
Martin Schmidt 19 April 2022

Ross Ogilvie

Analysis III
6. Exercises

14. Sections of vector bundles.

Let (E,B, π) be a K-vector bundle, f, f1, f2 : B → E smooth sections of (E,B, π), and

g : B → K a smooth function. Show:

(a) The zero section O : B → E, b 7→ 0b is a smooth section. By 0b we mean this:

Fb = π−1[{b}] is a vector space, so it has a zero element 0b ∈ Fb ⊂ E. (2 Points)

(b) f1 + f2 and g · f are smooth sections. (2 Points)

(c) Interpret g as a global section of the trivial bundle E = K×B. (1 Point)

(d) The image f [B] is a submanifold of E. (3 Points)

Solution. In parts (a) and (b) we need to show something is a smooth section. A section

of a vector bundle (E,B, π) is a smooth map s : B → E with π ◦ s = idB (Definition

1.57).

(a) First we describe special charts on E. Choose neighbourhood U of b such that

there is a local trivialisation of the vector bundle over U . A local trivialisation is a

diffeomorphism φ : F ×U → π−1[U ] (Definition 1.49). By decreasing U if necessary,

we may assume that U belongs to a chart ψ : U → Rn of B. Both φ and ψ together

give us a chart χ = (id× ψ) ◦ φ−1 of E, namely

χ : E → F × Rn, e 7→ (f, b) = φ−1(e) 7→ (f, ψ(b))

This is a special type of chart of E that shows the bundle structure.

We use the chart ψ on B and χ on E to write O in local coordinates χ ◦ O ◦ ψ−1,
which will allow us to see if it is a smooth map. In the local trivialisation, the point

0b splits as φ−1(0b) = (0, b) because its definition is that it is the zero element of the

fibre F . So χ ◦ O(b) = (0, ψ(b)). Hence χ ◦ O ◦ ψ−1(x) = (0, ψ(ψ−1(x))) = (0, x).

This is a smooth function (in the Euclidean sense), so O is smooth (in the manifold

sense).

The second property that we must show, namely that π ◦ O = idB, follows from

the property of local trivialisations that they respect the projection π; explicitly

π ◦ φ(f, b) = b. Then

π ◦O(b) = π ◦ φ ◦ φ−1 ◦O(b) = π ◦ φ(0, b) = b.

We can turn this into a lemma: a function f : B → E is a smooth section exactly

when for every trivialisation φ : F × U → π−1[U ] we have φ−1 ◦ (f |U)(b) = (f̃(b), b)

for a smooth function f̃ : U → F .

Proof: χ◦f ◦ψ−1(x) = (f̃ ◦φ−1(x), x), which is smooth exactly when f̃ : U ⊂ B → F

is smooth (F is a vector space, so we use the chart idF ). And we have seen that the

π ◦ f is equal to the second component of φ−1 ◦ f , so this must be b.
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(b) This question reduces to the fact that the operations are fibre-wise. This means that

if we use a local trivialisation φ to write the value of the section in a pair (f, b) the

operation acts on the first of the pair. Then the sum is a smooth section because

the sum of smooth functions to F is a smooth function to F and apply (a):

φ−1 ◦ (f1 + f2)(b) := (f̃1(b) + f̃2(b), b).

Likewise

φ−1 ◦ (g · f)(b) := (g(b) · f̃(b), b)

is a smooth section.

(c) More generally from a global function h̃ : B → F we get a section b 7→ (h̃(b), b)

of the trivial bundle F × B. Conversely, a section of this bundle gives a function

through projection to the first component.

This does not work for any bundle, because in general we only have projection to

the second component and this just gives back the point in B. Projection to the

first component depends on the trivialisation φ. For this reason, sections are a

generalisation of functions from a manifold B to a vector space.

(d) First observe that π ◦f = idB shows that f is a homeomorphism. It remains to show

that it an immersion. But we have already seen that a section in local coordinates

has the form χ◦f ◦ψ−1(x) = (f̃ ◦ψ−1(x), x), so the Jacobian is (J(f̃ ◦ψ−1) | 1l). The

identity matrix block shows that it is injective.

15. The tangent bundles of low dimensional spheres.

In this exercise we will examine the tangent bundle of the n-sphere

Sn := { (x1, . . . , xn+1) ∈ Rn+1 |x21 + . . .+ x2n+1 = 1 },

for n ≤ 3.

(a) We know that Sn is an n dimensional submanifold of Rn+1 and so the embedding map

ι is an immersion. Let v be a tangent vector in TxSn. Show that w := Tx(ι)v ∈ Rn+1

is perpendicular to x.

