
Martin Schmidt 3 May 2021

Ross Ogilvie
Analysis III
8. Exercises

21. A little bit more about submanifolds.

Let X , Y be manifolds and f : X → Y be a smooth map with constant rank. Then we

know that for every y ∈ f [X] the preimage M := f−1[{y}] is a submanifold of X. Show

the following holds for x ∈M :

TxM = kerTx(f) .

Hint. Take v ∈ TxM , so a smooth path γ : (−ε, ε) → M with γ(0) = x and γ′(0) = v.

Then consider the path f ◦ γ in Y .

Remark. This is the ‘complement’ of the idea that for an embedding ι : M → X the

tangent vectors to i[M ] considered as a subset of X are imgTx(ι) ⊂ TxX

Solution. This is one part of Corollary 1.46, but we give a more explicit proof.

Following the hint, take a vector in the submanifold [γ] ∈ TxM . Then we have f ◦γ(t) = y

for all t, because the submanifold is a level set of f . Thus Tx(f)([γ]) = [f ◦γ] = 0 ∈ Tf(x)Y
because the constant map of a point represents the zero tangent vector. This shows that

[γ] belongs to the kernel of Tx(f). Therefore TxM ⊆ kerTx(f).

On the other hand, we have seen in Exercise 14 that there are charts φ on X and ψ on

Y so that

ψ ◦ f ◦ φ−1(x1, . . . , xdimX) = (x1, . . . , xr, 0, . . . ) ∈ Rr × RdimY−r.

This shows that M has dimension dimX − r and so must TxM . But by the rank-nullity

theorem of linear algebra, dimTxX = dim kerTx(f) + r, which shows that kerTx(f) has

the same dimension as TxM . If a subspace has the same dimension as the space it lies in,

it must be the whole space. Hence TxM = kerTx(f).

22. The Lie bracket in Rn .

The Lie bracket is the name of the operation on vector fields defined in Corollary 2.3.

(a) For a vector field F on X, describe the difference and relationship between the

derivation θF defined by Theorem 2.2 and Dv described by Theorem 1.40.

(b) Let us focus now on X = Rn. We can write a vector field on X as F : Rn → Rn.

How can we calculate θF (f) for some function f : Rn → R?

(c) Let F,G : Rn → Rn be two vector fields on Rn. Show

[F,G](x) = G′(x) · F (x)− F ′(x) ·G(x) .
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(d) Consider the three vector fields on R4 (we have seen these already in Exercise 15(c)):

F (x1, x2, x3, x4) := (−x2, x1, x4,−x3) ,

G(x1, x2, x3, x4) := (−x3,−x4, x1, x2)

and H(x1, x2, x3, x4) := (−x4, x3,−x2, x1) .

(i) Calculate [F,G] , [G,H] und [F,H] .

(ii) For these three fields, check that the Jacobi identity holds (compare with the

next exercise):

[F, [G,H]] = [[F,G], H] + [G, [F,H]] .

Solution.

(a) Let f : X → R be a function. Just before Theorem 1.40 in the script, for every

vector v ∈ TxX we define a derivation Dv : C∞(X,R) → R. In essence, given a

function and a vector at a point, we get a single number. If we have a vector at

every point of X then we get a number at every point of X, ie a function X → R.

This is the definition of the derivation θF (f):

θF (f) = x 7→ DF (x)(f).

(b) If we have a tangent vector v ∈ Rn at a point x ∈ Rn, then Dv(f) is the directional

derivative:

Dv(f) =
d

dt

∣∣∣∣
t=0

f(x+ vt) = ∇f · v,

because a path representing the tangent vector v is y(t) = x + vt. It follows then

that θF (f)(x) = ∇f(x) · F (x).

(c) We firstly calculate θF ◦ θG − θG ◦ θF and then try to see which vector field it could

come from. Let f : Rn → R be any function. Note that

∂

∂xi

(
∇f ·G

)
=

∂

∂xi

∑
j

(∂jf)Gj =
∑
j

(∂j∂if)Gj + (∂jf) (∂iGj)

Now we can compute half the expression.

