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Ross Ogilvie

Partial Differential Equations

Exercise sheet 2

6. Extension of Continuous Linear Operators. Let X be a normed vector space and X̄ its

completion. Let Y be a complete normed vector space Y . Suppose that L : X → Y is a

continuous linear operator. This means that there is a constant C such that ∥Lx∥ ≤ C∥x∥ for

all x ∈ X. Show that there is a unique continuous linear operator L̄ : X̄ → Y extending L (ie

L̄x = Lx for all x ∈ X). (3 Points)

Solution. Every element of x ∈ X̄ is the limit of a sequence xn ∈ X. Since we want L̄ to be

continuous, we are forced to define L̄x := limLxn. We see that Lxn is a Cauchy sequence

∥Lxn − Lxm∥ = ∥L(xn − xm)∥ ≤ C∥xn − xm∥ → 0

and therefore it converges in Y , so this definition produces a value. If x′n is another sequence

converging to x, then L(xn−x′n) is a null sequence, so this other sequence gives the same value.

Hence this definition of L̄ is well-defined.

It’s easy to see it’s linear. It’s trivial that it’s an extension of L. Since the norm is continuous

∥L̄x∥ = lim ∥Lxn∥ ≤ limC∥xn∥ = C∥x∥.

7. Distributions I.

(a) Show directly from Definition 2.6 that the Heaviside distribution

H : C∞
0 (R) → R, ϕ 7→

∫ ∞

0
ϕ(x) dx

is a distribution on R. (2 Points)

(b) By the definition of the derivative of a distribution

∂H(ϕ) = −H(∂ϕ) = −
∫ ∞

0
ϕ′(x) dx.

Simplify this expression in order to give a description of ∂H. (∂ here is the derivative in

one-dimension. It seems weird to use an index.) (3 Points)

(c) What is the support of ∂H (in the sense of distributions)? Why does this show that there

is no function f ∈ L1
loc(R) with ∂H = Ff? (3 Points)

(d) Consider a function f ∈ C∞
0 (Rn). Show that ∂i(Ff ) = F∂if . What is the connection to

Exercise 6?

(2 Points)

Solution.
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(a) The integral is always finite because ϕ has compact support. The integral is a linear

operator. It only remains to show that H is continuous with respect to the semi-norms.

Choose any compact set K and test function ϕ with support in K. Then

|H(ϕ)| ≤
∫ ∞

0
|ϕ| ≤

∫
R
|ϕ| ≤ µ(K) ∥ϕ∥∞ = µ(K) ∥ϕ∥K,0

(b) If we apply integration by parts we get −ϕ(∞) + ϕ(0). Since ϕ has compact support, the

first term is zero. Therefore H(ϕ) = ϕ(0). This is the delta distribution.

(c) By definition, (supp δ)c is the union of all open sets U such that δ(ϕ) = 0 for every test

function ϕ with support in U . If ϕ is supported in R \ {0} then δ(ϕ) = ϕ(0) = 0. This

shows that R \ {0} ⊆ (supp δ)c. Conversely, if 0 ∈ U then there is an ε > 0 such that the

bump function ϕB(0,ε) has support in U . Because ϕB(0,ε)(0) ̸= 0 we conclude that this U is

not part of the union that comprises (supp δ)c and thus 0 ̸∈ (supp δ)c. We have shown that

(supp δ)c = R \ {0}.
supp δ = {0}. Therefore, if δ = Ff then supp f = {0}. But if a function is supported

only at one point, then it is equivalent to 0 in the sense of L1 functions. Since the delta

distribution is not the zero distribution, it can not be from a function.

(d)

∂i(Ff )(ϕ) = −Ff (∂iϕ) = −
∫
Rn

f∂iϕ =

∫
Rn

∂ifϕ = F∂if (ϕ).

