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Analysis III
12. Exercises

36. The wedge product

In this exercise we will do some calculations with the antisymmetric algebras of V = R3.

Let ei be a basis of V and αi the corresponding dual basis of V ′.

(a) Show that β = α1 ⊗ α2 − α2 ⊗ α1 belongs to
∧2 V ′.

(b) Consider the antisymmeterising operation A defined in the proof of Theorem 3.4.

Compute A1(α3) ∈
∧1 V ′ and A2(α1 ⊗ α2) ∈

∧2 V ′.

(c) Compute 〈β, e1 ⊗ e3〉 = β(e1, e3) using the definition of tensors as linear maps and

also using the formula on page 71 of the script (notice that β = α1 ∧ α2).

(d) Compute the wedge product β ∧ α3.

(e) In the proof of Theorem 3.4, it is proved that the wedge products span the space

of antisymmetric tensors by a dimension count argument. Given an antisymmetric

tensor, can you find an algorithm to write it as a sum of wedge products of basis

elements?

Solution.

(a) The only non-trivial element of the symmetric group S2 is the transposition (12).

More generally, the symmetric group is generated by the n−1 adjacent transpositions

and it is sufficient to check the relation holds for these. The sign of transpositions

is by definition −1.

(12).β = α2 ⊗ α1 − α1 ⊗ α2 = −β

(b) The only element of S1 is the identity:

A1(α3) =
∑
σ∈S1

sign(σ)σ.α3 = 1 id.α3 = α3.

The two elements of S2 are the identity and (12)

A2(α1 ⊗ α2) =
∑
σ∈S2

sign(σ)σ.(α1 ⊗ α2)

= id.(α1 ⊗ α2)− (12).(α1 ⊗ α2)

= α1 ⊗ α2 − α2 ⊗ α1 = β.

(c) Using the definition as linear maps

β(e1, e3) = α1(e1) · α2(e3)− α2(e1) · α1(e3) = 1 · 0− 0 · 0 = 0.
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On the other hand, we have that β = 1
1!1!
A(α1⊗α2) = α1∧α2 Using the determinant

formula

〈β, e1 ⊗ e3〉 =

∣∣∣∣∣α1(e1) α1(e3)

α2(e1) α2(e3)

∣∣∣∣∣ =

∣∣∣∣∣1 0

0 0

∣∣∣∣∣ = 0.

The number is not so interesting, but notice if we expanded the determinant as a

formula we would get the linear maps version.

(d)

β ∧ α3 =
1

2!1!
A3(β ⊗ α3)

=
1

2
A3(α1 ⊗ α2 ⊗ α3 − α2 ⊗ α1 ⊗ α3)

A3(α1 ⊗ α2 ⊗ α3) = (1− (12)− (13)− (23) + (123) + (132)).(α1 ⊗ α2 ⊗ α3)

= α1 ⊗ α2 ⊗ α3 − α2 ⊗ α1 ⊗ α3 − α3 ⊗ α2 ⊗ α1 − α1 ⊗ α3 ⊗ α2

+ α2 ⊗ α3 ⊗ α1 + α3 ⊗ α1 ⊗ α2

A3(α2 ⊗ α1 ⊗ α3) = (1− (12)− (13)− (23) + (123) + (132)).(α2 ⊗ α1 ⊗ α3)

= α2 ⊗ α1 ⊗ α3 − α1 ⊗ α2 ⊗ α3 − α3 ⊗ α1 ⊗ α2 − α2 ⊗ α3 ⊗ α1

+ α1 ⊗ α3 ⊗ α2 + α3 ⊗ α2 ⊗ α1

= −A3(α1 ⊗ α2 ⊗ α3)

β ∧ α3 = α1 ⊗ α2 ⊗ α3 − α2 ⊗ α1 ⊗ α3 − α3 ⊗ α2 ⊗ α1 − α1 ⊗ α3 ⊗ α2

+ α2 ⊗ α3 ⊗ α1 + α3 ⊗ α1 ⊗ α2

(e) First we give an overview of the idea. Suppose we are given an antisymmetric tensor

as a sum of pure tensors of basis elements. Our procedure is to choose one pure

tensor from this, apply A to it and then subtract the result. This must reduce the

number of pure tensors in the sum, so after a finite number of iterations we have

written our antisymmetric tensor as a sum of A applied to pure tensors. But this is

exactly a sum of wedge products.

More precisely, suppose that β ∈
∧p V ′. We can write it as

β =
∑

βi1,...,ipαi1 ⊗ · · · ⊗ αip .

