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Ross Ogilvie

Analysis III
10. Exercises

29. The computation of the Lie Bracket for submanifolds of Rn.

Let X ⊂ Rn be a submanifold of Rn and F,G ∈ Vec∞(X). With the help of Theo-

rem 2.22(iii),(iv) devise a formula to compute [F,G] similar to Exercise 22. Prove your

formula.

Solution. Using Theorem 2.22(iii), extend F and G to vector fields on Rn called F̃ , G̃.

Then by Theorem 2.22(iii) and Exercise 22 we have that

[F,G]X = [F̃ , G̃]Rn = G̃′F̃ − F̃ ′G̃.

So here we already have a formula that avoids using coordinate charts. There is the

practical question of how to find extensions of vector fields on X. Many times, the

formulas for the vector fields will still be valid. For example, in the solution of Exercise

23(b) we computed the Lie bracket of fields on S3, but these fields were already coming

from R4. This exercise explains why our calculation in 23(b) agreed with the one in 22.

If you are in the situation where there is not an easy extension, here is a practical way

to construction one. Choose a point x ∈ X. Because X is a submanifold, we know that

locally X is the graph of a function h : U → Rn−k. For simplicity, assume it is a graph

over the coordinates y = (x1, . . . , xk). In other words, y 7→ (y, h(y)) is the inverse of the

chart φ(x) = (x1, . . . , xk) of X. Thus we can write the vector fields F (y, h(y)), G(y, h(y))

in this neighbourhood as functions of y alone. Then F̃ (x) := F (y, h(y)) is an extension

of F to U × Rn−k, and likewise for G̃. The advantage of this choice of extension is that

they are constant in the variables xk+1, . . . , xn, so for example

G̃′F̃ =


∂G̃1

∂x1
. . . ∂G̃1

∂xk
0 . . . 0

...
...

∂G̃n

∂x1
. . . ∂G̃n

∂xk
0 . . . 0


F̃1

...

F̃n

 =


∂G̃1

∂x1
. . . ∂G̃1

∂xk
...

...
∂G̃n

∂x1
. . . ∂G̃n

∂xk


F̃1

...

F̃k


(G̃′F̃ )j(x) =

k∑
i=0

∂G̃j

∂xi
Fi(x) =

k∑
i=0

(
∂Gj

∂xi
+

n−k∑
l=1

∂Gj

∂xk+l

∂hl
∂xi

)
Fi(x)

The derivatives of h can also be found relatively easily by solving the linear system

∂f

∂y
+

∂f

∂(xk+1, . . . , xn)
Jh = 0,

where f(y, h(y)) = c describes X in this neighbourhood as a level set. Hence we can

compute the Lie bracket at this point x using just the vector fields F,G defined on X and

a level set describing X locally. If your submanifold is not defined using level sets, well

then it probably has nice charts and you should probably just compute the Lie bracket

using them.
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30. My hat it has three corners, three corners has my hat.

Let X be a manifold, F a smooth vector field on X, x0 ∈ X, and γ : J → X the maximal

integral curve of F with γ(0) = x0.

(a) Show there is a trichotomy: either γ is constant, or γ is injective, or γ is periodic,

and these are mutually exclusive. Periodic means that J = R, γ is non-constant,

and there is a number p > 0 so that

γ(t+ p) = γ(t) for all t ∈ R.

This number p is called a period of γ. It is not unique; for example if p is a period,

so is 2p.

Hint: Assume that γ is not constant or injective, and try to show that it is periodic.

(b) Show γ is constant exactly when F (x0) = 0.

(c) Suppose that γ is periodic. Show that there is a minimal period p0 > 0: that means

p0 is a period of γ and there are no other periods in the interval 0 < p < p0.

Hint: Prove this by contradiction.

(d) Suppose that γ is periodic. Show that any period is a multiple of the minimal period.

(e) Suppose that γ is periodic. Show that γ|[0,p0) is injective and the map f : S1 → X

defined by

f(cos(θ), sin(θ)) = γ
( p0

2π
· θ
)

for all θ ∈ R

is an embedding with f [S1] = γ[R]. It follows that that the image γ[R] is a subman-

ifold of X.

Hint: Exercise 14.

(f) Suppose that γ is injective and X is compact. We know then that J = R. Prove

that if γ[R] has an accumulation point in X \ γ[R] then γ is not an embedding.

Solution.

(a) Clearly if γ is constant or periodic then it is not injective, and conversely if γ is

injective then it is not constant or periodic. Periodic functions are by definition not

constant. Therefore the three types are mutually exclusive.