8. On Convolutions.

(a) Let f(x) = 1 for −1 ≤ x ≤ 1 and 0 otherwise. Compute f ∗ f . (2 Points)

(b) Show that the convolution of C∞
0 -functions on Rn is a bilinear, commutative, and associative

operation. (1+2 Points + 2 Bonus Points)

(c) Denote a constant function on R by 1. The Heaviside function H : R → R is defined as

H(x) := 1 for x ≥ 0 and H(x) := 0 for x < 0. The derivative of the Dirac distribution δ′

acts by δ′(ϕ) = −ϕ′(0). Let ϕ ∈ C∞
0 (R) be a test function.

(i) Consider the distribution ϕ ∗ Pδ′. Which result from the script tells us that this

distribution comes from a smooth function, even though δ′ does not? (1 Point)

(ii) Prove that ϕ ∗ Pδ′ = F−ϕ′ . (3 Points)

(iii) Thereby show that δ′ ∗H = δ and 1 ∗ δ′ = 0. (2 Points)

(iv) Complete the calculation of both 1∗(δ′ ∗H) and (1∗δ′)∗H in the sense of distributions

and see that they are not equal. This shows that the convolution of distributions with

non-compact support (on R) is not necessarily associative, even when it is well-defined.

(1 Point)

Solution.
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(a)

f ∗ f(x) =
∫
R
f(x− y)f(y) dy =

∫ 1

−1
f(x− y) dy =

∫ x−1

x+1
f(z) (−dz) =

∫ x+1

x−1
f(z) dz

=

∫
[x−1,x+1]∩[−1,1]

1 dz = len([x− 1, x+ 1] ∩ [−1, 1]).

(b) Commutativity follows from the substitution z = x− y. So it is enough to check bilinearity

in the first argument, which is clear. The tricky thing is associativity. The easiest way is

to try to reduce both integrals to a common form:

(f ∗ g) ∗ h(x) =
∫
(f ∗ g)(x− z)h(z) dz =

∫ (∫
f(x− z − y)g(y) dy

)
h(z) dz

=

∫∫
f(x− y − z)g(y)h(z) dy dz,

f ∗ (g ∗ h)(x) =
∫
f(x− y) g ∗ h(y) dy =

∫
f(x− y)

(∫
g(y − z)h(z) dz

)
dy

=

∫∫
f(x− y)g(y − z)h(z) dz dy let y = w + z, z = z

=

∫∫
f(x− w − z)g(w)h(z) dz dw.

Ask yourself, where have we used the assumption that the functions are compactly sup-

ported?

(c) (i) Lemma 1.11: The convolution of a distribution and a smooth function with compact

support is a smooth function.

(ii) Let ψ be a test function. By defintion of convolution of distributions ϕ ∗ Pδ′(ψ) =

Pδ′(Pϕ ∗ ψ). We should therefore investigate the argument.

Pϕ ∗ ψ(x) =
∫
Pϕ(x− y)ψ(y) dy =

∫
ϕ(y − x)ψ(y) dy.

Call this function j(x) for clarity. Now we must act Pδ′ on this. We first unwind the

definition of P : Pδ′(j) = δ′(Pj). We see

Pj(x) = j(−x) =
∫
ϕ(y + x)ψ(y) dy

δ′(Pj) = − d

dx

∣∣∣∣
x=0

∫
ϕ(y + x)ψ(y) dy =

∫ [
− ϕ′(y)

]
ψ(y) dy.

In other words

ϕ ∗ Pδ′ : ψ 7→
∫ [

− ϕ′(y)
]
ψ(y) dy.

Therefore we see that ϕ ∗ Pδ′ acts on a test function ψ by integrating it along with

−ϕ′. Hence this distribution comes from −ϕ′.
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(iii)

δ′ ∗H(ϕ) = H(ϕ ∗ Pδ′) = H(−ϕ′) =
∫ ∞

0
−ϕ′(y) dy

= ϕ(0).

1 ∗ δ′(ϕ) = 1(ϕ ∗ Pδ′) = 1(−ϕ′) =
∫ ∞

−∞
−ϕ′(y) dy

= 0.

(iv) 1 ∗ (δ′ ∗H) = 1 ∗ δ = 1 and (1 ∗ δ′) ∗H = 0 ∗H = 0.