Conversely, choose any w ∈ Rn+1 with 〈w, x〉 = 0 and set α(t) = (cos |w|t)x +

(sin |w|t)ŵ. Show that w = Tx(ι)[α]. (2 Points)

Hence we make the identification

TxSn = {w ∈ Rn+1 | 〈w, x〉 = 0 } .

This means that we can describe a section of TSn as a smooth function s : Sn → Rn+1

such that 〈s(x), x〉 = 0 for all x ∈ Sn.
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(b) Finde a non-vanishing section of the tangent bundle TS1 (a section that never takes

the value 0).

Hence TS1 is trivial. (3 Points)

(c) Show that the vector bundle TS3 is trivial. (2 Points)

Hint. Use Lemma 1.58 and consider the following sections

f1(x1, x2, x3, x4) := (−x2, x1, x4,−x3) , f2(x1, x2, x3, x4) := (−x3,−x4, x1, x2)

and f3(x1, x2, x3, x4) := (−x4, x3,−x2, x1)

Remark. We can identify S3 with the unit sphere in the Quaternions H. Then

f1 = ix, f2 = jx and f3 = kx.

(d) Let xN := (0, 0, 1) ∈ S2 and xS := (0, 0,−1) ∈ S2. With the aid of stereographic

projection N and S, write down local trivialisations of TS2 over UN := S2 \ {xN}
and US := S2 \ {xS} (compare Example 1.56), and calculate the transition function

gUN ,US
: S2 \ {N,S} → GL(R2) . (8 Points)

Remark. TS2 is not trivial, but this require some more theory to prove. It is a

consequence of the “hairy ball theorem”: every section of TS2 has a zero.

Solution.

(a) Let α be a path in Sn representing v, that is x = α(0) and v = [α]. Then Tx(ι)v =

[ι◦α]. But ι is just the identity map considered as a map between manifolds so ι◦α
is just t 7→ α(t) ∈ Rn+1 and w = α′(0).

To show that w is perpendicular to x, note that |α(t)|2 = 1 because it lies in the

sphere. Differentiating gives 2α(t) · α′(t) = 0. At t = 0 this gives x · w = 0.

Conversely, suppose w ∈ Rn+1 is perpendicular to x. We need to find a path in Sn

with this as its tangent vector: α(t) = (cos |w|t)x+ (sin |w|t)ŵ works.

(b) In R2 there is the rotation operator R(x, y) = (−y, x). This creates an equal-length

perpendicular vector, ie |x| = |R(x)| and x ·R(x) = 0. The section x 7→ (R(x), x) is

a section of the tangent bundle and non-vanishing.

(c) First, note the value of these functions are perpendicular to x, eg (x1, x2, x3, x4) ·
(−x2, x1, x4,−x3) = −x1x2+x2x1+x3x4−x4x3 = 0, and unit length |(−x2, x1, x4,−x3)| =
|x| = 1. Hence they are non-vanishing sections of TS3. It remains to show they are

linearly independent. But this follows from the fact that they are all perpendicular,

eg

f1 · f2 = (−x2, x1, x4,−x3) · (−x3,−x4, x1, x2) = x2x3 − x1x4 + x4x1 − x3x2 = 0.

Hence by Lemma 1.58 it follows that TS3 is trivial.
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(d) This question relates to Example 1.56(i) which shows that a chart of a manifold

gives a local trivialisation of its tangent bundle via the tangent map of the chart. So

we should begin with the chart

N(x1, x2, x3) =
1

1− x3
(x1, x2) =

1

1− 〈x, e3〉
(x− e3) + e3

N−1(y1, y2) =
1

1 + |y|2
(2y1, 2y2, |y|2 − 1) =

1

1 + |y|2
(2y + (|y|2 − 1)e3).

Take a vector w ∈ TN(x)R2 for x ∈ UN . We want to compute the push-forward of this

vector TN(x)(N
−1)w. We can write a path representing w easily, β(t) = wt + N(x).

