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Ross Ogilvie

Partial Differential Equations

Exercise sheet 5

12. Second order differential operators Let aij , ãij , bi, b̃i, c, c̃i, and d̃ be real functions on the

open set Ω ⊂ Rn. Any linear differential operator L : C2(Ω) → C(Ω) of second order may be

written as

(Lu)(x) =
n∑

i,j=1

aij(x)∂i∂ju(x) +
n∑

i=1

bi(x)∂iu(x) + c(x)u(x). (1)

This is called general form or non-divergence form. In contrast, we say that the operator is in

divergence form when it is written as:

(Lu)(x) =

n∑
i=1

 n∑
j=1

∂i(ãij(x)∂ju(x)) + ∂i(b̃i(x)u(x)) + c̃i(x)∂iu

+ d̃(x)u(x).

(a) Give the definition for a second order differential operator to be elliptic.

(b) Assume further that all the coefficient functions are differentiable. Show that the two forms

are equivalent. Give the relationship between the coefficient functions.

(c) Define, for a constant symmetric matrix A, the second order differential operator L on Rn.

(Lu)(x) := ∇ · (A∇u(x))

Show that L is elliptic exactly when there is an invertible linear map φ : Rn → Rn such

that L(u ◦ φ) = (△u) ◦ φ.
[Hint. A can be diagonalised by orthogonal matrices.]

Now let Ω̃ ⊂ Rn be another open set and φ : Ω → Ω̃ a C2-diffeomorphism. That is, φ is

bijective, and both φ and φ−1 are twice continuously differentiable.

(d) Show that L̃(ũ) ◦ φ = L(ũ ◦ φ) defines a second order differential operator L̃ on Ω̃ for

ũ ∈ C2(Ω̃). You may do this by writing L̃ is general form.

(e) Now suppose that Ω und Ω̃ are bounded and that both functions φ, φ−1 and their derivatives

extend continuously to the closure Ω, Ω̃ respectively. Under this hypothesis, show that L̃

is an elliptic operator exactly when L is. (Note, the relationship between L and L̃ is

symmetric, so it suffices to prove one direction only.)

Solution.

(a) This is Definition 2.11. The coefficient functions should be bounded and the (uniform)

ellipticity condition should hold: there is a positive constant Λ−1 such that for all points

x ∈ Ω and vectors λ ∈ Rn we have λTA(x)λ ≥ Λ−1|λ|, where A = (aij) is the matrix of

coefficients.

Both sides of the ellipticity are quadratic in λ, so it is possible to rephrase the condition

to only use unit vectors: λTA(x)λ ≥ Λ−1 for all unit vectors λ ∈ Rn and all x ∈ Ω. This

condition is stronger than simply being positive at every point since the domain Ω is open

and so if we only assume that it is positive we could have infx∈Ω λTA(x)λ = 0.
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(b) Since the coefficients are differentiable we can expand the divergence form (I’ll leave off the

function (x)’s)

n∑
i=1

 n∑
j=1

∂i(ãij∂ju) + ∂i(b̃iu) + c̃i∂iu

+ d̃u

=
n∑

i,j=1

(∂iãij∂ju+ ãij∂i∂ju) +
n∑

i=1

(
∂ib̃iu+ b̃i∂iu+ c̃i∂iu

)
+ d̃u

=

n∑
i,j=1

ãij∂i∂ju+

n∑
i=1

b̃i + c̃i +

n∑
j=1

∂j ãji

 ∂iu+

(
d̃+

n∑
i=1

∂ib̃i

)
u

This shows that operators in divergence form can be written in non-divergence form. For

the converse we need to solve

ãij = aij , b̃i + c̃i +
n∑

j=1

∂j ãji = bi, d̃+
n∑

i=1

∂ib̃i = c

for the tilde-coefficients. The first equation tells us ãij . The second equation allows us some

choice. We can take, for example, b̃i = 0 and then

c̃i = bi −
n∑

j=1

∂jaji.

