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1. Continuity in metric spaces.

Exercise 1.7 in the skript.
In this question we show that the e-d-definition of continuity in metric spaces agrees with

the definition of continuity in topological spaces.

Let (X,d) and (X’,d') be two metric spaces, and f : X — X’ a map between them.

Demonstrate the following are equivalent:

(1) For every open subset O of X', the pre-image f~[0'] is open in X.

(2) For every point p € X and every € > 0, there exists a § > 0 so that for every point
q € X with d(p,q) < ¢ it holds that d'(f(p), f(q)) < e.

(4 Points)

Solution. It is useful to restate (2) in terms of balls. It is equivalent to
(2’) For every point p € X and every ¢ > 0, there exists a 6 > 0 so that f[B(p,d)] C

B(f(p),e).

Suppose that (1) is true. Choose any point p € X and any € > 0. Consider the ball
O = B(f(p),e) in X'. By (1), we know that O = f~![0’] is an open set of X that
contains p. Therefore there is a ball B(p,0) C O for some > 0. f[B(p,d)] C f[O] =
0" = B(f(p),e)-

Suppose that (2’) is true. Choose any open set O" of X’ and let O = f~![0’]. Choose
any point p € O. We need to show that there is a ball B(p,0) € O. But O is open
and contains f(p), so we know that there exists a ball B(f(p),e) C O". (2’) now guar-
antees the existence of such a B(p,d), because f[B(p,d)] € B(f(p),e) € O’ implies
B(p,d) C f7YHO'.

2. A Characterisation of connected spaces.

Let X be a metric space. Show that the following properties are equivalent:

(1) X ist connected (Definition 1.8).
(2) There does not exists two non-empty open subsets U,V of X with U UV = X and
unv =wg.
(2 Points)
Solution. Suppose that there are two open sets with UUV = X and UNV = @. It
follows that U = X \ V. Because V is open, U is closed. Hence U and V' are both open
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and closed. If X is connected as per Definition 1.8, then one must be the empty set,
which shows (2). On the other hand, if (1) is not true then take V' to be an open and
closed set that is not @ and not X. This shows (2) is not true either.

. An example for connected but not path-connected space.

We consider the following subsets of R?:

A={(z,y) eR’|z=0and y € [-1,1]}
B:={(z,y) e R*|z € R, and y =sin(1) }
M:=AUB.

M is called the topologist’s sine curve.

(a) Show that B is connected. [Hint. Theorem 1.10(iv).] (2 Point)
(b) Show that B = M and so explain why it follows that M is also connected.
[Hint. Theorem 1.10(i).] (3 Points)
(c) Let p = (0,1) € A. Consider the open rectangle S := (=1, (27)~!) x (0,2). What
are the connected components of M N S? (8 Points)

(d) Prove, from (c) that M is not locally connected. [Hint. Theorems 1.9 and 1.10(iv).]
(2 Points)

(e) We say that a space M is path-connected, when for every pair of points p, ¢ € M there
is a continuous function ~ : [0,1] — M with v(0) = p and (1) = ¢. Continuous
functions from an interval to a space are called paths.

Show that there is no path « : [0, 1] — M with initial point 7(0) € A and end point
v(1) € B. Hence M is not path-connected.
[Hint. Modify the previous argument.] (2 Points)

Solution.

(a) For z # 0, we know that 1/x and sin(1/x) are continuous functions. B is the image
of the continuous function Ry — R?: z — (z,sin(1/x)).

(b) Let p,(xn, y,) be a sequence in B that converges to some point p = (z,y) in R% If
x > 0 then

y = lim y, = lim sin(-) = sin(}),

and hence p € B. However, if x = 0 then |y| = lim |y,| < lim1 = 1. Together this
shows that B C M.



(c)

(d)

Conversely, choose any point (0,y) € A and let 6, = arcsiny + 27n for n € N.
That is, sinf,, = y. The sequence of points p, := (6,',y) € B converges to (0,y).
Therefore B = M.

Since B is connected, a special case of Theorem 1.10(i) shows that B is connected.

The connected components are the half phases of the sine curve: M N{2mn < z7! <
7+ 2mn} for n > 1.

Consider the point p from (c¢) and the open neighbourhood MNS. We must show that
there is no connected neighbourhood of p contained in M N S. For a contradiction,

suppose U C M N S were a connected neighbourhood of p.

Consider the projection P : (z,y) — . It is continuous. Because U is connected
P[U] is connected (Theorem 1.10) and hence it is a closed interval (Theorem 1.9).
We have see in (b) that there must be a point of b € U N B. It follows that

T+ 2mn’ 27n

0, P(b)] C P[U] € P[S] = {0} U U{L ! }

But this is a contradiction, the left hand side is not contained in the right hand side.

