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Ross Ogilvie

Partial Differential Equations

Exercise sheet 4

12. Spherical Means of Distributions.

The purpose of this question is to provide some context into the definition of the weak mean

value property and Weyl’s lemma. We will essentially prove the co-area formula.

Let Ψ : U × [−T, T ] ⊂ Rn → O ⊂ Rn be a diffeomorphism. This is a smooth invertible function

whose inverse function is also smooth. In particular, for each t we know that u 7→ Ψ(u, t) is

an (n − 1)-dimensional submanifold. Denote these by Yt := Ψ[U × {t}]. Suppose further that

∂uiΨ · ∂tΨ = 0 for i = 1, . . . , n− 1 and ∥∂tΨ∥ = 1.

(a) Check that spherical coordinates obey the assumptions on Ψ.

(b) Optional: Suppose we have vectors such that b · ai = 0 for i = 1, . . . , n − 1 and ∥b∥ = 1.

Show that

| det(a1, . . . , an−1, b)|2 = |det(a1, . . . , an−1)
T (a1, . . . , an−1)|.

Hint: Use the Gram matrix. Geometrically this is clear: the right hand side is the n-volume

of a unit length right-prism and the left hand side is the (n− 1)-volume of its cross-section.

(c) Argue that ∫
O
f dµ =

∫
U×[−T,T ]

f ◦Ψ | detΨ′| du dt =
∫
[−T,T ]

(∫
Yt

f dσ

)
dt

(d) Consider the ‘generalised mollifier’ χε : O → R defined by χε(x) = ϕε(t(x)) where ϕε is a

mollifier on R. Complete the argument to show that

lim
ε→0

∫
O
f χε dµ =

∫
Y0

f dσ.

This tempts us to define the integral of F on Y0 to be limε→0 F (χε) when this exists. This is

similar to how we cannot always find the ‘value’ of a distribution at a point, but when we can

it is limε→0 F (ϕε).

(e) Let us denote the functions f and gx in the weak mean value property and Weyl’s lemma

by a common notation

gx,ψ(y) :=
ψ(|x− y|)

nωn|x− y|n−1
.

Use the above results to interpret the expression U(gx,ψ). What is the significance of∫
ψ = 0 compared with

∫
ψ = 1?

Solution.

(a) For spherical coordinates, you need to exclude the half plane where longitude is zero. But

this doesn’t change the values of any of the integrals.

(b) The insight here is that the Gramm-Schmidt process (without normalising the vectors) does

not change the volume of the parallelepiped.
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(c) The first equality is just applying change of variables, since O = Ψ[U × [−T, T ]]. We can

then apply Fubini’s theorem to change it into nested integrals. Let Φt(u) = Ψ(u, t) be a

parameterisation of Yt. Then by the previous part

| detΨ′| = |det(∂u1Ψ, . . . , ∂un−1Ψ, ∂tΨ)| =
√
| detΦ′

t
TΦ′

t|

since Φ′
t = (∂u1Ψ, . . . , ∂un−1Ψ). Finally we can see∫

U
f ◦Ψ | detΨ′| du =

∫
U
f ◦ Φt

√
| detΦ′

t
TΦ′

t| du =

∫
Yt

f dσ

(d) Because of its definition with t(x) we can simplify χε ◦ Ψ(u, t) = ϕε(t). This is a constant

on each submanifold Yt and so can be brought outside the inner integral∫
O
f χε dµ =

∫
[−T,T ]

ϕε(t)

(∫
Yt

f dσ

)
dt

What we have now is an integral of the form
∫
R ϕε(t)I(t) dt for a mollifier ϕε. We know in

the limit as ε→ 0 that this integral tends to I(0). Therefore

lim
ε→0

∫
O
f χε dµ = I(0) =

∫
Y0

f dσ

(e) Suppose U = Fu is a distribution induced by a function u. Using spherical coordinates

Ψ centred on x and modified so that t = ∥x∥ − r for a constant r > 0, we see that

ψ(|y − x|) = ϕε(|x− y| − r) is a generalised mollifier converging to ∂B(x, r) = Y0.

lim
ε→0

U(gx,ψ) = lim
ε→0

∫
Rn

u(y)

nωn|x− y|n−1
ϕε(|x− y| − r) dy =

1

nωnrn−1

∫
∂B(x,r)

u(y) dσ(y).

