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Ross Ogilvie

Analysis III
11. Exercises

In the exercises below, let V, V1, . . . , Vn,W be finite dimensional normed vector spaces over K.

33. (a) Dimension of L(V1, . . . , Vn;W ).

Show that

dimL(V1, . . . , Vn;W ) = dim(V1) · . . . · dim(Vn) · dim(W )

Solution. We give two approaches.

1. Note that L(V1;W ) is the familiar space of linear maps from V1 to W , each

of which can be written as a dimW rows by dimV1 columns matrix. Thus it is a

vector space of dimV1 · dimW . Next, notice that for A ∈ L(V1, . . . , Vn;W ) the map

x1 7→ A(x1, ·) is a linear map from V1 to L(V2, . . . , Vn;W ), and conversely every such

linear map give an element of L(V1, . . . , Vn;W ). The formula follows by induction.

2. We can also give an explicit basis to this space. Let ei,j for i = 1, . . . , dimVj be a

basis of Vj. Then every vector in V1×. . .×Vn can be written as v = (
∑dimVj

i=1 ci,jei,j)j.

Choose a linear map A ∈ L(V1, . . . , Vn;W ). It acts on v as

A(

dimVj∑
i=1

ci,jei,j) = A(c1,1e1,1 +

dimV1∑
i1=2

ci1,1ei1,1,

dimV2∑
i2=1

ci2,2ei2,2, . . . )

= A(c1,1e1,1,

dimV2∑
i2=1

ci2,2ei2,2, . . . ) + A(

dimV1∑
i1=2

ci1,1ei1,1,

dimV2∑
i2=1

ci2,2ei2,2, . . . )

=

dimV1∑
i1=1

A(ci1,1ei1,1,

dimV2∑
i2=1

ci2,2ei2,2, . . . )

=

dimV1∑
i1=1

dimV2∑
i2=1

A(ci!,1ei1,1, ci2,2ei2,2,

dimV3∑
i3=1

ci3,3ei3,3, . . . )

=

dimV1∑
i1=1

dimV2∑
i2=1

· · ·
dimVn∑
in=1

A(ci1,1ei1,1, ci2,2ei2,2, . . . , cin,nein,n)

=

dimV1∑
i1=1

dimV2∑
i2=1

· · ·
dimVn∑
in=1

ci1,1ci2,2 . . . cin,nA(ei1,1, ei2,2, . . . , ein,n)

What this shows is that the effect of A on a vector is determined by the values

A(ei1,1, ei2,2, . . . , ein,n) ∈ W . Conversely, if you specify these values then there is a

unique multi-linear map A. Since there are dim(V1) · . . . · dim(Vn) different values to

be chosen from a dimW dimensional space, this shows the formula.

It might be a useful extra exercise to compare how the linear maps L(V1 × V2;W )

are different from the multilinear maps L(V1, V2;W )
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(b) Alternative description of the norm on L(V1, . . . , Vn;W ).

In the lectures we saw that the norm on L(V1, . . . , Vn;W ) was defined as

‖A‖ := sup{ ‖A(x1, . . . , xn)‖ |xk ∈ Vk, ‖xk‖ ≤ 1 }.

Prove the following alternative characterisations are equivalent:

‖A‖ = sup{ ‖A(x1, . . . , xn)‖ |xk ∈ Vk, ‖xk‖ = 1 }

= sup
{∥∥A( x1

‖x1‖ , . . . ,
xn

‖xn‖

)∥∥ ∣∣∣ xk ∈ Vk \ {0}} .

Solution. Note that A(x1, . . . , xn) is zero if any of the input vectors are zero. So

we may consider only non-zero vectors. Consider for ‖xk‖ ≤ 1

‖A(x1, . . . , xn)‖ = ‖x1‖ . . . ‖xn‖ ‖A(x̂1, . . . , x̂n)‖ ≤ ‖A(x̂1, . . . , x̂n)‖

With equality if and only if ‖xk‖ = 1 for all k. This shows the equality of (1) and (2).

(2) and (3) are equal for the reason that they consider precisely the same set of values.

(c) An isomorphism between L(V ;W ) and L(V,W ′;K).

Show that the map

Φ : L(V ;W )→ L(V,W ′;K), A 7→ Φ(A)

with

Φ(A) : V ×W ′ → K, (v,B) 7→ (B ◦ A)(v)

is an isomorphism between the normed vector spaces L(V ;W ) and L(V,W ′;K),

i.e. Φ is a vector space isomorphism and it preserves the respective norms: for all

A ∈ L(V ;W ) we have ‖Φ(A)‖ = ‖A‖.