Under this assumption, d̃ = c.

Later in the course we will see that, generally speaking, if we can make c̃i = 0 then we can

get stronger results. But to convert a non-divergence form operator into a divergence form

operator with c̃i = 0 requires (more-or-less) that aij be twice differentiable and bi be once

differentiable.

(c) In coordinates Lu =
∑

i,j ∂i(Aij∂ju) =
∑

i,j Aij∂i∂ju. Incidently, we see why the an

operator in divergence form has that name. We know that A = OTDO for a diago-

nal matrix D and an orthogonal matrix O. In coordinates Aij =
∑

k,l OkiDklOlj . Con-

sider the coordinate change y = Ox, which is the same as x = OT y. By the chain rule

∂yl =
∑

j ∂ylxj∂xj =
∑

j Olj∂xj . Using this, we can write

Lu =
∑
i,j,k,l

OkiDklOlj∂xi∂xju =
∑
k,l

Dkl∂yk∂ylu =
∑
k

Dkk∂
2
yk
u,

since D is diagonal.

Now let us consider the ellipticity condition. For any vector λ ∈ Rn

λTAλ = λTOTDOλ = (Oλ)TD(Oλ)

and |Oλ| = |λ|, so A fulfils the ellipticity condition if and only if D does. By considering

the standard basis vectors (1, 0, . . . ), etc, we see that D fulfils the ellipticity condition if

and only if its diagonal entries are positive. If we rescale the coordinates by the square root

of the diagonal entries, zi = D−0.5
ii yi we get that Lu =

∑
∂2
ziu = △zu.
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(d) The working in this part is similar to in the previous part. In the previous part we calculated

with the specific form of the coordinate changes we needed. In this part we use more general

formulas. Of course you could use the formula in this part and apply them to the previous

part with φ(x) = D−0.5Ox.

By the chain rule

∂i(ũ ◦ φ)(x) =
∑
k

∂kũ(φ(x))∂iφk(x)

∂j∂i(ũ ◦ φ)(x) =
∑
k

∂j [∂kũ(φ(x))]∂iφk(x) + ∂kũ(x̃)∂j∂iφk(x)

=
∑
k,l

∂l∂kũ(φ(x))∂jφl(x)∂iφk(x) +
∑
k

∂kũ(φ(x))∂j∂iφk(x).

If we substitute this into a formula of L in general form and regroup the terms, then we

see that L̃ is also in general form.

(e) From the previous part we see that the highest order terms ãij of L̃ are

ãij =
∑
i,j

aij∂jφl∂iφk.

If we write this in terms of matrices with Jjl = ∂jφl the derivative of φ then ã = JTaJ .

Moreover, we know that J is always invertible because it is a diffeomorphism. Thus |Jλ| > 0

and by a similar argument to part (c) we know that λT ãλ > 0 for all points x and unit

length vectors λ.

To strengthen this argument and show that inf λT ãλ > 0 we need to use the additional

hypotheses. Since we know that all the entries of J and J−1 extend to the boundary

continuously, by taking the limit of J(x)J−1(x) = I we see that J is also invertible on

the boundary. Thus (x, λ) 7→ |J(x)λ| is a continuous positive function on the compact set

Ω× ∂B(0, 1) must have a positive minimum. This shows finally that

inf
(x,λ)∈Ω×∂B(0,1)

λT ãλ = inf
(x,λ)∈Ω×∂B(0,1)

(Jλ)Ta(Jλ) ≥ inf
(x,λ)∈Ω×∂B(0,1)

Λ−1|Jλ|2 > 0.

13. Neumann Problems.

In this question we consider the Neumann problem for the Laplace equation on the unit ball in

R2. [Note: One may freely use the Laplace-Operator in polar coordinates from Sheet 1.]

