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Ross Ogilvie

Partial Differential Equations

Exercise sheet 1

1. Bumpy Road

Optional: Give an example of a function u : Ω ⊂ R → R that is

(a) continuous but not differentiable.

(b) differentiable but not continuously differentiable.

(c) belongs to Ck but not Ck+1.

Solution.

(a) u(x) = |x|.

(b) u(x) = x2 sinx−1 for x ̸= 0 and u(0) = 0. For x ̸= 0 it is differentiable with u′(x) =

2x sinx−1 − cosx−1.

u′(0) = lim
h→0

h2 sinh−1 − 0

h− 0
= 0.

So the derivative exists everywhere, but is not continuous at zero.

(c) These spaces can be defined inductively: u ∈ Ck if and only if u′ ∈ Ck−1 (for k ≥ 1. The

space C0 is the space of continuous functions. We already have seen that u0(x) = |x| ∈ C0

but is not differentiable. If we integrate this, uk(x) =
∫ x
0 uk−1(t) dt, then we know that

u′k = uk−1 ∈ Ck−1 \ Ck and therefore uk ∈ Ck \ Ck+1.

You may recall from Analysis II that there is a somewhat complicated relation between

whether a function is partially differentiable and differentiable. However, a function is partially

differentiable and all its partial derivatives are continuous if and only if it is continuously

differentiable. This is a good reason to consider the space of continuously differentiable functions.

2. Vector Operators

Optional: Write in terms of components the formulas for the gradient ∇, the divergence ∇·, and
the Laplacian △.

Solution. Let u : Ω ⊂ Rn → R be a scalar valued function and F : Ω → Rn a vector valued

function.

∇u =

(
∂u

∂xi

)
i

∇ · F =
∑
i

∂Fi

∂xi

△u = ∇ · (∇u) =
∑
i

∂2u

∂x2i
.

1



3. The linear transport equation

Let b ∈ Rn. The (homogeneous) linear transport equation with direction b is given by the

following partial differential equation of first order:

u̇+ b · ∇u = 0 . (∗)

This is a differential equation of u = u(x, t) : Rn × R → R, where u̇ denotes the derivative of u

with respect to t ∈ R and the gradient ∇u is taken with respect to x ∈ Rn.

(a) Suppose that u : Rn × R → R is a C1 solution of (∗). Show that u is constant on each of

the parallel lines with direction (b, 1) ∈ Rn × R. (Hint: Choose a line and parameterise it

by s. Use the chain rule.) (4 points)

(b) Let g ∈ C1(Rn). Prove that u(x, t) := g(x − tb) is the unique solution of (∗) satisfying

u(·, 0) = g. (5 points)

Solution.

(a) Consider the line parameterised by s 7→ (sb, s) and the value of the function u on this line

z(s) := u(sb, s). By the chain rule

dz

ds
=

∑
i

∂u

∂xi
bi +

∂u

∂t
1 = ∇u · b+ u̇ = 0.

We see that u is constant on each of these lines.

(b) We first see that the given u is a solution. Again by the chain rule

∇u · b+ u̇ = ∇g · b+∇g · (0− b) = 0.

To show uniqueness, we first apply a standard trick (this trick is not strictly necessary, but

it makes it a little easier to explain the crux of the argument). Suppose that there was

another solution v. Because this is a linear PDE, the difference w = u− v is also a solution

to the transport equation. Moreover, w(x, 0) = g(x) − g(x) = 0. Because every point of

Rn × R belongs to a line with direction (b, 1) and all such lines intersect the plane t = 0,

by part (a) we conclude that w is zero at every point. Therefore u = v.

4. In Colour.

Let Ω be a region in Rn and N the outer unit normal vector field on ∂Ω. Let u, v be two C2

real-valued functions on Ω.

(a) Show v△u = ∇ · (v∇u)−∇u · ∇v. (2 points)

(b) Prove the first Green formula∫
Ω
v△u dx = −

∫
Ω
∇u · ∇v dx+

∫
∂Ω

v∇u ·N dσ.

(2 points)
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(c) Using the first Green formula, prove the second Green formula∫
Ω
(v△u− u△v) dx =

∫
∂Ω

(v∇u− u∇v) ·N dσ.

(1 points)

(d) Suppose further that v has support in Ω. This means that {x ∈ Ω | v(x) ̸= 0} ⊊ Ω. Prove

that ∫
Ω
v△u dx =

∫
Ω
u△v dx

(1 points)

Solution.

(a) If you are not familiar with vector calculus, remember that you can also write the expression

out using summations signs and then use normal calculus rules. Indeed, this is where the

vector calculus rules come from.