In other words, this is exactly the spherical mean of U .

If U has the weak mean value property then let ψ(t) = ϕε(t− r)− ϕε(t−R). This ensures

that
∫
ψ = 1− 1 = 0. Taking the limit as ε→ 0 we get

0 = U(gx,ψ) =M(u, x, r)−M(u, x,R).

This shows that u has the mean value property. We have already seen in the script (bottom

of page 22) that if u has the mean value property then U has the weak mean value property.

In summary, for distributions that come from functions, the mean value and weak mean

value properties are equivalent.

The advantage of the defining the weak mean value property as in the script is that you

avoid limits (instead it has to hold for a family): U(gx,ψ) is well-defined for all distributions,

but the limit does not always exist.

In the proof of Weyl’s lemma, for a harmonic distribution U (so it has the weak mean value

property) we have the definition u(x) = U(gx,ψ) for any test function ψ with
∫
ψ = 1. It is

claimed that this does not depend on the choice of ψ. Indeed if χ is another choice then

U(gx,ψ)− U(gx,χ) = U(gx,ψ−χ) = 0
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because
∫
ψ−χ = 1− 1 = 0. We could choose ψ(t) = ψε(t− r) if we like, and therefore we

see that u(x) is defined to be the ‘spherical mean’ centred at x of the distribution U .

We see that the condition
∫
ψ = 1 corresponds to taking a spherical mean and

∫
ψ = 0

corresponds to taking the difference of two spherical means.

13. A detail in the proof of the Poisson Representation Formula (Poissonschen Darstel-

lungsformel).

We denote by K(x, y) the Poisson kernel as in Section 2.3 of the lecture notes. This has the

following properties (do not prove these properties again, refer to the lecture notes):

(i) K(x, y) > 0 for x ∈ B(0, 1), y ∈ ∂B(0, 1).

(ii)
∫
∂B(0,1)K(x, y)dσ(y) = 1 for x ∈ B(0, 1).

(iii) For all x0 ∈ ∂B(0, 1), in the limit x → x0, x ∈ B(0, 1) the map y 7→ K(x, y) converges

uniformly to 0 with respect to y on compact subsets of ∂B(0, 1) \ {x0}.

Let a continuous function u ∈ C(∂B(0, 1)) be given. We define

ũ : B(0, 1) → R, x 7→
∫
∂B(0,1)

K(x, y)u(y)dσ(y) . (∗)

Show that the function ũ can be extended continuously to the boundary ∂B(0, 1) and that the

extension on ∂B(0, 1) agrees with u.

[Hint: For any given x0 ∈ ∂B(0, 1) consider x ∈ B(0, 1) in a neighbourhood of x0 and break the

integral (∗) into a piece close to x0 and the “rest”. Use the properties of K given above to show

that the “rest” is well behaved with respect to the limit and goes to zero. For the part close to

x0 use the continuity of u to approximate the function values of u(y) and u(x0).]

Solution. Choose a boundary point x0 ∈ ∂B(0, 1). We must show that

lim
x→x0

ũ(x) = u(x0) =

∫
∂B(0,1)

K(x, y)u(x0) dσ(y),

(using property (ii)), which is equivalent to

lim
x→x0

∫
∂B(0,1)

K(x, y)[u(y)− u(x0)] dσ(y) = 0.

Let B = B(0, 1) and Bδ = B(x0, δ) for some δ > 0. Suppose that x ∈ B ∩ Bδ. As suggested in

the hint, we split the integral ∂B = (∂B ∩Bδ)∪ (∂B \Bδ). The second component ∂B \Bδ is a
compact subset of ∂B \ {x0}, so the uniform convergence allows us to bring the limit inside the

integral

lim
x→x0

∫
∂B\Bδ

K(x, y)[u(y)− u(x0)] dσ(y) =

∫
∂B\Bδ

K(x0, y)[u(y)− u(x0)] dσ(y) = 0,
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since K(x0, y) = 0 by the third property. By continuity of u ∈ C(B), for all ε > 0 there is a

