1. Bumpy Road

Optional: Give an example of a function $u:\Omega\subset\mathbb{R}\to\mathbb{R}$ that is

- (a) continuous but not differentiable.
- (b) differentiable but not continuously differentiable.
- (c) belongs to C^k but not C^{k+1} .

2. Vector Operators

Optional: Write in terms of components the formulas for the gradient ∇ , the divergence ∇ , and the Laplacian \triangle .

3. The linear transport equation

Let $b \in \mathbb{R}^n$. The (homogeneous) linear transport equation with direction b is given by the following partial differential equation of first order:

$$\dot{u} + b \cdot \nabla u = 0 \ . \tag{*}$$

This is a differential equation of $u = u(x,t) : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$, where \dot{u} denotes the derivative of u with respect to $t \in \mathbb{R}$ and the gradient ∇u is taken with respect to $x \in \mathbb{R}^n$.

- (a) Suppose that $u: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ is a C^1 solution of (*). Show that u is constant on each of the parallel lines with direction $(b,1) \in \mathbb{R}^n \times \mathbb{R}$. (Hint: Choose a line and parameterise it by s. Use the chain rule.) (4 points)
- (b) Let $g \in C^1(\mathbb{R}^n)$. Prove that u(x,t) := g(x-tb) is the unique solution of (*) satisfying $u(\cdot,0) = g$.

4. In Colour.

Let Ω be a region in \mathbb{R}^n and N the outer unit normal vector field on $\partial\Omega$. Let u,v be two C^2 real-valued functions on $\overline{\Omega}$.

(a) Show
$$v \triangle u = \nabla \cdot (v \nabla u) - \nabla u \cdot \nabla v$$
. (2 points)

(b) Prove the first Green formula

$$\int_{\Omega} v \triangle u \ dx = -\int_{\Omega} \nabla u \cdot \nabla v \ dx + \int_{\partial \Omega} v \nabla u \cdot N \ d\sigma.$$

(2 points)

(c) Using the first Green formula, prove the second Green formula

$$\int_{\Omega} (v \triangle u - u \triangle v) \ dx = \int_{\partial \Omega} (v \nabla u - u \nabla v) \cdot N \ d\sigma.$$

(1 points)

(d) Suppose further that v has support in Ω . This means that $\overline{\{x \in \Omega \mid v(x) \neq 0\}} \subsetneq \Omega$. Prove that

$$\int_{\Omega} v \triangle u \ dx = \int_{\Omega} u \triangle v \ dx$$

(1 points)

- **5. Laplacian and Laplace equation** Laplace's equation is $\triangle u = 0$. A solution to Laplace's equation is called a harmonic function. We will discuss harmonic functions in further detail in the next chapter.
 - (a) Let $u, v : \Omega \to \mathbb{R}$ be harmonic functions. Show that the function w(x) := u(x)v(x) is harmonic exactly when $\nabla u \perp \nabla v$. (2 points)
 - (b) Consider the function $u : \mathbb{R}^n \to \mathbb{R}, x \mapsto ||x||$. Compute its gradient and Laplacian. (3 points)
 - (c) Optional: Let $u: \mathbb{R}^2 \to \mathbb{R}$ be twice-differentiable. Show for polar coordinates $x = r \cos(\varphi)$, $y = r \sin(\varphi)$ that

$$\triangle u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \varphi^2}.$$

- (d) Optional: Let $u: \mathbb{R}^3 \to \mathbb{R}$ be twice differentiable.
 - (i) Show for cylindrical coordinates $x = r\cos(\theta)$, $y = r\sin(\theta)$, z = z that

$$\triangle u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2}.$$

(ii) Show for spherical coordinates $x = r\sin(\theta)\cos(\varphi), y = r\sin(\theta)\sin(\varphi), z = r\cos(\theta)$ that

$$\triangle u = \frac{1}{r^2 \sin(\theta)} \left[\frac{\partial}{\partial r} \left(r^2 \sin(\theta) \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial u}{\partial \theta} \right) + \frac{\partial}{\partial \varphi} \left(\frac{1}{\sin(\theta)} \frac{\partial u}{\partial \varphi} \right) \right].$$

(e) Let $\Omega \subset \mathbb{R}^n$ be an open and bounded domain. Let $u \in C^2(\overline{\Omega})$ be a solution of the boundary value problem

$$\triangle u = 0$$
 with $u|_{\partial\Omega} = 0$.

Show
$$u \equiv 0$$
. (5 points)

[Hint: Investigate $\int_{\Omega} u(\Delta u) dx$ with the help of Green's first formula.]