that 0 ∈ intK. Let v ∈ ∂B(0, 1). By the properties of K we know that

{t ∈ R≥0 | tv ∈ K} is an interval of the form [0, d]. Or put differently R≥0v ∩K = [0, d]v. The

idea is to rescale these rays by d to make K into a sphere.

Let us consider the ‘furthest distance’ function. Define d : ∂B(0, 1) → R>0 by d(v) = max{t ∈
R>0 | tv ∈ K}. Because K is bounded, d must have an upper bound R. We know that this

function is strictly positive because 0 is in the interior of K. Moreover, d must be bounded from

below by a positive constant r because otherwise we would have a sequence vk with d(vk) → 0.

But then the elements d(vk)vk ∈ ∂K converge to 0, which contradicts the fact that 0 is in the

interior of K.

We now show that d is continuous. Suppose that d were not continuous. That means there is a

sequence vn → v in ∂B(0, 1) such that |d(vk)− d(v)| > C for some positive constant C. On the

other hand, consider d(vk)vk ∈ ∂K. Since ∂K is compact, there is a subsequence converging to

x ∈ ∂K. We know that x ̸= 0 so write x = d(x̂)x̂. By normalising (a continuous function), we

see that x̂ = v. For this subsequence we have

∥d(vk)vk − d(v)v∥ = ∥d(vk)vk − d(vk)v + d(vk)v − d(v)v∥

≥
∣∣∣d(vk) ∥vk − v∥ − |d(vk)− d(v)|

∣∣∣
Because d is bounded, we know that d(vk) ∥vk − v∥ converges to 0. For large k therefore this

inequality cannot hold since |d(vk)− d(v)| > C. This is a contradiction.

Now we can define the homeomorphism φ : K → B(0, 1) by φ(0) = 0 and φ(x) = d(x̂)−1x.

Since x 7→ x̂ is continuous away from x = 0 and d is strictly positive, φ is continuous away from

x = 0. If we have a sequence xk → 0 then ∥φ(xk)∥ ≤ r−1∥xk∥ shows that φ(xk) → 0. Hence φ

is continuous. It has an inverse φ−1(0) = 0 and φ−1(x) = d(x̂)x, which is also continuous by

essentially the same argument.

19. Peano’s existence theorem.

In this question we use Schauder’ fixed point theorem to prove an existence theorem for ODEs.

We will prove: Let R = {(x,w) ∈ R2 | |x| ≤ a, |w| ≤ b} be a closed rectangle and F : R → R a

continuous function. Let c be the maximum of |F |. Then for 0 < h ≤ min{a, b/c} the following

ODE has at least one solution u : (−h, h) → R

u′ = F (x, u), u(0) = 0.
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(a) In Schauder’s theorem what conditions must X and G obey? Let X = C([−h, h]) and

G = {u ∈ X | ∥u∥∞ ≤ b. Prove that they have the required conditions.

(b) Consider T : G → X given by

(Tu)(x) =

∫ x

0
F (y, u(y)) dy.

Why is this a well defined operator on G? Show that T [G] ⊆ G. Hence T is actually an

operator G → G.

(c) Prove T is continuous. [Hint. F is uniformly continuous.]

(d) Prove T is a compact operator.

[Hint. Arzela-Ascoli theorem: Consider a sequence of continuous functions un : [−h, h] →
R. If this sequence is uniformly bounded and uniformly equicontinuous, then there exists

a subsequence that converges in X.]

(e) Finish the proof of Peano’s ODE existence theorem.

Solution.

(a) X must be a Banach space and G must be closed and convex. C([−h, h]) is a Banach

space with the supremum norm. Because the norm is always a continuous function G =

∥ · ∥−1
∞ [[0, b]] shows G is closed. If u, v ∈ G then for t ∈ [0, 1]

∥tu+ (1− t)v∥∞ ≤ t∥u∥∞ + (1− t)∥v∥∞ ≤ tb+ (1− t)b = b

shows that G is convex.

(b) By the definition ofG, u(y) ∈ [−b, b] so F (y, u(y)) is well-defined. The fundamental theorem

of calculus gives that Tu is continuous (in fact differentiable).

∥Tu∥∞ ≤ sup
x∈[−h,h]

∣∣∣∣∫ x

0
|F (y, u(y))| dy

∣∣∣∣ ≤ sup
x∈[−h,h]

c|x| ≤ ch ≤ b.