So compute TN(x)(N
−1)w = (N−1 ◦ β)′(0):

N−1 ◦ β(t) =
1

1 + |β(t)|2
(2β(t) + (|β(t)|2 − 1)e3)

(N−1 ◦ β)′(t) = − 2β(t) · β′(t)
(1 + |β(t)|2)2

(2β(t) + (|β(t)|2 − 1)e3)

+
1

1 + |β(t)|2
(2β′(t) + 2β(t) · β′(t) e3)

= −2β(t) · β′(t)
1 + |β(t)|2

N−1(β(t)) +
1

1 + |β(t)|2
(2β′(t) + 2β(t) · β′(t) e3)

(N−1 ◦ β)′(0) =
2

1 + |N(x)|2
(w + 〈N(x), w〉 (e3 − x))

= (1− x3) (w + 〈N(x), w〉 (e3 − x))

Since w ·x = w · (x1, x2) = w · (1−x3)N(x) and |x|2 = 1 one can see that this vector

above is perpendicular to x as expected. Thus

φUN
: (w, x) ∈ R2 × UN 7→ (1− x3) (w + 〈N(x), w〉 (e3 − x)) ∈ TxS2

defines a trivialisation of TS2 over UN .

If we repeat this calculation for

S(x1, x2, x3) =
1

1 + x3
(x1, x2) =

1

1 + 〈x, e3〉
(x+ e3)− e3

S−1(y1, y2) =
1

1 + |y|2
(2y1, 2y2, 1− |y|2) =

1

1 + |y|2
(2y + (1− |y|2)e3),

then we get the trivialisation

φUS
: (w, x) ∈ R2 × US 7→ (1 + x3) (w − 〈S(x), w〉 (e3 + x)) ∈ TxS2

Next we want to find the transition between these two trivialisations, one approach

is to compose them (where they are both defined on UN ∩ US = Q) to get a func-

tion φ−1US
◦ φUN

: R2 × Q → R2 × Q and then the part that maps from R2 to R2
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gives gUN ,US
(x). This method will work for any trivialisations; in the case that the

trivialisations come from charts we give an easier method below.

φ−1US
(v) =

(
1

1 + x3
v − v3

(1 + x3)2
(e3 + x), x

)
.

third component of φUN
(w, x) = (1− x3)(0 + 〈N(x), w〉 (1− x3)).

φ−1US
(φUN

(w, x))

=
1− x3
1 + x3

(
w + 〈N(x), w〉 (e3 − x)− 〈N(x), w〉 (1− x3)

1 + x3
(e3 + x)

)
=

1− x3
1 + x3

(
w +

2 〈N(x), w〉
1 + x3

(x3e3 − x)

)
=

1

(1 + x3)2
(
(1− x23)w + 2(x1w1 + x2w2)(x3e3 − x)

)
.

Note that x3e3 − x is a vector in R2 so this is well defined. Further it is linear in w.

So for any x ∈ Q we have a linear map gUN ,US
(x) that maps w to the above vector:

gUN ,US
(x)w =

1

(1 + x3)2

(
1− x23 − 2x21 −2x2x1

−2x1x2 1− x23 + 2x22

)
w

This is an invertible linear transformation because the determinant −(1 +x3)
−2(1−

x3)
2(x21 + x22) is never zero on Q.

Another approach to finding the transition is to use the fact that the local triviali-

sations are T (φ−1UN
) and T (φ−1US

) so that

gUN ,US
= (T (φ−1US

))−1 ◦ T (φ−1UN
) = T (φUS

) ◦ T (φ−1UN
) = T (φUS

◦ φ−1UN
).

The transition between charts φUS
◦ φ−1UN

is simply y 7→ ‖y‖−2 y. And this is a map

between Euclidean spaces, so the tangent map is just Jacobian and we calculate as

normal:

J(φUS
◦ φ−1UN

(y)) =
1

‖y‖4

(
y22 − y21 −2y1y2

−2y1y2 y21 − y22

)
.

We should write it not in local coordinates y ∈ R2 but rather in terms of x ∈ S2,

with y = N(x). Then

gUN ,US
(x) =

1

(1 + x3)2

(
x22 − x21 −2x1x2

−2x1x2 x21 − x22

)
,

which is the same as the first method because of the relation 1 = x21 + x22 + x23.
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16. Trivial and non-trivial bundles.

(a) The tangent bundle of a vector space is trivial. Let V be a finite dimensional

K-vector space. Show that the tangent bundle TV is trivial. (2 Points)

(b) Line bundles over R are trivial. Prove that ever line bundle (a vector bundle

whose fibre dimension is 1) over R is trivial. (8 Points)

Hint. Let (E,R, π) be a line bundle. Choose a point x0 and show that there is an

interval (x0 − ε, x0 + ε) with a non-vanishing section s. Then consider

J :=

{
x ∈ R

∣∣∣∣∣ There exists an extension sx of s to (x, x0 + ε) or (x0 − ε, x),

such that sx is non-vanishing

}
,

where the choice of (x, x0 + ε) or (x0− ε, x) depends whether x ≤ x0 or x ≥ x0 Show

that J is non-empty, open. Argue further that J = R.