9. Distributions II.

(a) Show that

V (ϕ) =

∫ ∞

0

ϕ(x)− ϕ(−x)
x

dx

is a distribution on R. Hint: Split the integral into [0, 1] and [1,∞] and use the mean value

theorem. (2 Bonus Points)

(b) What is the relation of V to x−1? (1 Bonus Point)

(c) Show that the function u : Rn → R, x 7→ ∥x∥k is a locally integrable function for k > −n.
(2 Bonus Points)

(d) Let n = 3 and k = −1. Let U = Fu be the distribution associated to u. It follows from

5(b) that ∂iu = −xi∥x∥−3, which is also locally integrable, so expect ∂iU to correspond

to ∂iu. However we only know this correspondence holds in situations like Exercise 7(d).

Using careful manipulation of the integrals (in particular, cut-out a ball B(0, ε)) show that

our expectation holds. (4 Bonus Points)

Solution.

(a) V is clearly linear. One can use L’Hopital’s rule to see that the integrand is continuous at

0, and therefore integrable. Hence V defines a linear functional, and it remains to show

that it is continuous. Let K be a compact set and ϕ a test function on K. We can bound

K in the interval [−R,R]. Let us therefore split the integral into two parts

V (ϕ) =

∫ 1

0

ϕ(x)− ϕ(−x)
x

dx+

∫ R

1

ϕ(x)− ϕ(−x)
x

dx.

The second integral is easily bound∣∣∣∣∫ R

1

ϕ(x)− ϕ(−x)
x

dx

∣∣∣∣ ≤ 2∥ϕ∥K,0

∫ R

1
dx ≤ 2R∥ϕ∥K,0
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By the mean value theorem, for all x there is a y ∈ [−x, x] such that

ϕ′(y) =
ϕ(x)− ϕ(−x)

2x
.

This allows us to bound the first integral∣∣∣∣∫ 1

0

ϕ(x)− ϕ(−x)
x

dx

∣∣∣∣ ≤ 2∥ϕ∥K,1

Together this gives |V (ϕ)| ≤ 2R∥ϕ∥K,0 + 2∥ϕ∥K,1.

(b) x−1 is not a local integrable function on R so does not correspond to a distribution. However,

if 0 ̸∈ suppϕ then V (ϕ) = Fx−1(ϕ). So we can think of V as one possible extension of x−1.

(c) Away from the origin u is continuous, so of course it is locally integrable. So we just need

to consider an open set containing the origin:∫
B(0,1)

|u(x)| dx =

∫ 1

0

∫
B(0,r)

rk dσ dr =

∫ 1

0
rk nωnr

n−1 dr = nωn

∫ 1

0
rk+n−1 dr

is finite if k > −n.

(d) By definition

∂iU(ϕ) = −U(∂iϕ) = −
∫
R3

u ∂iϕ

= −
∫
B(0,ε)

u ∂iϕ−
∫
R3\B(0,ε)

u ∂iϕ

= −
∫
B(0,ε)

u ∂iϕ−
∫
R3\B(0,ε)

∂i(uϕ) +

∫
R3\B(0,ε)

∂iuϕ

= −
∫
B(0,ε)

u ∂iϕ+

∫
∂B(0,ε)

uϕxi∥x∥−1 dσ +

∫
R3\B(0,ε)

∂iuϕ

We examine the three integrals in the limit as ε → 0. The first integral we know goes to

zero, because we can pull out ∥∂iϕ∥∞ and then we know that u is integrable. The idea for

the second integral is similar∣∣∣∣∣
∫
∂B(0,ε)

uϕxi∥x∥−1 dσ

∣∣∣∣∣ ≤ ∥ϕ∥∞ε−2

∫
∂B(0,ε)

|xi| dσ ≤ ∥ϕ∥∞ε−2 × ε 4πε2 → 0.

The third term is exactly what we want. So taking limits

∂iU(ϕ) = 0 + 0 + lim
ε→0

∫
R3\B(0,ε)

∂iuϕ =

∫
R3

∂iuϕ = F∂iu(ϕ)
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