
Martin Schmidt 26 April 2022

Ross Ogilvie

Analysis III
7. Exercises

17. Let (E,B, π) be a vector bundle.

(a) Cutting through a target. Let b0 ∈ B and v0 ∈ π−1[{b0}]. Show: There exists a

global section f : B → E with f(b0) = v0.

Hint: start with a local trivialisation of π in a neighbourhood U of b0 and see if you

can construct a local section whose support is contained in U .

(b) Yet another differentiability test. Show for every manifold Z and any arbitrary

map g : B → Z: if g ◦ π is smooth, so too is g.

(Compare this to Exercise 15.)

Solution.

(a) Let φ : Rr × U → π−1[U ] be a local trivialisation of π in a neighbourhood U of b0.

Let ϕ : U → R be a smooth function of whose support lies compactly within U and

which takes the value ϕ(b0) = 1. The idea is to make a ‘constant’ vector-valued

function and then scale it by ϕ. Then we can defined a function on all of B by

setting it to 0 outside U .

This is a little technical, because ‘constant’ sections do not exist (in general) on

vector bundles, only sections which are constant with respect to a trivialisation.

However this is enough. Let (w0, b0) = φ−1(v0) and set g(b) = φ(w0, b) for b ∈ U .

Clearly g is a local section because of the property π ◦ φ(v, b) = b. Hence we can

define

f(b) =

ϕ(b)g(b) for b ∈ U

0b for b 6∈ U.

Remember that 0b is a well-defined point of E regardless of the chart (Exercise 14(a)).

This is also smooth because it is smooth at every point of U , and any point not in U

has a neighbourhood where ϕ(b) is identically zero. Finally f(b0) = 1 ·φ(w0, b0) = v0

by the definition of w0.

(b) Choose any point v0 ∈ E and trivialisation φ which covers this point. Then (g ◦
π) ◦ φ(v, b) = g ◦ (π ◦ φ(v, b)) = g(b). By writing g as the product of two smooth

functions, we have shown that it too is smooth.

18. Triviality of the homomorphism bundle.

Let (E,B, π) and (E ′, B, π′) be two vector bundles over a base manifold B. Consider the

homomorphism bundle (Hom(E,E ′), B, π′′). People often say “Hom-bundle” for short.
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(a) What is the rank of Hom(E,E ′).

(b) Show that when E and E ′ are trivial bundles, then so too is Hom(E,E ′).

(c) Prove or disprove: Hom(E,E ′) is trivial, then the bundles E and E ′ must be trivial.

Hint: Examine the Möbius bundle M from Exercise 16(c). Every homomorphism

from R to R has the form x 7→ a x, for some a ∈ R. Why is the choice of a is

independent from choice of trivialisation?

Solution.

(a) The rank is the dimension of the fibre. The fibres of the Hom-bundle are the homo-

morphisms from the fibre F of the first bundle to the fibre F ′ of the second. If these

vector spaces are dimensions r and r′ respectively then the homomorphisms can be

identified with r′ × r matrices. Hence they form a vector space of dimension rr′.

(b) If E and E ′ are trivial, we know that there exists non-vanishing sections {v1, . . . , vr}
and {v′1, . . . , v′r′} which are every point are linearly independent. This means there

is an isomorphism of vector bundles between E and Rr × B, and composing with

the coordinate projections Rr → R gives us smooth functions ai : E → R such that

v =
∑r

k=1 ak(v)vk(π(v)). These functions are linear because they are the composition

of linear functions. Therefore we have bundle homomorphisms

sij(b) : v 7→ ai(v)v′j(b) ∈ E ′ for v ∈ π−1[{b}].

The zero homomorphism is the one that maps all vectors to zero. Notice that for

each of sij and for each b ∈ B we have sij(b)(vi(b)) = v′j(b) 6= 0. Hence there is

at least one vector in π−1[{b}] that is not mapped to zero, which shows that sij is

non-vanishing.

They are also linearly independent: suppose that 0 =
∑

k,l cklskl(b). Applying this

to the point vi(b) gives 0 =
∑

l cilv
′
l(b). The linear independence of the v′j(b) now

forces cil = 0 for all l. Repeating this with the other basis sections of E shows all

coefficients to be zero.

We have found rr′ linearly-independent non-vanishing sections of Hom(E,E ′). There-

fore it is trivial.

