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Ross Ogilvie
Analysis III
14. Exercises

44. A differential form which is closed but not exact.

Consider on the punctured plane R2 \ {0} the 1-form

ω := − y

x2 + y2
dx+

x

x2 + y2
dy.

(a) Show that ω is closed.

(b) Compute
∫
S1 ω .

(c) Why does it follow from that ω is not exact?

Remark. Due to d(dη) = 0 we see that every exact form is closed. Poincaré’s Lemma

says that on star-shaped regions in Rn that the converse is also true: every closed form

is exact. The example in this exercise shows that such a converse result cannot hold for

general regions.

Solution.

(a)

dω = −
(
x2 + y2 − 2y2

(x2 + y2)2

)
dy ∧ dx+

(
x2 + y2 − 2x2

(x2 + y2)2

)
dx ∧ dy = 0

(b) We use the parametrisation f and result from Exercise 43 on the last tutorial sheet:∫
S1
ω =

∫ 2π

0

−sin t

1
d(cos t) +

cos t

1
d(sin t) =

∫ 2π

0

sin2 t dt+ cos2 t dt = 2π.

(c) By Stokes’ theorem if ω were exact then this integral would be zero.

45. An integration.

Let ω = y dx+ z dy be a 1-form on R3. Consider the restriction of ω to the 2-sphere S2,

with the parametrisation

S2 = { (sin(ϕ) sin(ϑ), cos(ϕ) sin(ϑ), cos(ϑ)) ∈ R3 |ϕ ∈ [0, 2π), ϑ ∈ [0, π] }.

Verify through direct computation that Stokes’ theorem holds for this case:∫
S2

dω = 0.
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Solution. First,

dω = dy ∧ dx+ dz ∧ dy.

We will also need to calculate the pullback by the parametrisation f(ϕ, ϑ) = (sin(ϕ) sin(ϑ), cos(ϕ) sin(ϑ), cos(ϑ)):

f ∗dx = d(sin(ϕ) sin(ϑ)) = cos(ϕ) sin(ϑ)dϕ+ sin(ϕ) cos(ϑ)dϑ

f ∗dy = − sin(ϕ) sin(ϑ)dϕ+ cos(ϕ) cos(ϑ)dϑ

f ∗dz = − sin(ϑ)dϑ

f ∗(dy ∧ dx) = − sin2(ϕ) sin(ϑ) cos(ϑ)dϕ ∧ dϑ+ cos2(ϕ) sin(ϑ) cosϑdϑ ∧ dϕ

= − sin(ϑ) cos(ϑ)dϕ ∧ dϑ

f ∗(dz ∧ dy) = − cos(ϕ) sin2(ϑ)dϑ ∧ dϕ

= cos(ϕ) sin2(ϑ)dϕ ∧ dϑ

Similar to Exercise 43, we can ignore sets of measure zero when pulling back using the

parametrisation.∫
S2

dω =

∫
[0,2π]×[0,π]

f ∗dω

=

∫
[0,2π]×[0,π]

[
− sin(ϑ) cos(ϑ) + cos(ϕ) sin2(ϑ)

]
dϕ ∧ dϑ

=

∫ π

0

[∫ 2π

0

− sin(ϑ) cos(ϑ) + cos(ϕ) sin2(ϑ) dϕ

]
dϑ

=

∫ π

0

−2π sin(ϑ) cos(ϑ) dϑ =

∫ π

0

−π sin(2ϑ) dϑ = 0.

46. The Divergence Theorem (aka Gauss’ Theorem).

Let X ⊂ Rn be a compact subset of Rn with X0 = X that is an n-dimensional manifold

with boundary. It is know that X must be orientable and that ω := dx1 ∧ · · · ∧ dxn is a

volume form on X. Further, let a smooth (n− 1)-form η on X be given.

(a) Show that there is a unique vector field F ∈ Vec∞(X) with η = iFω.

(b) Write F = (F1, . . . , Fn) for functions F1, . . . , Fn ∈ C∞(X,R). Define the divergence

operator div(F ) ∈ C∞(X,R) as

div(F ) :=
n∑
k=1

∂Fk
∂xk

.

Prove the following connection between the divergence operator and the exterior

derivative:

d(iFω) = div(F ) · ω.
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(c) Prove Gauss’ divergence theorem:∫
∂X

η =

∫
X

div(F ) · ω .

Solution.

(a) We know that we can write η =
∑
ηidx1∧ . . . d̂xi · · ·∧dxn. Consider then the vector

field F := (η1, . . . , (−1)n−1ηn) and in particular how ιFω acts on E1 ⊗ Êi ⊗ En:

〈ιFω,E1 ⊗ Êi ⊗ En〉 = 〈ω, F ⊗ E1 ⊗ Êi ⊗ En〉

=
∑
j

〈ω, (−1)j−1ηjEj ⊗ E1 ⊗ Êi ⊗ En〉

=
∑
j

(−1)j−1ηj det(dxk(vl))k,l

= (−1)i−1ηi det(dxk(vl))k,l

= (−1)i−1ηi · (−1)i−1,

because the only determinant that does not have a repeated column is the one where

j = i. For that matrix, you then have to do j−1 column swaps to make it the identity

matrix. This shows that ιFω acts identically to η.

(b) We can apply part (a) in reverse, so that ιFω =
∑

i(−1)i−1Fidx1 ∧ . . . d̂xi · · · ∧ dxn.

Now we apply the exterior derivative

d(ιFω) =
∑
i

d
(
(−1)i−1Fi

)
∧ dx1 ∧ . . . d̂xi · · · ∧ dxn

=
∑
i

[∑
j

∂

∂xj
(−1)i−1Fidxj

]
∧ dx1 ∧ . . . d̂xi · · · ∧ dxn

=
∑
i

(−1)i−1
∂Fi
∂xi

dxi ∧ dx1 ∧ . . . d̂xi · · · ∧ dxn

=
∑
i

∂Fi
∂xi

dx1 ∧ · · · ∧ dxn

= div(F ) · dx1 ∧ · · · ∧ dxn.

(c) ∫
∂X

η =

∫
X

dη =

∫
X

d(ιFω) =

∫
X

div(F ) · ω
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47. Volume forms on compact connected manifolds.

Let X be a compact connected orientable n-dimensional manifold without boundary, and

suppose that ω is a non-vanishing n-form. Show that ω is not exact.

Hint. Calculate
∫
X
ω in two ways: with Stokes’ theorem and with Definition 3.21.

Solution. Suppose that ω was exact: ω = dη. Then by Stokes’ theorem

0 =

∫
∅
η =

∫
∂X

η =

∫
X

dη =

∫
X

ω.

On the other hand, from the definition of integration on manifolds, let {(Uk, φk)} be an

oriented atlas of X and fk the corresponding partition of unity. Without loss of generality,

assume all the sets Uk are connected. Write ω = gkdφk,1 ∧ · · · ∧ dφk,n. Because gk is non-

vanishing, it has a definite sign on Uk. Because we are using an orientable atlas, all of

the functions gk have the same sign. Assume this sign is positive. Then∫
X

ω =
∑
k

∫
φk[Uk]

fk(φ
−1
k (x))gk(φ

−1
k (x)) dx1 . . . dxn ≥

∫
φ0[U0]

f0(φ
−1
0 (x))g0(φ

−1
0 (x)) dx1 . . . dxn > 0

since the integral of a non-negative continuous function that is positive at a point must

be positive. This is contradiction. Hence ω is not exact.
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