(a) Let u ∈ C2(B(0, 1)) be a harmonic function on B(0, 1), with the polar coordinate form

u = u(r, φ) (for 0 ≤ r ≤ 1 and 0 < φ ≤ 2π). Show that∫
∂B(0,1)

∂u

∂r
(x)dσ(x) = 0

holds.
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(b) Hence show that there is no solution to the Neumann problem △u = 0 on B(0, 1) with
∂u
∂r = sin2(φ) on ∂B(0, 1).

(c) Find all solutions to △u = 0 on B(0, 1) with ∂u
∂r = sin(φ) on ∂B(0, 1).

Solution.

(a) Note that in polar coordinates the outward pointing normal of the ball is simply (1, 0)

because it is radial and length 1. Therefore we see that the integral is already in the form

of the divergence theorem:∫
∂B

∂u

∂r
dσ =

∫
∂B

∇u ·N dσ =

∫
B
∆u dσ = 0.

(b) One can compute the integral in part (a) exactly, but the following estimate is sufficent.

For π/4 ≤ φ ≤ 3π/4 we have sin2 φ ≥ 0.5. Therefore∫
∂B(0,1)

∂u

∂r
(x) dσ(x) ≥

∫ 3π/4

π/4
sin2 φ dφ ≥ π/4.

There can be no solution in this case because it would not obey the property established

in part (a).

(c) For this question we guess that the solution is of the form u(r, φ) = f(r) sinφ. Laplace’s

equation then reads(
f ′′ +

1

r
f ′
)
sinφ− 1

r2
f sinφ = 0 ⇒ r2f ′′ + rf ′ − f = 0 ⇒ f(r) = Ar−1 +Br.

Since we want the solution to be defined on the disc, we must choose A = 0. The boundary

condition ∂ru|∂B = sinφ then requires that f ′(1) = B = 1. Hence the solution is u(r, φ) =

r sinφ. Writing this in Cartesian coordinates make it trivial to see why this is harmonic:

u(x, y) = y. We can add any constant to this without changing its Laplacian or normal

derivative. Theorem 2.18 tells us that these are all the possible solutions.

14. Compact Operators.

Let X,Y be Banach spaces. A linear, continuous mapping T : X → Y is called compact when for

every bounded sequence (xm)m∈N in X there exists a subsequence (xml
)l∈N on which (Txml

)l∈N

converges.

(a) Show that a linear continuous mapping T : X → Y is compact exactly when the image of

the unit ball B(0, 1) = {x ∈ X | ∥x∥ < 1} of X is relatively compact. (Recall that relatively

compact means that the closure T [B(0, 1)] is compact.)

(b) Let X be a Banach space and idX : X → X be the identity mapping. Show that idX is a

compact operator if and only if X is finite-dimensional.
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Solution.

(a) Suppose T [B(0, 1)] is compact. Let (xn) be a bounded sequence: ie there exists and R with

∥xn∥ < R. Then x′n := R−1xn ∈ B(0, 1) and so (Tx′n) must have a convergent subsequence

(Tx′nk
). But then Txnk

= RTx′nk
is also convergent.

Conversely suppose that T is compact. Take any sequence yn ∈ T [B(0, 1)]. There are

elements yn,k ∈ T [B(0, 1)] with yn,k → yn as k → ∞. Let xn,k ∈ B(0, 1) be elements with

Txn,k = yn,k. All these vectors ∥xn,k∥ < 1 so the sequence (xn,n) is bounded. Because T

is compact, that means that yn,n has a convergent subsequence ynl,nl
→ y ∈ T [B(0, 1)].

Finally

lim
l→∞

∥y − ynl
∥ ≤ lim

l→∞
∥y − ynl,nl

∥+ lim
l→∞

∥ynl,nl
− ynl

∥ = 0 + 0

shows that (ynl
) is a convergent subsequence of (yn).

(b) The closed unit ball of a Banach space X is compact if and only if X is finite dimen-

sional. Hence idX is compact iff idX [B(0, 1)] is compact iff B(0, 1) is compact iff X is finite

dimensional.
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