Start with g∇f . Its ith component is g∂if . Therefore

∇ · (g∇f) =
∑
i

∂i(g∂if) =
∑
i

∂ig∂if + g∂2
i f = ∇g · ∇f + g△f

(b) Integrate the expression from the previous part and apply the divergence theorem∫
Ω
∇ · (v∇u) dx =

∫
∂Ω

v∇u ·N dσ.

(c) The second Greens formula is simply a symmetrised version of the first:∫
Ω
(v△u− u△v) dx = −

∫
Ω
(∇u · ∇v −∇v · ∇u) dx+

∫
∂Ω

(v∇u− u∇v) ·N dσ

=

∫
∂Ω

(v∇u− u∇v) ·N dσ.

(d) Since v has compact support, it and its derivatives must vanish on ∂Ω. Therefore the right

hand side of (c) is zero. The result follows.

5. Laplacian and Laplace equation Laplace’s equation is △u = 0. A solution to Laplace’s

equation is called a harmonic function. We will discuss harmonic functions in further detail in

the next chapter.

(a) Let u, v : Ω → R be harmonic functions. Show that the function w(x) := u(x)v(x) is

harmonic exactly when ∇u ⊥ ∇v. (2 points)

(b) Consider the function u : Rn → R, x 7→ ∥x∥. Compute its gradient and Laplacian. (3

points)
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(c) Optional: Let u : R2 → R be twice-differentiable. Show for polar coordinates x = r cos(φ),

y = r sin(φ) that

△u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂φ2
.

(d) Optional: Let u : R3 → R be twice differentiable.

(i) Show for cylindrical coordinates x = r cos(θ), y = r sin(θ), z = z that

△u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+

∂2u

∂z2
.

(ii) Show for spherical coordinates x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ) that

△u =
1

r2 sin(θ)

[
∂

∂r

(
r2 sin(θ)

∂u

∂r

)
+

∂

∂θ

(
sin(θ)

∂u

∂θ

)
+

∂

∂φ

(
1

sin(θ)

∂u

∂φ

)]
.

(e) Let Ω ⊂ Rn be an open and bounded domain. Let u ∈ C2(Ω) be a solution of the boundary

value problem

△u = 0 with u|∂Ω = 0 .

Show u ≡ 0. (5 points)

[Hint: Investigate
∫
Ω u(△u) dx with the help of Green’s first formula.]

Solution.

(a) We have ∂2
jw = ∂2

j uv + 2∂ju∂jv + u∂2
j v. Summing over j gives the relation △w = △uv +

2∇u ·∇v+u△v. Since u and v are harmonic, △w = 2∇u ·∇v. Hence w is harmonic if and

only if ∇u and ∇v are perpendicular (or one is zero, if you don’t want to say that the zero

vector is perpendicular to all vectors).

(b)

∂i∥x∥ = ∂i

∑
j

x2j

1/2

=
1

2

∑
j

x2j

−1/2

2xi =
xi
∥x∥

,

∂2
i ∥x∥ = ∂i

xi
∥x∥

=
∥x∥ − x2i ∥x∥−1

∥x∥2
=

∥x∥2 − x2i
∥x∥3

It follows that ∇∥x∥ = ∥x∥−1 x and △∥x∥ = (n− 1)∥x∥−1.

(c) This follows from the chain rule.

(d) These both follow from the chain rule.

(e) We begin by calculating from the hint

0 =

∫
Ω
u(△u) dx =

∫
Ω
∇(u∇u)−∇u · ∇u dx

=

∫
∂Ω

u∇u ·N dσ −
∫
Ω
∥∇u∥2 dx

= 0−
∫
Ω
∥∇u∥2 dx.
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We want to conclude from this that ∥∇u(x)∥ = 0 for all points x ∈ Ω. Suppose there was a

point x0 where it was not zero. By continuity there is neighbourhood U where ∥∇u∥ > C

for some positive constant C < ∥∇u(x0)∥. But then

0 =

∫
Ω
∥∇u∥2 ≥

∫
U
∥∇u∥2 ≥ C2µ(U) > 0.

Since ∇u ≡ 0 then u must be constant. But since it is zero at the boundary, it must be

zero everywhere.

The argument in the middle can also be proved with the fundamental lemma of the calculus

of variations (Lemma 1.13). This lemma belongs to the section on distributions, so feel free

to look at this proof again next week, when we have covered that material. Suppose that

f ≥ 0 and
∫
Ω f = 0. Let ϕ be any test function. We can write it in terms of its positive

and negative parts ϕ = ϕ+ − ϕ− with ϕ+ := max{ϕ, 0} and ϕ− := max{−ϕ, 0}. Then

0 ≤
∫
Ω
fϕ+ ≤ supϕ+

∫
Ω
f = 0

and likewise for ϕ−. Together this shows that Ff (ϕ) = 0 and Ff is the zero distribution.

But the association of f 7→ Ff is injective, therefore f must be the zero function.
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