θF ◦ θG(f) = θF

(
∇f ·G

)
= ∇

(
∇f ·G

)
· F

=
∑
i,j

(∂j∂if)Gj Fi + (∂jf) (∂iGj)Fi
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Swapping F and G gives an expression for θG ◦ θF (f) too. The difference is

θF ◦ θG(f)− θG ◦ θF (f) =
∑
i,j

(∂jf) (∂iGj)Fi − (∂jf) (∂iFj)Gi

=
∑
j

(∂jf)
∑
i

(∂iGj)Fi − (∂iFj)Gi

= ∇f ·

(∑
i

(∂iGj)Fi − (∂iFj)Gi

)
j

= ∇f ·
(
∇Gj · F −∇Fj ·G

)
j

Thus we see that [F,G] is the vector field whose j-th component has the formula in

the bracket. But the Jacobian matrix F ′ of a function F : Rn → Rn is the matrix

whose j-th row is the gradient of Fj. Thus this formula is the same as the formula

in the question.

(d) We can use the formula we just derived:

[F,G](x) = G′(x) · F (x)− F ′(x) ·G(x)

=


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



−x2
x1

x4

−x3

−


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0



−x3
−x4
x1

x2



=


−x4
x3

−x2
x1

−

x4

−x3
x2

−x1

 =


−2x4

2x3

−2x2

2x1


Similarly we have [G,H](x) = (−2x2, 2x1, 2x4,−2x3) and [F,H](x) = (2x3, 2x4,−2x1,−2x2).

(e) For this part, we could go ahead and calculate another three Lie brackets. But notice

that in fact [F,G] = 2H, [G,H] = 2F and [F,H] = −2G. It follows that

[F, [G,H]] = [F, 2F ] = 2F ′ · F − F ′ · 2F = 0,

[[F,G], H] + [G, [F,H]] = [2H,H] + [G,−2G] = 0.

If [F,G] = 2H reminds you of the cross-product in R3, there’s a good reason. Con-

sider these vector fields at the point x = (1, 0, 0, 0). Then

F (1, 0, 0, 0) := (0, 1, 0, 0) ,

G(1, 0, 0, 0) := (0, 0, 1, 0)

and H(1, 0, 0, 0) := (0, 0, 0, 1) .

so we can see these vectors as the basis of R3 and the Lie bracket as twice the

cross-product.
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23. Properties of the Lie bracket. Let X be an n-dimensional manifold.

(a) Show: the Lie bracket has the following properties for all vector fields F,G,H ∈
Vec∞(X) and scalars a ∈ R.

(i) R-linear: [aF,G] = a[F,G].

(ii) anti-symmetric: [F,G] = −[G,F ].

(iii) Jacobi identity: [F, [G,H]] + [G, [H,F ]] + [H, [F,G]] = 0.

Hint: The pairing F → θF is injective (and for smooth vector fields and derivations

it is bijective), so it is enough to show equality for the corresponding derivations.

Eg. to show [aF,G] = a[F,G] you can show θ[aF,G] = θa[F,G].

(b) Let φ : U → Rn be a chart of X for an open set U ⊂ X. Then consider the vector

field Fi ∈ Vec∞(U) with

Fi(x) = Tx(φ)−1(ei) ,

for i ∈ {1, . . . , n} and where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn is the i-th standard unit

vector of Rn.

Show that these fields commute: [Fi, Fj] = 0 for every i, j.

Solution.

(a) The Lie bracket is a local construct, so choose any point x ∈ X and a chart φ : U →
Rn. Let f : U → R be any smooth function. Applying the definitions of Theorems

1.40 and 2.2 to a general manifold gives

θF (f) : x 7→ DF (x)(f) =
d

dt

∣∣∣∣
t=0

f(γ(t)) for [γ] = F (x)

=
d

dt

∣∣∣∣
t=0

f(φ−1(φ(x) + vt)) for v = Tx(φ)(F (x)).

The formulas are equivalent, but depending on how the vectors of the vector field

are described, whether as paths or in local coordinates, one formula might be easier

than the other. Now the derivation θ[F,G] = θF ◦ θG − θG ◦ θF .

R-linear: Notice that θF is R-linear in F :

θaF (f)(x) =
d

dt

∣∣∣∣
t=0

f(φ−1(φ(x) + avt)) for v = Tx(φ)(F (x))

=
d

d(s/a)

∣∣∣∣
s=0

f(φ−1(φ(x) + vs)) for s = at

= a θF (f)(x).
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And linearity in f follows from the Leibniz rule. Thus

θ[aF,G](f) = θaF

(
θG(f)

)
− θG

(
θaF (f)

)
= a θF

(
θG(f)

)
− θG

(
a θF (f)

)
= a θF

(
θG(f)

)
− a θG

(
θF (f)

)
= a θ[F,G](f) = θa[F,G](f)

Anti-symmetry also follows from the linearity of θF in F :

θ−[G,F ] = −θ[G,F ] = −θG ◦ θF + θF ◦ θG = θ[F,G]

Finally we must show the Jacobi identity.