Suppose that there did exist a continuous path . We can modify the argument
in the previous part to show another contradiction. We wil prove this for paths
with v(0) = (0,1) and (¢) € B for t > 0; the general case is similar. Since 7y is
continuous at 0, for all ¢ > 0 there exists § > 0 so that ||y(t) — (0,1)|| < ¢ for all
t < §. Choosing ¢ < 1 shows that v([0,4d]) € S. But then we encounter the same
contradiction as before: P o+ is continuous so P o ([0, d]) must contain the closed
interval [0, P(y(0))] but also be a subset of P(M N S).

4. (Not) Hausdorff and Lindel6f Manifolds, the type of spaces we study in this course,

are defined to be both Hausdorff and Lindelof. In this question we give two examples:

The ’line with two origins’ is not Hausdorff and the ’long ray’ is not Lindelof. This is

extra material to help you understand these properties.

(a)

(b)

Let D = RU{0'}. A set U is open in D if U is a subset of R and is open in R,
or if U contains the new point 0’ and U U {0} \ {0’} is open in R. Show that the
sequence (n!),en+ has both 0 and 0 as limit points (the definition of convergence
in a topological space is after Definition 1.6). The space D is called the ’line with
two origins’.

Consider the topological space R := N x [0,1) with the ordering (m,z) < (n,y) if
m < n,orm=mnand x <y. Give a function f : R — [0,00) that preserves the

order relation.



(c)

There exists a set €2, called the first uncountable ordinal, with the following proper-

ties:
(1) it is uncountable

(2) it is well-ordered. A set is well-ordered when there is an order relation < in
which every non-empty subset has a minimum, a smallest element. R with the
normal order is not well-ordered, for example (0, 1) does not contain a minimum.

N with the usual order is well-ordered.

(3) for every a € €, the subset H(a) := {b € Q| b < a} is countable.

Let R := Q x [0,1) with the ordering (a,z) < (b,y) if a < b, or a = b and = < y.
Let Oq be the minimum of €2 so that O = (0q,0) is the minimum of R'. An open
interval in R’ has the form I(«o,8) := {¢ € R | a < ¢ < p} for o, € R or
J(B) ={0}yUI(0,5) ={¢ € R'| ¢ < p}. Find an uncountable collection of open
intervals such that no intervals intersect. Why is R’ not Lindel6f?

R’ is called the ’long ray’ (R is called a ray, or half-line).

Solution.

(a)

(b)

x is a limit point of a sequence (z,) if and only if every open neighbourhood of x

contains all but finitely many elements of (z,,).

Take any neighbourhood U of 0. It contains an interval of the form (0,¢) for some

e > 0. By Archimedes’ principle, there is a natural number N > ¢!

and only the
finitely many elements (n~') with n < N do not lie in (0,&) C U. Therefore 0 is a

limit point of the sequence.

Take any neighbourhood U’ of (0'. By definition U = U’ U {0} \ {0’} is an open
set of R containing 0. By the previous paragraph, it contains all but finitely many
elements of the sequence. Therefore U’ does too. This shows that 0 is also a limit

point of the sequence.

f((m,x)) = m+x. This preserves the order relation because if m < n then m+z <
n+y for all z,y € [0,1) and if m = n and = < y then clearly m +x < n+y. It is
also a bijection, with inverse given by ¢t — (|t],t — |t]).

It is easy to find such a collection: choose any uncountable subset A C 2 and
consider the intervals I((a,0), (a,0.5)) = {(a,z) | 0 < x < 0.5}.

Consider the collection {J((a,0))}acq. Thisis a cover of R’, but there is no countable
subcover: Take any countable subset I C ). By property (3), for every a € I, H(a)
is countable. Then H = |J,.; H(a) is a countable union of countable sets, and
so itself countable. Therefore H # €2, because ) is uncountable. But if (b,z) €
U,er{/((a,0))} then b € H. Because there are elements of 2 not in H, this shows

the collection {J((a,0))}qcs is not a cover.



If you are interested in these strange topological spaces, the famous reference is Steen
and Seebach’s Counterexamples in Topology. An online reference is the database website

m-Base https://topology. jdabbs.com/.

Terminology

Umgebung = neighbourhood.
zusammenhangend = connected.
wegzusammenhangend = path-connected.

unabzahlbar = uncountable.

Your solutions are due on Monday 8.03.2021 at noon. Please make a pdf of your solutions

and email them to r.ogilvie@math.uni-mannheim.de .


https://topology.jdabbs.com/

