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Ross Ogilvie

Analysis III
1. Exercises

1. Continuity in metric spaces.

Exercise 1.7 in the skript.

In this question we show that the ε-δ-definition of continuity in metric spaces agrees with

the definition of continuity in topological spaces.

Let (X, d) and (X ′, d′) be two metric spaces, and f : X → X ′ a map between them.

Demonstrate the following are equivalent:

(1) For every open subset O′ of X ′, the pre-image f−1[O′] is open in X.

(2) For every point p ∈ X and every ε > 0, there exists a δ > 0 so that for every point

q ∈ X with d(p, q) < δ it holds that d′(f(p), f(q)) < ε.

(4 Points)

Solution. It is useful to restate (2) in terms of balls. It is equivalent to

(2’) For every point p ∈ X and every ε > 0, there exists a δ > 0 so that f [B(p, δ)] ⊆
B(f(p), ε).

Suppose that (1) is true. Choose any point p ∈ X and any ε > 0. Consider the ball

O′ = B(f(p), ε) in X ′. By (1), we know that O = f−1[O′] is an open set of X that

contains p. Therefore there is a ball B(p, δ) ⊆ O for some δ > 0. f [B(p, δ)] ⊆ f [O] =

O′ = B(f(p), ε).

Suppose that (2’) is true. Choose any open set O′ of X ′ and let O = f−1[O′]. Choose

any point p ∈ O. We need to show that there is a ball B(p, δ) ⊆ O. But O′ is open

and contains f(p), so we know that there exists a ball B(f(p), ε) ⊆ O′. (2’) now guar-

antees the existence of such a B(p, δ), because f [B(p, δ)] ⊆ B(f(p), ε) ⊆ O′ implies

B(p, δ) ⊆ f−1[O′].

2. A Characterisation of connected spaces.

Let X be a metric space. Show that the following properties are equivalent:

(1) X ist connected (Definition 1.8).

(2) There does not exists two non-empty open subsets U, V of X with U ∪ V = X and

U ∩ V = ∅.

(2 Points)

Solution. Suppose that there are two open sets with U ∪ V = X and U ∩ V = ∅. It

follows that U = X \ V . Because V is open, U is closed. Hence U and V are both open
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and closed. If X is connected as per Definition 1.8, then one must be the empty set,

which shows (2). On the other hand, if (1) is not true then take V to be an open and

closed set that is not ∅ and not X. This shows (2) is not true either.

3. An example for connected but not path-connected space.

We consider the following subsets of R2:

A := { (x, y) ∈ R2 |x = 0 and y ∈ [−1, 1] }

B := { (x, y) ∈ R2 |x ∈ R+ and y = sin
(

1
x

)
}

M := A ∪B .

M is called the topologist’s sine curve.

(a) Show that B is connected. [Hint. Theorem 1.10(iv).] (2 Point)

(b) Show that B = M and so explain why it follows that M is also connected.

[Hint. Theorem 1.10(i).] (3 Points)

(c) Let p = (0, 1) ∈ A. Consider the open rectangle S := (−1, (2π)−1) × (0, 2). What

are the connected components of M ∩ S? (3 Points)

(d) Prove, from (c) that M is not locally connected. [Hint. Theorems 1.9 and 1.10(iv).]

(2 Points)

(e) We say that a space M is path-connected, when for every pair of points p, q ∈M there

is a continuous function γ : [0, 1] → M with γ(0) = p and γ(1) = q. Continuous

functions from an interval to a space are called paths.

Show that there is no path γ : [0, 1]→M with initial point γ(0) ∈ A and end point

γ(1) ∈ B. Hence M is not path-connected.

[Hint. Modify the previous argument.] (2 Points)

Solution.

(a) For x 6= 0, we know that 1/x and sin(1/x) are continuous functions. B is the image

of the continuous function R+ → R2 : x 7→ (x, sin(1/x)).

(b) Let pn(xn, yn) be a sequence in B that converges to some point p = (x, y) in R2. If

x > 0 then

y = lim
n→∞

yn = lim
n→∞

sin( 1
xn

) = sin( 1
x
),

and hence p ∈ B. However, if x = 0 then |y| = lim |yn| ≤ lim 1 = 1. Together this

shows that B̄ ⊆M .
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Conversely, choose any point (0, y) ∈ A and let θn = arcsin y + 2πn for n ∈ N.

That is, sin θn = y. The sequence of points pn := (θ−1
n , y) ∈ B converges to (0, y).

Therefore B̄ = M .

Since B is connected, a special case of Theorem 1.10(i) shows that B̄ is connected.

(c) The connected components are the half phases of the sine curve: M ∩{2πn < x−1 <

π + 2πn} for n > 1.

(d) Consider the point p from (c) and the open neighbourhoodM∩S. We must show that

there is no connected neighbourhood of p contained in M ∩ S. For a contradiction,

suppose U ⊂M ∩ S were a connected neighbourhood of p.

Consider the projection P : (x, y) 7→ x. It is continuous. Because U is connected

P [U ] is connected (Theorem 1.10) and hence it is a closed interval (Theorem 1.9).