Suppose now that γ is not constant or injective. Then there exists times such that

γ(t0) = γ(t1) = x1. Suppose that t0 < t1 without loss of generality. Now we apply

the uniqueness of integral curves, Theorem 2.5(ii). Let p = t1−t0 and α(t) = γ(t+p),

which is still an integral curve of F and has α(t0) = γ(t1). Then α(t) = γ(t) for all

t for which they are both defined.
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In particular, because J is an open interval γ is defined for at least [t0, t1] = [t0, t0+p]

and α for at least [t0 − p, t0]. But then

γ̃ : t 7→

γ(t) for t ∈ [t0, t0 + p]

α(t) for t ∈ [t0 − p, t0]

is an integral curve of F with γ̃(t0) = γ(t0). Since γ is maximal, it must be that

in fact it is defined on at least [t0 − p, t0 + p]. On the other hand, α must also be

a maximal integral curve, and γ̃ shows it is also defined on at least [t0 − p, t0 + p].

From the definition of α, γ must be defined on at least [t0 − p, t0 + 2p]. Every time

that we iterate this argument, we show that the domain of γ extends −p and +p

further than we had assumed. The only possibility is that J = R. Finally then we

have shown that γ(t+ p) = γ(t) for all t ∈ R; it is periodic.

(b) If γ is constant, then [γ] is the zero vector and so from the integral curve equation

[γ(t)] = F (γ(t)) we have that F (x0) = 0.

Conversely, if F (x0) = 0 then the curve γ(t) = x0 solves the integral curve equation.

The solutions are unique.

(c) Let P be the set of positive periods. Suppose there were no minimal period. Because

P is bounded from below by 0, it has an infimum p = inf P . If p > 0, choose a

sequence pk ∈ P converging to the infimum. Then by the continuity of γ

γ(t+ p) = lim
k→∞

γ(t+ pk) = lim
k→∞

γ(t) = γ(t).

This contradicts the fact that P has no minimum. It must be that if there is no

minimal period then inf P = 0.

Now we continue the argument in local coordinates. Choose a chart φ containing

x0 = γ(0) and consider the curve γ̃ : R → Rn, γ̃ = φ ◦ γ. Again, take a sequence

of periods pk, this time which converge to zero. We compute the derivative of γ̃

at t = 0, using the fact that we know it exists (γ is smooth) and the equivalence

between limits of functions and limits of sequences of function values:

γ̃′(0) = lim
k→∞

γ̃(0 + pk)− γ̃(0)

pk − 0
= lim

k→∞

γ̃(0)− γ̃(0)

pk
= 0.

Thus F (x0) = 0 and it follows from the previous question that γ is constant. But

this contradicts the definition of periodic. Therefore there must exist a minimal

period.

(d) Let p0 be the minimal period and p be any other period. Then so is p+ kp0 for any

integer k ∈ Z. Thus there is a unique period p + kp0 ∈ [0, p0). But the only period

in this interval is 0. Therefore p = −kp0.
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(e) If γ|[0,p0) were not injective, then there would be points t0, t1 ∈ [0, p0) with γ(t0) =

γ(t1). We have seen in the proof of (a) that if γ(t0) = γ(t1) then t1 − t0 is a period.

So we would have a period 0 < |t1 − t0| < p0, which is a contradiction.

Consider the function f : S1 → X. It is well defined because γ is periodic. Again

from (b) we know that γ has non-vanishing derivative, so f is an immersion. And

we have just seen that γ|[0,p0) is injective, so f must be too. It remains to show that

f is a homeomorphism, specifically that the inverse is continuous.

Choose any point x1 of γ[R]. Since f has constant rank, we know from Exercise 14

that there are charts (φ, U) of S1 and (ψ, V ) of X with x1 ∈ U so that

ψ ◦ f ◦ φ−1(θ) = (θ, 0, . . . , 0).

Let Π(x1, x2, . . . , xn) = x1. Then φ−1 ◦ Π ◦ ψ is continuous, and is equal to f−1 on

γ[R] ∩ V .

(f) We know that γ is a smooth injective immersion. The only way that it is not an

embedding is if the inverse is not continuous. γ−1 : γ[R] → R is not continuous

exactly when there is a closed set A ⊂ R such that (γ−1)−1[A] = γ[A] is not closed.

Let x ∈ γ[R] \ γ[R] be the accumulation point of γ[R] outside itself and xk ∈ γ[R]

be a sequence that converges to x. Define tk by γ(tk) = xk. This is well-defined

because γ is injective. The set A := {tk} ⊂ R has no accumulation points. If it had

an accumulation point t, then (xk) would have to converge to γ(t) ∈ γ[R] by the

continuity of γ. Thus the set A is closed. But γ[A] = {xk} is not closed, because it

has an accumulation point x. This argument shows that γ−1 is not continuous.

31. Integral curves on the circle and torus.

Let S1 = { (x, y) ∈ R2 |x2 + y2 = 1 } be the unit circle, as we have seen many times

before. We know from Exercise 15 that its tangent bundle is trivial. Specifically

ψ : R× S1 → TS1,
(
s, (x, y)

)
7→ s · (−y, x)

is a global trivialisation of TS1 (using the identification of T(x,y)S1 with { v ∈ R2 | 〈v, (x, y)〉 =

0 } = R · (−y, x) also from this exercise).

