Martin Schmidt Ross Ogilvie

21. A little bit more about submanifolds.

Let X, Y be manifolds and $f: X \to Y$ be a smooth map with constant rank. Then we know that for every $y \in f[X]$ the preimage $M := f^{-1}[\{y\}]$ is a submanifold of X. Show the following holds for $x \in M$:

$$T_x M = \ker T_x(f)$$

Hint. Take $v \in T_x M$, so a smooth path $\gamma : (-\varepsilon, \varepsilon) \to M$ with $\gamma(0) = x$ and $\gamma'(0) = v$. Then consider the path $f \circ \gamma$ in Y.

Remark. This is the 'complement' of the idea that for an embedding $\iota : M \to X$ the tangent vectors to i[M] considered as a subset of X are $\operatorname{img} T_x(\iota) \subset T_x X$

22. The Lie bracket in \mathbb{R}^n .

The Lie bracket is the name of the operation on vector fields defined in Corollary 2.3.

- (a) For a vector field F on X, describe the difference and relationship between the derivation θ_F defined by Theorem 2.2 and D_v described by Theorem 1.40.
- (b) Let us focus now on $X = \mathbb{R}^n$. We can write a vector field on X as $F : \mathbb{R}^n \to \mathbb{R}^n$. How can we calculate $\theta_F(f)$ for some function $f : \mathbb{R}^n \to \mathbb{R}$?
- (c) Let $F, G : \mathbb{R}^n \to \mathbb{R}^n$ be two vector fields on \mathbb{R}^n . Show

$$[F,G](x) = G'(x) \cdot F(x) - F'(x) \cdot G(x) .$$

(d) Consider the three vector fields on \mathbb{R}^4 (we have seen these already in Exercise 15(c)):

$$F(x_1, x_2, x_3, x_4) := (-x_2, x_1, x_4, -x_3) ,$$

$$G(x_1, x_2, x_3, x_4) := (-x_3, -x_4, x_1, x_2)$$

and
$$H(x_1, x_2, x_3, x_4) := (-x_4, x_3, -x_2, x_1) .$$

- (i) Calculate [F, G], [G, H] und [F, H].
- (ii) For these three fields, check that the *Jacobi identity* holds (compare with the next exercise):

$$[F, [G, H]] = [[F, G], H] + [G, [F, H]].$$

23. Properties of the Lie bracket. Let X be an n-dimensional manifold.

(a) Show: the Lie bracket has the following properties for all vector fields $F, G, H \in$ Vec^{∞}(X) and scalars $a \in \mathbb{R}$.

- (i) \mathbb{R} -linear: [aF, G] = a[F, G].
- (ii) anti-symmetric: [F, G] = -[G, F].
- (iii) Jacobi identity: [F, [G, H]] + [G, [H, F]] + [H, [F, G]] = 0.

Hint: The pairing $F \to \theta_F$ is injective (and for smooth vector fields and derivations it is bijective), so it is enough to show equality for the corresponding derivations. Eg. to show [aF, G] = a[F, G] you can show $\theta_{[aF,G]} = \theta_{a[F,G]}$.

(b) Let $\phi : U \to \mathbb{R}^n$ be a chart of X for an open set $U \subset X$. Then consider the vector field $F_i \in \operatorname{Vec}^{\infty}(U)$ with

$$F_i(x) = T_x(\phi)^{-1}(e_i)$$
,

for $i \in \{1, \ldots, n\}$ and where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^n$ is the *i*-th standard unit vector of \mathbb{R}^n .

Show that these fields commute: $[F_i, F_j] = 0$ for every i, j.

24. Commuting flows.

Let $a, b, c \in \mathbb{R}$ be constants and the vector fields $F, G \in \operatorname{Vec}^{\infty}(\mathbb{R}^3)$ be given by

 $F(x_1, x_2, x_3) = (1, x_3, -x_2)$ and $G(x_1, x_2, x_3) = (a, b, c)$.

(a) Determine the flows ψ_F and ψ_G induced by F and G respectively, and determine for which values of a, b, c the flows commute with one another: i.e. for all $t, s \in \mathbb{R}$

$$\psi_F(t,\psi_G(s,x)) = \psi_G(s,\psi_F(t,x)).$$

(b) Calculate [F, G], and determine for which values of a, b, c the Lie bracket is zero, [F, G] = 0.

Terminology

Flüss = flow