We have see in (b) that there must be a point of b ∈ U ∩B. It follows that

[0, P (b)] ⊆ P [U ] ⊆ P [S] = {0} ∪
⋃
n

[
1

π + 2πn
,

1

2πn

]
.

But this is a contradiction, the left hand side is not contained in the right hand side.

(e) Suppose that there did exist a continuous path γ. We can modify the argument

in the previous part to show another contradiction. We wil prove this for paths

with γ(0) = (0, 1) and γ(t) ∈ B for t > 0; the general case is similar. Since γ is

continuous at 0, for all ε > 0 there exists δ > 0 so that ‖γ(t) − (0, 1)‖ < ε for all

t < δ. Choosing ε < 1 shows that γ([0, δ]) ⊆ S. But then we encounter the same

contradiction as before: P ◦ γ is continuous so P ◦ γ([0, δ]) must contain the closed

interval [0, P (γ(δ))] but also be a subset of P (M ∩ S).

4. (Not) Hausdorff and Lindelöf Manifolds, the type of spaces we study in this course,

are defined to be both Hausdorff and Lindelöf. In this question we give two examples:

The ’line with two origins’ is not Hausdorff and the ’long ray’ is not Lindelöf. This is

extra material to help you understand these properties.

(a) Let D = R ∪ {0′}. A set U is open in D if U is a subset of R and is open in R,

or if U contains the new point 0′ and U ∪ {0} \ {0′} is open in R. Show that the

sequence (n−1)n∈N+ has both 0 and 0′ as limit points (the definition of convergence

in a topological space is after Definition 1.6). The space D is called the ’line with

two origins’.

(b) Consider the topological space R := N × [0, 1) with the ordering (m,x) < (n, y) if

m < n, or m = n and x < y. Give a function f : R → [0,∞) that preserves the

order relation.
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(c) There exists a set Ω, called the first uncountable ordinal, with the following proper-

ties:

(1) it is uncountable

(2) it is well-ordered. A set is well-ordered when there is an order relation < in

which every non-empty subset has a minimum, a smallest element. R with the

normal order is not well-ordered, for example (0, 1) does not contain a minimum.

N with the usual order is well-ordered.

(3) for every a ∈ Ω, the subset H(a) := {b ∈ Ω | b < a} is countable.

Let R′ := Ω × [0, 1) with the ordering (a, x) < (b, y) if a < b, or a = b and x ≤ y.

Let 0Ω be the minimum of Ω so that O = (0Ω, 0) is the minimum of R′. An open

interval in R′ has the form I(α, β) := {φ ∈ R′ | α < φ < β} for α, β ∈ R′ or

J(β) = {O} ∪ I(O, β) = {φ ∈ R′ | φ < β}. Find an uncountable collection of open

intervals such that no intervals intersect. Why is R′ not Lindelöf?

R′ is called the ’long ray’ (R is called a ray, or half-line).

Solution.

(a) x is a limit point of a sequence (xn) if and only if every open neighbourhood of x

contains all but finitely many elements of (xn).

Take any neighbourhood U of 0. It contains an interval of the form (0, ε) for some

ε > 0. By Archimedes’ principle, there is a natural number N > ε−1 and only the

finitely many elements (n−1) with n < N do not lie in (0, ε) ⊂ U . Therefore 0 is a

limit point of the sequence.

Take any neighbourhood U ′ of 0′. By definition U = U ′ ∪ {0} \ {0′} is an open

set of R containing 0. By the previous paragraph, it contains all but finitely many

elements of the sequence. Therefore U ′ does too. This shows that 0 is also a limit

point of the sequence.

(b) f((m,x)) = m+x. This preserves the order relation because if m < n then m+x <

n + y for all x, y ∈ [0, 1) and if m = n and x < y then clearly m + x < n + y. It is

also a bijection, with inverse given by t 7→ (btc, t− btc).

(c) It is easy to find such a collection: choose any uncountable subset A ⊂ Ω and

consider the intervals I((a, 0), (a, 0.5)) = {(a, x) | 0 < x < 0.5}.
Consider the collection {J((a, 0))}a∈Ω. This is a cover of R′, but there is no countable

subcover: Take any countable subset I ⊂ Ω. By property (3), for every a ∈ I, H(a)

is countable. Then H =
⋃

a∈I H(a) is a countable union of countable sets, and

so itself countable. Therefore H 6= Ω, because Ω is uncountable. But if (b, x) ∈⋃
a∈I{J((a, 0))} then b ∈ H. Because there are elements of Ω not in H, this shows

the collection {J((a, 0))}a∈I is not a cover.
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If you are interested in these strange topological spaces, the famous reference is Steen

and Seebach’s Counterexamples in Topology. An online reference is the database website

π-Base https://topology.jdabbs.com/.

Terminology

Umgebung = neighbourhood.

zusammenhängend = connected.

wegzusammenhängend = path-connected.

unabzählbar = uncountable.

Your solutions are due on Monday 8.03.2021 at noon. Please make a pdf of your solutions

and email them to r.ogilvie@math.uni-mannheim.de .
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