δ > 0 so that |u(y)− u(x0)| < ε for all y ∈ ∂B ∩Bδ. This implies∣∣∣∣∫
∂B∩Bδ

K(x, y)[u(y)− u(x0)] dσ(y)

∣∣∣∣ ≤ ε

∫
∂B∩Bδ

K(x, y) dσ(y) ≤ ε,

using (i) and (ii). Together these two estimates imply that

lim
x→x0

∣∣∣∣∣
∫
∂B(0,1)

K(x, y)[u(y)− u(x0)] dσ(y)

∣∣∣∣∣ ≤ ε+ 0

for any given ε > 0. This is only possible if the limit is zero.

14. A detail in the proof of the Weak Maximum Principle.

Let H be a real n× n-matrix with

H = Ht and xtHx ≤ 0 ∀x.

We will show that there is a matrix D such that H = −D ·Dt.

(a) Optional: Show that the eigenvalues of a real symmetric n× n matrix are real.

(b) Consider the map f : ∂B(0, 1) → R defined by x 7→ xTHx. Let v be a maximum point of

f . Show that Hv = f(v)v. [Hint. Consider a path α : (−ε, ε) → ∂B(0, 1) with α(0) = v.]

(c) Suppose that v is an eigenvector of H. Let v⊥ := {x ∈ Rn | x · v = 0} be the orthogonal

complement. Show that Hv⊥ ⊂ v⊥.

(d) Prove inductively that there exists a matrix O and real numbers λi such that H =

O diag(λ1, . . . , λn)O
T .

(e) Finally, show there is a matrix D with H = −DDT .

Solution.

(a) Since H is real and symmetric, H̄T = H. Suppose we have a complex eigenvalue λ. For

complex vectors ∥v∥2 = v̄T v with matrix multiplication.

λ∥v∥ = v̄T (λv) = v̄T (Hv) = (H̄T v)
T
v = (Hv)

T
v = (λv)

T
v = λ̄∥v∥2.

This shows that λ = λ̄.

(b) We will prove something slightly more general. As in the hint, consider a path α through a

point v ∈ ∂B(0, 1). Then f ◦α : (−ε, ε) → Rn is a function of one variable. If (f ◦α)′(0) = 0

for all paths α through v, we say that v is a critical point of f . This generalises the notion

of critical points to submanifolds. Clearly a local maximum or local minimum is a critical

point.

Let v be a critical point of f . By the chain rule ∇f(v) · α′(0) = 0. If w is any unit length

vector that is perpendicular to v, then α(t) = cos tv + sin tw is a path in ∂B(0, 1) with

α(0) = v and α′(0) = w. This shows us that ∇f(v) must be parallel to v at a critical point.
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On the other hand

∂if = ∂i
∑
j,k

xjHjkxk =
∑
j,k

∂ixjHjkxk +
∑
j,k

xjHjk∂ixk =
∑
k

Hikxk +
∑
j

xjHji = (2Hx)i,

since H is symmetric. At a critical point 2Hv = ∇f(v) = cv. This shows that v is an

eigenvector. If we multiply this equation by vT from the left, we further have 2f(v) =

c∥v∥2 = c. This gives the desired result Hv = f(v)v.

(c) Let w ∈ v⊥. Then vT (Hw) = (Hv)Tw = λvTw = 0. This shows us that Hw ∈ v⊥ too.

(d) Because f is continuous and ∂B(0, 1) is compact, we know that f has a maximum v1. We

know from part (b) that v1 is an eigenvector with eigenvalue λ1 = f(v1). Identify v
⊥
1 with

Rn−1 via an orthonormal basis. We know from part (c) that H restricts to give a linear

operator on this subspace, and it will again be symmetric. We repeat the steps to get

another eigenvector v2. Inductively this gives use an orthonormal basis of eigenvectors vi

with eigenvalues λi = f(vi). The matrix O has these orthonormal vectors as its columns.

(e) By assumption f(x) ≤ 0 so all the eigenvalues are non-positive. D =

O diag(
√

|λ1|, . . . ,
√
|λn|).
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