Solution. First note that Φ is a linear map

Φ(A+ λÃ)(v,B) = B
(

(A+ λÃ)(v)
)

= B
(
A(v) + λÃ(v)

)
= B(A(v)) + λB(Ã(v))

= Φ(A)(v,B) + λΦ(Ã)(v,B).

Next suppose that Φ(A) is the zero map for some A. Let vi, wj and w′
k be (unit length)

bases of V , W and W ′, with w′
k(wj) = δi,j. Write A(vi) =

∑
ai,jwj in matrix form. Then

0 = Φ(A)(vi, w
′
k) = w′

k

(∑
ai,jwj

)
= ai,k,

which shows A = 0. Thus Φ is injective. On the other hand, we know the dimensions of

the two spaces are equal, so Φ must be surjective. Therefore we have shown that Φ is a

vector space isomorphism.
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Finally we must show that it preserves the norms. Observe |B(w)| ≤ ‖B‖ ‖w‖ by the

properties of norms of linear operators. Choose A ∈ L(V ;W ). We proceed

‖Φ(A)‖L(V,W ′;K) = sup{|B(A(v))| | ‖B‖ = 1, ‖v‖ = 1} ≤ sup{‖A(v)‖ | ‖v‖ = 1} = ‖A‖L(V ;W ).

On the other hand, these are finite dimensional spaces, so {‖A(v)‖ | ‖v‖ = 1} actually

has a maximum at say ṽ, and if A is not the zero operator then A(ṽ) ∈ W is nonzero.

Let w1 be the unit length normalisation of A(ṽ) and extend this to a basis w2, . . . , wdimW

of W . Now let B̃ be the dual element. That is B̃(w1) = 1 and B̃(wj) = 0 for j ≥ 2. Both

B̃ and ṽ are unit length, so

‖Φ(A)‖L(V,W ′;K) = sup{|B(A(v))| | ‖B‖ = 1, ‖v‖ = 1} ≥ |B̃(A(ṽ))| = |A(ṽ)| = ‖A‖L(V ;W ).

This shows that Φ is norm preserving.

34. The tensor product.

(a) Prove or disprove:

(i) the tensor product of vectors

V1 × . . .× Vn → V1 ⊗ . . .⊗ Vn, (v1, . . . , vn) 7→ v1 ⊗ . . .⊗ vn

is not commutative in the case V1 = . . . = Vn.

(ii) every vector in V1 ⊗ . . .⊗ Vn is pure (coherent).

Solution.

(i) This is true, the tensor product is not commutative even when the vector spaces

are all the same. Consider n = 2 and V = R2 with the standard basis e1, e2. Let

the dual space V ′ have the dual basis α1, α2. By the construction of the double

dual, V acts on V ′ by v(α) := α(v). Let’s apply Definition 3.2 to the following

two tensors

e1 ⊗ e2, e2 ⊗ e1 : V ′ × V ′ → R

e1 ⊗ e2(α1, α2) := e1(α1) · e2(α2) = α1(e1) · α2(e2) = 1,

e2 ⊗ e1(α1, α2) := e2(α1) · e1(α2) = α1(e2) · α2(e1) = 0,

so clearly they are different tensors.

(ii) This is false. Let’s continue the example from the previous part. I claim that

t = e1 ⊗ e2 − e2 ⊗ e1 is not a pure tensor. Let it act on two arbitrary vectors of

V ′, namely α = a1α1 + a2α2 and β = b1α1 + b2α2:

t(α, β) = e1(α)e2(β)− e2(α)e1(β) = a1b2 − a2b1.
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However, a pure tensor would produce

(c1e1 + c2e2)⊗ (d1e1 + d2e2)(α, β) = (c1a1 + c2a2)(d1b1 + d2b2)

= c1d1a1b1 + c2d1a2b1 + c1d2a1b2 + c2d2a2b2

So we would need for c1d2 = 1 and c2d1 = −1 but also c1d1 = 0. This is not

possible.

(b) Show that in V1 ⊗ . . . ⊗ Vn the linear span of the pure tensors is V1 ⊗ . . . ⊗ Vn, ie.

every element of V1 ⊗ . . .⊗ Vn is a finite linear combination of the pure tensors.

Solution. We have already seen in 33(a) that an element A of L(V1, . . . , Vn;K) is

exactly determined by its values A(ei1,1, ei2,2, . . . , ein,n). But

αj1,1 ⊗ · · · ⊗ αjn,n(ei1,1, ei2,2, . . . , ein,n) = δi1,j1 · · · · · δin,jn .

This allows us to write

A =

dimV1∑
i1=1

dimV2∑
i2=1

· · ·
dimVn∑
in=1

A(ei1,1, ei2,2, . . . , ein,n)αi1,1 ⊗ · · · ⊗ αin,n.