(c) Choose ε > 0. Since F is continuous on the compact set R, there exists δ > 0 such

that for all |w − w′| < δ we have |F (y, w) − F (y, w′)| < ε/h. So if ∥u − v∥∞ < δ then

|F (y, u(y))− F (y, v(y))| < ε/h. It follows

∥Tu− Tv∥∞ = sup
x∈[−h,h]

∣∣∣∣∫ x

0
|F (y, u(y))− F (y, v(y))| dy

∣∣∣∣ ≤ (ε/h)h = ε.

This shows continuity.

(d) We know that T [G] is closed and bounded, but unfortunately that is not enough to establish

that is it compact in X, since X is infinite dimensional. We need to prove that every

sequence in T [G] has a convergent subsequence. By a standard diagonal argument, it is

enough to show that this holds for sequences in T [G].

Let (Tuk) be a sequence in T [G]. We want to apply the Arzela-Ascoli theorem. The

sequence is uniformly bounded by b since G is. It is uniformly equicontinuous since

|Tuk(x)− Tuk(x
′)| ≤

∣∣∣∣∫ x

x′
|F (y, uk(y))| dy

∣∣∣∣ ≤ c|x− z|.

The Arzela-Ascoli says that (Tuk) has a convergent subsequence.
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(e) To summarise, we have a closed and convex set G and a continuous operator T : G → G

that is compact. Therefore by Schauder’s fixed point theorem, there is a u ∈ G with

u = Tu. This means

u(x) =

∫ x

0
F (y, u(y)) dy.

Differentiating shows that u obeys the ODE and u(0) =
∫ 0
0 = 0 shows the initial condition.

20. Properties of Hölder continuous functions.

Let Ω ⊂ Rn be open.

(a) Give the definitions for a function u to be α-Hölder continuous and to belong to C0,α(Ω).

(b) Why is hölΩ,α not a norm?

(c) Show a Hölder continuous function is uniformly continuous.

(d) Suppose that α > 1. Show that u ∈ C0,α(Ω) is differentiable and that ∇u ≡ 0. This shows

if Ω is connected and α > 1 that C0,α(Ω) only contains the constant functions. For this

reason we only consider 0 < α ≤ 1.

(e) Suppose that u : [a, b] → R is continuously differentiable. Show that it is Hölder continuous

for all 0 < α ≤ 1.

Solution.

(a) A function u is called α-Hölder continuous if

hölΩ,α(u) := sup
x ̸=y∈Ω

|u(x)− u(y)|
∥x− y∥α

is finite. u belongs to C0,α(Ω) if u is continuous, bounded, and α-Hölder continuous.

(b) It is homogeneous and obeys the triangle inequality. But all constant functions have höl = 0.

Therefore it is not positive definite.

(c) Choose ε > 0. We know that for all x, y ∈ Ω that |u(x) − u(y)| ≤ höl(u)∥x − y∥α. Set

δ = (ε/höl(u))1/α. Then for all ∥x− y∥ < δ we have

|u(x)− u(y)| ≤ höl(u)δα = ε.

(d) Choose some point x ∈ Ω and consider the i-partial derivative∣∣∣∣ ∂u∂xi
∣∣∣∣ = lim

h→0

|u(x+ hei)− u(x)|
|h|

≤ lim
h→0

höl(u)|h|α−1 → 0.

This shows that all the partial derivatives of u are zero (in particular, u is differentiable).
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(e) We apply the mean value theorem: for any two x < y ∈ [a, b] there is a c(x, y) ∈ [x, y] with∣∣∣∣u(y)− u(x)

x− y

∣∣∣∣ ≤ |f ′(c)| ≤ ∥f ′∥∞.

Thus u is 1-Hölder continuous. But

höl1(u) |b− a|1−α ≥ |u(x)− u(y)|
|x− y|

|x− y|1−α =
|u(x)− u(y)|

|x− y|α

shows that hölα(u) < ∞ and hence f is also α-Hölder continuous for all 0 < α ≤ 1

21. Hölder-continuous functions on closed sets.

Optional: Let Ω ⊂ Rn be an open subset of Rn. These exercise considers the relationship between

C0,α(Ω) and C0,α(Ω) (the latter is not defined in the script, but it has an obvious definition).

Let 0 < α ≤ 1 and u ∈ C0,α(Ω).

(a) Give a function f : Ω → R that belongs to C(Ω) but not C(Ω), either for general Ω or a

particular choice.

(b) Show that there is a unique function ũ ∈ C(Ω) with ũ|Ω = u. [Hint. Use uniform continuity.]

(c) Prove that hölΩ,αũ = hölΩ,αu.

(d) What can you then say about the relationship between C0,α(Ω) and C0,α(Ω)?

Solution.

(a) Put aside the trivial case Ω = Rn, which is both open and closed. If a ∈ ∂Ω, then consider

f(x) = sin ∥x− a∥−1 and f(a) = b. This is continuous on Ω, but not on Ω for any value of

b.