θ[F,[G,H]](f) = θF

(
θGθH(f)− θHθG(f)

)
− (θGθH − θHθG)

(
θF (f)

)
= θF θGθH(f)− θF θHθG(f)− θGθHθF (f) + θHθGθF (f).

If you permute the F ,G, and H to compute the other two terms, you see that every

permutation of θF θGθH occurs twice, once with each sign. Therefore the sum is zero.

(b) Here the second version of the formula for θF is very useful, because v = Tx(φ)(Fi(x)) =

Tx(φ)Tx(φ)−1ei = ei for every point x ∈ U . Then

θFi
θFj

(f)(x) = θFi

(
y 7→ d

dt

∣∣∣∣
t=0

f(φ−1(φ(y) + ejt))

)
(x)

=
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

f(φ−1(φ(x) + eis+ ejt))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

f(φ−1(φ(x) + eis+ ejt))

= θFj
θFi

(f).

This shows θ[Fi,Fj ] = 0, and hence [Fi, Fj] = 0.

More explanation/another example: Perhaps it is useful to see how special this

property is by doing the same computation for F and G from Exercise 22 considered

as vector fields on S3. Choose the point x0 = (1, 0, 0, 0) and a small neighbourhood

U ⊂ S3 of this point. Then we can use the chart φ(x1, x2, x3, x4) = (x2, x3, x4) which

has inverse φ−1(y1, y2, y3) = (h(y), y1, y2, y3) for h(y) = +
√

1− ‖y‖2. Let y = φ(x)

be the corresponding local coordinate for any point x. First we compute the vectors

in local coordinates

vF (y) := Tx(φ)F (x(y)) = (x1, x4,−x3) = (h(y), y3,−y2),

vG(y) := Tx(φ)G(x(y)) = (−x4, x1, x2) = (−y3, h(y), y1).
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Take any smooth function f : S3 → R. The application of θF to f is standard:

θF (f)(x) =
d

dt

∣∣∣∣
t=0

f ◦ φ−1(y + vF (y)t).

Here is the important point. When we apply θG to this, we make the substitution

y + vG(y)s for y, but the vector vF also depends on y! This gives

θGθF (f)(x) =
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

f ◦ φ−1
(
y + vG(y)s+ vF (y + vG(y)s)t

)
.

Now I think you can see why the order of θF and θG is important. Let’s complete

this calculation now:

y + vG(y)s = (y1 − y3s, y2 + h(y)s, y3 + y1s)

vF (y + vG(y)s) = vF (y1 − y3s, y2 + h(y)s, y3 + y1s)

= (h(y + vG(y)s), y3 + y1s,−y2 − h(y)s))

θGθF (f)(x) =
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

f ◦ φ−1
(
y + vG(y)s+ vF (y + vG(y)s)t

)

=
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

f ◦ φ−1

y1 − y3s+ h(y + vG(y)s)t

y2 + h(y)s+ (y3 + y1s)t

y3 + y1s+ (−y2 − h(y)s)t


Let’s assume that f is given as the restriction of a smooth function on R4, which

is always possible, so that we can use vector calculus for the next steps. You can

also do this with the chain rule for manifolds with the tangent map instead of the

gradient and Jacobian, and of course it is basically the same thing, but I think it is

a little clearer to write it this way. We continue

θGθF (f)(x) = ∇f · J(φ−1) · d
ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

y1 − y3s+ h(y + vG(y)s)t

y2 + h(y)s+ (y3 + y1s)t

y3 + y1s+ (−y2 − h(y)s)t



= ∇f · J(φ−1) · d
ds

∣∣∣∣
s=0

h(y + vG(y)s)

y3 + y1s

−y2 − h(y)s



= ∇f · J(φ−1) ·

h′(y) · vG(y)

y1

−h(y)

 .
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In the same way

y + vF (y)t = (y1 + h(y)t, y2 + y3t, y3 − y2t)

vG(y + vF (y)t) = (−y3 + y2t, h(y + vF (y)t), y1 + h(y)t)

θF θG(f)(x) =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

f ◦ φ−1
(
y + vF (y)t+ vG(y + vF (y)t)s

)