For each α > 0 consider the non-vanishing smooth vector field

Fα : S1 → TS1, (x, y) 7→ ψ
(
α, (x, y)

)
and the maximal integral curve γα : R→ S1 of Fα with γα(0) = (1, 0).
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(a) Show that

γα(t) =
(

cos(α · t), sin(α · t)
)

is the maximal integral curve. Determine the minimal period.

Next we consider the 2-dimensional manifold T2 := S1 × S1. This subset of R2 × R2 is a

torus, a doughnut (donut). For constants α, β > 0 we define the vector field

Gα,β : T2 → TT2,
(
(x1, y1), (x2, y2)

)
7→
(
Fα(x1, y1) , Fβ(x2, y2)

)
.

(b) I don’t think we’ve had an exercise about this, so take a moment to think about

why T (X × Y ) = TX × TY . Consult Definition 1.41 and try to write T(x,y)(X × Y )

as a product.

(c) Prove that the curve

ηα,β : R→ T2, t 7→
(
γα(t), γβ(t)

)
is the maximal integral curve of Gα,β with ηα,β(0) =

(
(1, 0), (1, 0)

)
∈ T2.

(d) Suppose α
β
∈ Q. Show that ηα,β is periodic and determine the minimal period.

From Exercise 30 we knot that the image is a submanifold. This is call a torus knot.

(e) Suppose α
β
∈ R \Q. Show that ηα,β is injective, but that it is not an embedding.

Remark. In this case, the image ηα,β[R] is in fact dense in T2.

Solution.

(a) γ′α(t) = α(− sin(αt), cos(αt)) = Fα(γα(t)) shows that it is an integral curve of Fα. It

is defined for all t ∈ R so it is maximal. The minimal period is 2π/α.

(b) Let (φ, U) be a chart of X and (ψ, V ) be a chart of Y . By Definition 1.41 we have

that (φ×ψ,U ×V ) is a chart of X × Y . Consider the tangent space of the product.

Choose any vector in T(x,y)(X ×Y ) represented by α = (αX , αY ) : (−ε, ε)→ X ×Y .

Then we get vectors [αX ] ∈ TxX and [αY ] ∈ TyY given by the two components of α.

Conversely, given vectors in TxX and TyY we can make a path in X × Y and get a

vector in T(x,y)(X × Y ). Moreover, if β = (βX , βY ) is another path, then [α] = [β] if

and only if

((φ× ψ) ◦ α)′(0) = ((φ× ψ) ◦ β)′(0)

(φ ◦ αX , ψ ◦ αY )′(0) = (φ ◦ βX , ψ ◦ βY )′(0)

((φ ◦ αX)′(0), (ψ ◦ αY )′(0)) = ((φ ◦ βX)′(0), (ψ ◦ βY )′(0)),

which is exactly the condition that [αX ] = [βX ] and [αY ] = [βY ]. Hence we see that

T(x,y)(X × Y ) = TxX × TyY .
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This splitting of the tangent space of X × Y allows us to write projection maps

pX : T (X × Y ) → TX and pY : T (X × Y ) → TY . It is a short exercise to check

that this makes T (X × Y ) into a product manifold.

(c) From (b), [ηα,β] = ([γα], [γβ]) ∈ TS1 × TS1. We have already seen that γα is the

integral curve of Fα on S1 in part (a), so [ηα,β] = (Fα, Fβ) = Gα,β. It is maximal

because it is defined for all R, and it starts at the given point η(0) = (γα(0), γβ(0)) =

((1, 0), (1, 0)).

(d) Suppose that α/β = r/s ∈ Q for r, s ∈ N with no common factors. Let p0 =

2πr/α = 2πs/β. This is a period, because

ηα,β(t+ p0) = (γα(t+ 2πr/α), γβ(t+ 2πs/β)) = (γα(t), γβ(t)) = ηα,β(t).

Since γα is not constant, neither is ηα,β and thus it must be periodic.

If p is a period of ηα,β then it must be a period of both components. But we know the

minimal period of γα is 2π/α and any other period is a multiple of this. Therefore

p = 2πk/α. Likewise p = 2πl/β. So α/β = k/l. Because we assumed r, s had no

common factors, it follows that k = nr and l = ns. Therefore p is a multiple of p0.

Since this applies to any period, p0 must be minimal.

(e) Suppose that α/β is irrational but η is not injective, η(t0) = η(t1). It follows that

p = t1−t0 is a period of γα and γβ and so therefore a multiple p = 2πk/α = 2πl/β for

integers k, l. But then α/β = k/l is rational. By contradiction, if α/β is irrational,

then η is injective.

To see that it is not an embedding, we use Exercise 30(f). Consider the sequence

tk = 2πk/α. This gives a sequence of distinct points ((1, 0), sk) = ηα,β(tk), where

sk = γβ(tk). Every infinite collection of points in a compact space must have an

accumulation point, so {sk} ⊂ S1 must have an accumulation point s ∈ S1 \ {sk}.
But then ((1, 0), s) is an accumulation point of {ηα,β(tk)} that does not lie in ηα,β[R].

Exercise 30(f) now tells us that this is not an embedding.
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