(c) A non-trivial line bundle over S1. On the circle S1 ⊂ R2 choose the poles

xN = (0, 1) and xS = (0,−1). Then set

UN := S2 \ {xN} and US := S2 \ {xS}.

The intersection Q = UN ∩US = S1 \{xN , xS} consists of two connected components

H+ und H−.

Work through the construction following Beispiel 1.51 of cocycles, that there is a

line bundle determined by the cover (UN , US),F := R and the function

gUN ,US
: UN ∩ US → GL(R), x 7→

idR for x ∈ H+

−idR for x ∈ H−
.

Prove that this bundle is non-trivial.

It is called the Möbius band or Möbius bundle. (8 Points)

Hint about the non-triviality: Suppose you had a non-vanishing section and examine

it in the local trivialisations.

Solution.

(a) Let {ek} be the standard basis vectors of V . Recall in a vector space we have an

identification of TxV with V given by usual derivative. So then fk : x 7→ ek is a

section of TV . These sections are non-vanishing, linearly independent, and there are

dimV of them, so they trivialise TV .

(b) We might as well take x0 = 0. There is a trivialisation φU over U 3 0. U is

open, so contains an interval of the form (−ε, ε). We may restrict to this interval,

so we may assume that U = (−ε, ε). Consider the local section s over U given by

x 7→ φU(1, x) ∈ E. This is non-vanishing.
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With s in hand, we can now define J . Immediately (−ε, ε) ⊂ J so it is non-empty.

Choose x ∈ J with x > 0. Let V be a trivialisation containing x. Again we can

assume that V = (x−η, x+η) with x−η > 0. In this trivialisation, for y ∈ (x−η, x)

the local expression φ−1V ◦ sx(y) = (f(y), y). We know that f(y) is a non-vanishing

smooth function. This extends to a non-vanishing function f̃(y) on all of (x−η, x+η).

Then

sx+η(y) =

sx(y) for y ∈ (−ε, x)

φV (f̃(y), y) for y ∈ (x− η, x+ η)

is a smooth non-vanishing section on (−ε, x+ η). There is a similar proof for x < 0.

This shows that J is open.

Suppose that there were a point x 6∈ J with x > 0. Because J is open [0, x + 1] ∩
(R+ \ J) is compact. Thus there is a minimum point x 6∈ J with x > 0. Choose an

interval (x− η, x+ η) over which E trivialises. Since x is minimal there must exist a

non-vanishing section st over (−ε, t) for t ∈ (x− η, x). But then we can extend st to

(−ε, x+ η) in the same way as above. Therefore x ∈ J , which is a contradiction. A

similar argument shows that all negative points belong to J as well. This completes

the proof that J = R.

(c) Consider the two spaces MN = R×UN and MS = R×US with the relation (v, x) ∈
MN ∼ (w, x) ∈ MS if x ∈ Q and w = gUN ,US

(x)v. Let M be the set of equivalence

classes. There are inclusions maps M1,M2 ↪→M . A set is open in M if its restriction

to both MN and MS are open. This gives M a topology. In particular, MN ∪MS

is an open cover of M . The functions id × N and id × S are charts of M . This

makes M a manifold. For any point of M its x value is well defined because it is

the same under the equivalence relation. π(m) = x then makes (M, S1, π) a vector

bundle with the local trivialisations MN → π−1[UN ] and MS → π−1[US].

Suppose this bundle were trivial. Then there would be a non-vanishing section

f . Over MN , it would have the form UN → MN , x 7→ (fN(x), x) with fN :

UN → R. Since f is non-vanishing and UN is connected , fN has a constant

sign; it is either entirely positive or entirely negative. Without loss of generality

assume that it is positive (or consider −f). But now consider f over MS namely

US → MS, x 7→ (fS(x), x). By the same reasoning, fS must have a constant sign,

but we can show that it does not. What is the relation between fN and fS? It is

fS(x) = gUN ,US
(x)fN(x). This tells us that fS is also positive on H+ and negative

on H−. This we have a contradiction, and there cannot be a non-vanishing section.

An alternative way to make this argument would be to suppose there was a section

of M that was non-vanishing on UN . Then because fS would have one sign on H+

and a different sign on H− is must vanish at xS by the intermediate value theorem

(Zwischenwertsatz).
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Terminology

Schnitt = section

nullstellenfreien = non-vanishing

Geradenbündel = line bundle

American spelling is fiber, British spelling is fibre.

8