Choose a non-zero term of this sum βj1,...,jpαj1 ⊗ · · · ⊗ αjp and apply Ap to it to get

the antisymmetric tensor A1 := βj1,...,jpαj1 ∧ · · · ∧ αjp . Consider β − A1. I claim

that all terms whose indices are a permutation of {j1, . . . , jp} are zero. Suppose

for contradiction that its σ.αj1 ⊗ · · · ⊗ αjp term was non-zero. But σ.(β − A1) =

signσ(β−A1) because they are antisymmetric tensors. This means the coefficient of

the σ.αj1⊗· · ·⊗αjp term is equal to signσ times the coefficient of the αj1⊗· · ·⊗αjp
term, which is βj1,...,jp − βj1,...,jp = 0 by construction.
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Thus β −A1 is again an antisymmetric tensor, with fewer non-zero terms. Iterating

this procedure we get that

β = A1 + · · ·+ Ak =
∑

βj1,k,...,jp,kαj1,k ∧ · · · ∧ αjp,k

is a sum of wedge products of basis elements.

Let us give an example of this procedure. Consider the antisymmetric tensor

β = 3α1 ⊗ α2 − 2α1 ⊗ α3 − 3α2 ⊗ α1 + 2α2 ⊗ α3 + 2α3 ⊗ α1 − 2α3 ⊗ α2.

Then we choose the α1 ⊗ α2 term

A1 = 3α1 ∧ α2 = A(3α1 ⊗ α2) = 3α1 ⊗ α2 − 3α2 ⊗ α1

and so

β − A1 = −2α1 ⊗ α3 + 2α2 ⊗ α3 + 2α3 ⊗ α1 − 2α3 ⊗ α2

does indeed have fewer terms. Now we choose the α1 ⊗ α3 term

A2 = −2α1 ∧ α3 = −2α1 ⊗ α3 + 2α3 ⊗ α1

so

β − A1 − A2 = 2α2 ⊗ α3 − 2α3 ⊗ α2.

We can repeat this one more time with A3 = 2α2∧α3 to exhaust the non-zero terms.

This gives at the end

β = A1 + A2 + A3 = 3α1 ∧ α2 − 2α1 ∧ α3 + 2α2 ∧ α3.

37. Dual 1-forms to a vector field (using dot product).

Let F ∈ Vec∞(R3) be a smooth vector field on R3 that is nowhere vanishing. Find a

tensor field α of T ′R3 (a 1-differential form on R3), so that the kernel of α at every point

is orthogonal to F . Orthogonal means using the dot product of R3

Solution. Let ei be the standard basis of R3 which gives a non-vanishing vector field.

Thus we can write F (x) =
∑
Fi(x)ei. This induces dual basis fields αj on T ′R3, which

act as αj(F ) = Fj(x). Any 1-form α can be written as α(x) =
∑
aj(x)αj for smooth

functions aj.

What we require in this question is to find a form, such that G · F = 0 at every point if

and only if α(G) ≡ 0. Observe

α(G)(x) =
∑

aj(x)Gj(x) = a(x) ·G(x)
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where we treat the coefficients of α as the coefficients of a vector field. Clearly then we

should take α(x) =
∑
Fj(x)αj as the 1-form.

One point to see here is that for a vector field F in Euclidean space 〈F, ·〉 is a 1-form.

This explains why we also use inner product notation for the pairing between forms and

fields.

38. Local representations of tensor fields.

Let X be an n-dimensional smooth manifold and f a tensor field in T qpX. To simplify

the notation, we will only consider the case p = 0, q = 2, but for other tensor spaces

everything holds completely analogously. Further, let (U, φ) be a chart of X and denote

the components of φ by φ1, . . . , φn : U → R. These induce 1-forms αk := dφk in T 1
0U ⊂

T 1
0X. By definitions these 1-forms act as αk(x)(v) = Tx(φk)(v) for every x ∈ U und

v ∈ TxX.

General Hint. It will be useful to consider the (local) vector fields Ek on U

Ek(x) = Tx(φ)−1(ek).

These are often called the coordinate vector fields.

(a) Show there exist functions fk,l : U → R, so that

f |U =
n∑

k,l=1

fk,l · αk ⊗ αl.

More precisely, we mean that for all x ∈ U and v, w ∈ TxX

f(x)(v, w) =
n∑

k,l=1

fk,l(x)αk(x)(v)αl(x)(w).

Show further that these functions are unique. This way of describing f is called

representing f in local coordinates. The functions fk,l are called the coefficient

functions.

(b) Show that f |U is smooth exactly when the functions fk,l are all smooth.

(c) Show that f is a 2-form exactly when the coefficients are antisymmetric: fk,l = −fl,k.