= ∇f · J(φ−1) · d
dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

y1 + h(y)t+ (−y3 + y2t)s

y2 + y3t+ h(y + vF (y)t)s

y3 − y2t+ (y1 + h(y)t)s



= ∇f · J(φ−1) · d
dt

∣∣∣∣
t=0

 −y3 + y2t

h(y + vF (y)t)

y1 + h(y)t



= ∇f · J(φ−1) ·

 y2

h′(y) · vF (y)

h(y)


Finally we can say

θ[F,G](f)(x) = ∇f · J(φ−1) ·

y2 − h′(y) · vG(y)

h′(y) · vF (y)− y1
2h(y)



= ∇f · J(φ−1) ·

 x3 + x−11 (x2, x3, x4) · (−x4, x1, x2)
−x−11 (x2, x3, x4) · (x1, x4,−x3)− x2

2x1



= ∇f · J(φ−1) · x−11

 x1x3 − x2x4 + x1x3 + x2x4

−(x1x2 + x3x4 − x3x4)− x1x2
2x21



= ∇f ·


−x−11 x2 −x−11 x3 −x−11 x4

1 0 0

0 1 0

0 0 1

 ·
 2x3

−2x2

2x1

 = ∇f ·


−2x4

2x3

−2x2

2x1


and this is the same answer we found in 22(d).

24. Commuting flows.

Let a, b, c ∈ R be constants and the vector fields F,G ∈ Vec∞(R3) be given by

F (x1, x2, x3) = (1, x3,−x2) and G(x1, x2, x3) = (a, b, c) .
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(a) Determine the flows ψF and ψG induced by F and G respectively, and determine for

which values of a, b, c the flows commute with one another: i.e. for all t, s ∈ R

ψF (t, ψG(s, x)) = ψG(s, ψF (t, x)).

(b) Calculate [F,G], and determine for which values of a, b, c the Lie bracket is zero,

[F,G] = 0.

Solution.

(a) There is a subtle difference between local and global flows, but here we will see that

these vector fields are complete and so generate global flows. A global flow on X is

a map ψ : R×X → X with the ‘initial’ property ψ(0, x) = x and the ‘continuation’

property ψ(t, ψ(s, x)) = ψ(s + t, x). If we fix a point x0 and consider where this

point moves as time t changes, we get a path αx0(t) := ψ(t, x0). The vector field

associated to a flow is F (x) = [αx]. Reversing this, finding the flow associated to a

vector field, requires solving a differential equation.

For F , this is the differential equation

x′1(t) = 1, x′2(t) = x3(t), x′3(t) = −x2(t),

with initial condition x(0) = (x10), x20, x30). Immediately we have x1(t) = t + x10.

The other two components are a well-known system with solution x2(t) = x20 cos t+

x30 sin t and x3(t) = −x20 sin t+ x30 cos t. The flow is

ψF (t, x) = (t+ x1, x2 cos t+ x3 sin t, −x2 sin t+ x3 cos t).

The DE system for G is very easy, everything moves in a straight line with constant

speed, giving the flow

ψG(t, x) = x+ (a, b, c)t.

Now we can compute

ψF (t, ψG(s, x)) = ψF (t, (x1 + as, x2 + bs, x3 + cs))

= (t+ x1 + as, (x2 + bs) cos t+ (x3 + cs) sin t,−(x2 + bs) sin t+ (x3 + cs) cos t)

ψG(s, ψF (t, x)) = (t+ x1 + as, x2 cos t+ x3 sin t+ bs,−x2 sin t+ x3 cos t+ cs).

The first components are always equal. The second components are equal when

bs cos t+ cs sin t = bs and the third when −bs sin t+ cs cos t = cs. We can divide out

the s, and due to the linear independence of trig functions, it must be that b = c = 0.

Geometrically, the flow ψF moves points in a circles around the axis x2 = x3 = 0,

while increasing their x1 at a constant rate. The two flows commute exactly when

ψG moves parallel to this axis.
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(b) This is in Euclidean space, so we use the formulas from Exercise 22.

[F,G] = G′F − F ′G = 0 · F −

0 0 0

0 0 1

0 −1 0

 ·
ab
c

 =

 0

c

−b

 .

Thus the two fields commute when b = c = 0, exactly when the flows commute. This

is a general truth: flows commute exactly when the vector fields commute (Corollary

2.21).

Terminology

Flüss = flow
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