Thus we have written every element of L(V1, . . . , Vn;K) = V ′
1 ⊗ . . . V ′

n as a sum of

pure tensors. Conversely, pure tensors are multilinear maps, and so so are their

linear combinations.

(c) Construct the following isomorphisms between normed vector spaces:

(i) L(V1, . . . , Vn;W ) ∼= L(V1 ⊗ . . .⊗ Vn;W )

(ii) V1 ⊗ V2 ⊗ V3 ∼= V1 ⊗ (V2 ⊗ V3) ∼= (V1 ⊗ V2)⊗ V3
(iii) L(V ;W ) ∼= V ′ ⊗W .

Solution. In each case we will name the isomorphism from left to right as Φ. The

question says only to construct the isomorphism and I am feeling a little lazy, so I

will omit the proof that it is in fact an isomorphism.

(ii) We will prove the first isomorphism. By definition V1⊗V2⊗V3 = L(V ′
1 , V

′
2 , V

′
3 ;K).

On the other hand, we have seen that the space of multi-linear maps can be

understood inductively as linear maps into the space of multi-linear maps. Hence

L(V ′
1 , V

′
2 , V

′
3 ;K) ∼= L(V ′

1 ;L(V ′
2 , V

′
3 ;K)) = L(V ′

1 ;V2 ⊗ V3) ∼= L(V ′
1 , (V2 ⊗ V3)′;K)

= V1 ⊗ (V2 ⊗ V3).
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(iii) This is probably the most useful isomorphism, because it enables us to reduce

spaces of linear maps to tensor products, and I find tensor products easier.

Simply V ′ ⊗W = L(V,W ′;K) ∼= L(V ;W ).

(i) First, let us show that dualising distributes over the tensor product: (V ⊗W )′ =

V ′ ⊗W ′. This follows since

(V ⊗W )′ ∼= L(V ′;W )′ = L(W ;V ′) ∼= L(V,W ;K) = V ′ ⊗W ′.

(Perhaps it is also a good exercise as to why the dual of the linear maps from

V to W is the linear maps from W to V )

We can now prove (i) using (ii) and (iii). I’ll show only the proof in the case

n = 2, higher n follow similarly by induction.

L(V1, V2;W ) ∼= L(V1;L(V2;W )) = L(V1;V
′
2 ⊗W ) = V ′

1 ⊗ (V ′
2 ⊗W )

∼= V ′
1 ⊗ V ′

2 ⊗W

L(V1 ⊗ V2;W ) ∼= L(V1 ⊗ V2,W ′;K) = (V1 ⊗ V2)′ ⊗W ∼= (V ′
1 ⊗ V ′

2)⊗W
∼= V ′

1 ⊗ V ′
2 ⊗W

35. Riemannian metric.

Let X be a manifold. Let L(TX, TX;R) denote the vector bundle whose fibre over x ∈ X
is the R-vector space of bilinear forms TxX×TxX → R. A Riemannian metric (or simply

a metric) on X is a global smooth section G of this vector bundle, such that g(x) is a

scalar product on TxX for ever x ∈ X (it is symmetric and positive definite).

Show that every manifold has a Riemannian metric.

Hint. Choose a cover of X by coordinate charts. Construct a Riemannian metric in each

coordinate chart. ‘Glue’ them all together using a partition of unity.

Solution. Let us first do this in a single coordinate chart φ : U → Rn. Then we know

that T (φ) is a diffeomorphism between TU and TRn. This has an obvious Riemannian

metric, namely the dot product. Explicitly, if v, w ∈ TxU , then we define

g(x)(v, w) = Tx(φ)v · Tx(φ)w.

We see that this very much depends on the choice of chart.

Now let X be covered by an atlas A and let (αα) be a subordinate partition of unity.

In each coordinate neighbourhood Uα we have a Riemannian metric gα. Let g(x) =∑
αα(x)gα(x). This is a well-defined global section, because αα vanishes outside Uα and
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at any point at most finitely many of the terms are non-zero. Bilinearity and symmetry

are also immediate, because the sum of symmetric bilinear forms is again a symmetric

bilinear form. It remains to show positive definiteness. But the partition of unity is

non-negative, so g(x) must be non-negative. Suppose that v ∈ TxX is a non-zero vector.

There must be at least one αα that does not vanish at x because they sum to 1, so it

follows that

g(x)(v, v) =
∑

αα(x)gα(x)(v, v) ≥ α0(x)g0(x)(v, v) > 0.

This shows positive definiteness.

Terminology

köherent = coherent. In English, we called these tensors pure, simple, or elementary.
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