Solution.

(a) Note that the 1-forms form a local trivialisation of T 1
0U : Due to the relation

dφi(x)(Ej(x)) = Tx(φi)(Tx(φ)−1(ej)) = Tx(πi ◦ φ)(Tx(φ)−1(ej)) = πi(ej) = δi,j

it follows that the are non-vanishing at every point and linearly independent. There-

fore αi(x)⊗αj(x) for a basis for T 2
0,xX and hence every (0, 2) tensor f(x) is a unique

linear combination of them.
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(b) If the coefficient functions are all smooth, so is the sum, because the basis sections

αj are smooth since they are the exterior derivative of smooth functions (Theorem

3.14). In the converse direction, the coefficient functions may be realised as the

projections of f with respect to the coordinate chart, but this is the composition of

smooth functions.

(c) f is a 2-form when it is antisymmetric in every fibre. So the question is really: when

is a 2-tensor
∑
ai,jei ⊗ ej antisymmetric? There is only one non-trivial element of

S2 to consider:

−
∑

ai,jei ⊗ ej = (12).(
∑

ai,jei ⊗ ej) =
∑

ai,jej ⊗ ei =
∑

aj,iei ⊗ ej

from which we require ai,j = −aj,i.

39. Closed and exact differential forms.

A p-form ω on a manifold X is called closed if dω = 0, and it is called exact if there is a

(p− 1)-form θ on X with ω = dθ.

Consider X = R3 and let x, y, z : R3 → R be the usual coordinate functions. Investigate

whether the following forms are closed and or exact.

(a) ω = yz dx+ xz dy + xy dz

(b) ω = x dx+ x2y2 dy + yz dz

(c) ω = 2xy2 dx ∧ dy + z dy ∧ dz

Solution. Before we begin, recall Theorem 3.14(iii): d(df) = 0 for a function f , and for

part (c) the more general result of Theorem 3.15(i): d(dα) = 0 for any differential form

α. This implies that any exact form is closed, or that a form cannot be exact if it is not

closed. This can be an effective test.

(a)

d(yz dx+ xz dy + xy dz)

= d(yz) ∧ dx+ d(xz) ∧ dy + d(xy) ∧ dz

= (ydz + zdy) ∧ dx+ (xdz + zdx) ∧ dy + (xdy + ydx) ∧ dz

= ydz ∧ dx+ zdy ∧ dx+ xdz ∧ dy + zdx ∧ dy + xdy ∧ dz + ydx ∧ dz

= −ydx ∧ dz − zdx ∧ dy − xdy ∧ dz + zdx ∧ dy + xdy ∧ dz + ydx ∧ dz

= 0.
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So ω is closed. That means it might be exact (but in general it doesn’t have to be).

In this case it’s relatively easy to see that ω = d(xyz).

(b)

d(x dx+ x2y2 dy + yz dz) = dx ∧ dx+ d(x2y2) ∧ dy + d(yz) ∧ dz

= 0 + (2xy2dx+ 2x2ydy) ∧ dy + (zdy + ydz) ∧ dz

= 2xy2dx ∧ dy + 0 + zdy ∧ dz + 0.

So ω is not closed, and therefore cannot be exact.

(c)

d(2xy2 dx ∧ dy + z dy ∧ dz) = d(2xy2) ∧ dx ∧ dy + dz ∧ dy ∧ dz

= (2y2dx+ 4xydy) ∧ dx ∧ dy + 0

= 0.

So ω is closed. Let θ = adx + bdy + cdz for functions a, b, c. Then we must try to

solve dθ = ω. I will use subscripts for the partial derivatives.

dθ = (axdx+ aydy + azdz) ∧ dx+ (bxdx+ bydy + bzdz) ∧ dy + (cxdx+ cydy + czdz) ∧ dz

= −aydx ∧ dy − azdx ∧ dz + bxdx ∧ dy − bzdy ∧ dz + cxdx ∧ dz + cydy ∧ dz

= (bx − ay)dx ∧ dy + (cx − az)dx ∧ dz + (cy − bz)dy ∧ dz.

Hence we must find functions that satisfy bx−ay = 2xy2, cx−az = 0 and cy−bz = z.

Assume that c = 0. That means that a is a function of x, y only and b(x, y, z) =

−1
2
z2 + b̃(x, y). Then we only need to further satisfy the first equation

b̃x − ay = 2xy2.

This can be done by choosing b = −1
2
z2 + x2y2 and a = 0. So θ = (−1

2
z2 + x2y2)dy

shows that ω is exact.

Note, this is not the only solution: if f is any function then d(θ + df) = dθ = ω.
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