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Ross Ogilvie

Partial Differential Equations

Exercise sheet 4

12. Spherical Means of Distributions.

The purpose of this question is to provide some context into the definition of the weak mean

value property and Weyl’s lemma. We will essentially prove the co-area formula.

Let Ψ : U × [−T, T ] ⊂ Rn → O ⊂ Rn be a diffeomorphism. This is a smooth invertible function

whose inverse function is also smooth. In particular, for each t we know that u 7→ Ψ(u, t) is

an (n − 1)-dimensional submanifold. Denote these by Yt := Ψ[U × {t}]. Suppose further that

∂uiΨ · ∂tΨ = 0 for i = 1, . . . , n− 1 and ∥∂tΨ∥ = 1.

(a) Check that spherical coordinates obey the assumptions on Ψ.

(b) Optional: Suppose we have vectors such that b · ai = 0 for i = 1, . . . , n − 1 and ∥b∥ = 1.

Show that

| det(a1, . . . , an−1, b)|2 = |det(a1, . . . , an−1)
T (a1, . . . , an−1)|.

Hint: Use the Gram matrix. Geometrically this is clear: the right hand side is the n-volume

of a unit length right-prism and the left hand side is the (n− 1)-volume of its cross-section.

(c) Argue that ∫
O
f dµ =

∫
U×[−T,T ]

f ◦Ψ | detΨ′| du dt =
∫
[−T,T ]

(∫
Yt

f dσ

)
dt

(d) Consider the ‘generalised mollifier’ χε : O → R defined by χε(x) = ϕε(t(x)) where ϕε is a

mollifier on R. Complete the argument to show that

lim
ε→0

∫
O
f χε dµ =

∫
Y0

f dσ.

This tempts us to define the integral of F on Y0 to be limε→0 F (χε) when this exists. This is

similar to how we cannot always find the ‘value’ of a distribution at a point, but when we can

it is limε→0 F (ϕε).

(e) Let us denote the functions f and gx in the weak mean value property and Weyl’s lemma

by a common notation

gx,ψ(y) :=
ψ(|x− y|)

nωn|x− y|n−1
.

Use the above results to interpret the expression U(gx,ψ). What is the significance of∫
ψ = 0 compared with

∫
ψ = 1?

13. A detail in the proof of the Poisson Representation Formula (Poissonschen Darstel-

lungsformel).

We denote by K(x, y) the Poisson kernel as in Section 2.3 of the lecture notes. This has the

following properties (do not prove these properties again, refer to the lecture notes):

(i) K(x, y) > 0 for x ∈ B(0, 1), y ∈ ∂B(0, 1).
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(ii)
∫
∂B(0,1)K(x, y)dσ(y) = 1 for x ∈ B(0, 1).

(iii) For all x0 ∈ ∂B(0, 1), in the limit x → x0, x ∈ B(0, 1) the map y 7→ K(x, y) converges

uniformly to 0 with respect to y on compact subsets of ∂B(0, 1) \ {x0}.

Let a continuous function u ∈ C(∂B(0, 1)) be given. We define

ũ : B(0, 1) → R, x 7→
∫
∂B(0,1)

K(x, y)u(y)dσ(y) . (∗)

Show that the function ũ can be extended continuously to the boundary ∂B(0, 1) and that the

extension on ∂B(0, 1) agrees with u.

[Hint: For any given x0 ∈ ∂B(0, 1) consider x ∈ B(0, 1) in a neighbourhood of x0 and break the

integral (∗) into a piece close to x0 and the “rest”. Use the properties of K given above to show

that the “rest” is well behaved with respect to the limit and goes to zero. For the part close to

x0 use the continuity of u to approximate the function values of u(y) and u(x0).]

14. A detail in the proof of the Weak Maximum Principle.

Let H be a real n× n-matrix with

H = Ht and xtHx ≤ 0 ∀x.

We will show that there is a matrix D such that H = −D ·Dt.

(a) Optional: Show that the eigenvalues of a real symmetric n× n matrix are real.

(b) Consider the map f : ∂B(0, 1) → R defined by x 7→ xTHx. Let v be a maximum point of

f . Show that Hv = f(v)v. [Hint. Consider a path α : (−ε, ε) → ∂B(0, 1) with α(0) = v.]

(c) Suppose that v is an eigenvector of H. Let v⊥ := {x ∈ Rn | x · v = 0} be the orthogonal

complement. Show that Hv⊥ ⊂ v⊥.

(d) Prove inductively that there exists a matrix O and real numbers λi such that H =

O diag(λ1, . . . , λn)O
T .

(e) Finally, show there is a matrix D with H = −DDT .
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