(b) Let x ∈ ∂Ω and let (xn) be a sequence in Ω converging to x. We will show that (u(xn))

is a Cauchy sequence. Choose any ε > 0. By uniform continuity, there is a δ > 0 such

that |u(x) − u(y)| < ε for all |x − y| < δ. Since (xn) converges, choose a large N so that

|xn − xm| < δ for all n,m > N . Thus also |u(xn)− u(xm)| < ε.

Define ũ(x) = limu(xn) for x ∈ ∂Ω and ũ(x) = u(x) otherwise. If yn → x is another

sequence then for any ε > 0 there is an N with xn, yn ∈ B(x, δ/2) for all n > N with the

δ from the uniform continuity of u. This forces ∥xn − yn∥ < δ and |u(xn) − u(yn)| < ε.

This shows limu(xn) = limu(yn) and the definition of ũ is independent of the choice of

sequence. ũ is continuous on Ω either because of u (for points in Ω) or by a standard

diagonal argument (for boundary points).

To prove uniqueness, if v is another continuous extension, then w = u−v is also continuous.

On Ω it is zero. For a point on the boundary w(x) = limw(xn) = lim 0 = 0. Thus u = v.
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(c) By the definition of supremum, hölΩ,α(ũ) ≥ hölΩ,α(u). For the converse, take any two

points x ̸= y ∈ Ω. There are sequences xn → x and yn → y in Ω. Then

|ũ(x)− ũ(y)|
∥x− y∥α

= lim
|u(xn)− u(yn)|
∥xn − yn∥α

≤ lim hölΩ,α(u) = hölΩ,α(u)

shows hölΩ,α(ũ) ≤ hölΩ,α(u).

(d) We have shown that any Hölder continuous function on Ω extends to a Hölder continuous

function on Ω with the same Hölder constant. The natural definition for Ck,α(Ω) is the

subset of Ck(Ω) such that the function and derivatives up to kth-order are bounded and

α-Hölder continuous. But then Ck,α(Ω) = Ck,α(Ω). It is for this reason that in the script

we only define Hölder spaces on open sets.

22. Examples of Hölder continuous functions.

(a) For 0 < b ≤ 1 define fb : (0, 1) → R by x 7→ xb. To which Hölder spaces does fb belong?

Compute its Hölder constants hölα.

[Hint. Consider the function h(z) = (1− zb)(1− z)−α.]

(b) Now define gb : (0,∞) → R by x 7→ xb. To which Hölder spaces does gb belong? Compute

its Hölder constants hölα.

(c) Define h : [0, 0.5] → R by h(0) = 0 and h(x) = (lnx)−1 otherwise. Show that this function

is continuous but not Hölder continuous. Can you explain why?

(d) Explain parts (a) and (b) with respect to Proposition 3.13.

Solution.

(a) We begin with computing the constants. Consider the function H : [0, 1]2 \ {x = y} → R
with

H(x, y) :=
|xb − yb|
|x− y|α

.

This function is symmetrical, so it is enough to consider y > x. We write

H(x, y) = yb−α 1− (x/y)b

(1− x/y)α

Consider the function h(z) = (1− zb)(1− z)−α for z ∈ [0, 1]. For z → 1 we have

limh(z) = lim
−bzb−1

α(1− z)α−1
= lim

−b

α

(1− z)1−α

z1−b
= 0

so this function is continuous. If we look for turning points

h′(z) =
−bzb−1(1− z) + α(1− zb)

(1− z)α+1

5



we find there are none. Hence 0 = h(1) ≤ h(z) ≤ h(0) = 1. We see now that

hölαfβ = supH(x, y) = sup
y∈(0,1)

yb−α.

For α ≤ b this is 1. For α > b this is ∞.

fb is always continuous and bounded. Therefore it belongs to C0,α((0, 1)) whenever α > b.

(b) The same calculation as in the previous part shows that

hölαgb = sup
y∈(0,∞)

yb−α.

This time the Hölder constant is only finite for α = b, in which case it is 1.

It belongs to no Hölder spaces C0,α((0,∞)) however because it is not bounded.

(c)

lim
x→0

h(x) = 1/∞ = 0.

It is not Hölder continuous because for x = 0

−(ln y)−1

yα
= − 1

yα ln y
→ 1

0
= ∞

as y → 0.

(d) In part (a), the domain Ω = (a, b) is bounded. Therefore the fact that fb ∈ C0,b(Ω) implies

that it also belongs to C0,α(Ω) for α < b. The theorem does not apply to part (b) because

(0,∞) is not bounded.
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