Each of these functions is essentially the matrix with 1 in the (i, j)th component

and 0 elsewhere because the map sends vi(b) to v′j(b) and other vectors vk(b) to zero

and these are basis vectors of π−1[{b}] and π′−1[{b}] respectively. This proof was

essentially the proof that matrices uniquely represent homomorphisms with respect

to given bases of the vector spaces.

(c) This is false. We give as our counterexample the bundle H := Hom(M,M) as

suggested by the hint. Because the rank of M is 1, so too is the rank of H, as
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discussed in part (a). Thus it is sufficient to give a non-vanishing section of H. But

this is easy: the identity map idM fits the description. When we think of it as a

section of H, perhaps it is better to write it as s:

s(x) : v 7→ v ∈M for v ∈ π−1[{x}].

Let us give a more complete picture of H, following the second part of the hint.

Every bundle homomorphism s : M →M must act as scalar multiplication on each

fibre, because those are the only homomorphism R → R. But scaling the fibre is

independent of the choice of trivialisations; the trivialisations preserve the vector

space structure. Therefore for each point h ∈ H we can describe it as a pair (a, x)

where x = π(h) is the base point and a is the scalar. Conversely, given (a, x) consider

the homomorphism v 7→ a·v on π−1[{x}]. This describes the correspondence between

H and the trivial bundle R× S1.

This proof does not generalise to higher dimensional homomorphism bundles, be-

cause in general there are many more homomorphisms Rr → Rr′ than just scaling,

and these other homomorphisms do not need to be preserved by the trivialisations.

It does not even generalise to the Hom-bundle between line bundles L and L′, be-

cause while it is true that Hom(R,R) = R×, how to identify the fibres of L and L′

with R depends on the trivialisations. It does generalise to the bundle Hom(L,L)

for (L,B, π) a line bundle, because then we can use the special homomorphism id.

19. The dual bundle of a vector bundle.

Let (E,B, π) be a vector bundle over a manifold B, with fibre F = Kn. Further, let U
be an open cover of B so that π trivialises over every set U ∈ U . Denote the cocycles of

π with respect to this cover by gU,V : U ∩ V → GL(Kn).

Show that the dual bundle (Ẽ, B, π̃) to π is described over U by the cocycle (g̃U,V )U,V ∈U

with

g̃U,V : U ∩ V → GL(Kn), x 7→
(
gU,V (x)T

)−1
.

Solution. The dual bundle is by definition a special type of homomorphism bundle,

namely Hom(E,R × B). Thus we should look to Theorem 1.59. In that theorem, the

cocycle of a Hom-bundle is described by the function Π(A,B) : C 7→ B ◦ C ◦ A−1 ∈
Hom(F, F ′) where A ∈ GL(F ) and B ∈ GL(F ′) are respectively the transition functions

of the source and target bundles at a point and C ∈ Hom(F, F ′) is a homomorphism

between the fibres F and F ′ and thus itself a point of the fibre of the Hom-bundle.
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In this situation, we have F = Kn and F ′ = K, and at some point b ∈ U ∩ V ⊂ B we

have A = gU,V (b) ∈ GL(Kn) and B = 1 (the transition functions for the trivial bundle are

always the identity matrix). We can also describe C ∈ Hom(Kn,K) as a column vector

that acts by C : v 7→ CTv (we will explain why we should think of it this way shortly).

Thus, for v ∈ Kn the transition acts as

g̃U,V (b)(C) : v 7→ B(C(A−1(v))) = CT gU,V (b)−1v =
(
(gU,V (b)T )−1C

)T
v ∈ K

g̃U,V (b) : C 7→ (gU,V (b)T )−1C ∈ Hom(Kn,K)

g̃U,V (b) = (gU,V (b)T )−1 ∈ GL(Hom(Kn,K))

We can now explain why we thought of C ∈ Hom(Kn,K) as a column vector, because

we want it to be acted on by an element of GL(Hom(Kn,K)) and these act on column

vectors. Notice that transpose and inversion of matrices commute, so it doesn’t matter

which order we write those operations.

20. Classification of line bundles over S1.

In this exercise we want to show: every real line bundle over the circle S1 is either trivial

or isomorphic to the Möbius bundle.

Let (E,S1, π) be a line bundle and recall the notation of Exercise 16(c), namely the cover

{UN , US} of S1 with UN ∩ US = H− tH+.

(a) With the help of 16(b), argue why we can assume that π trivialises over the cover

{UN , US}.

(b) Let φk : R × Uk → π−1[Uk] be trivialisations of π. Show that fk : Uk → E,

p 7→ φk(1, p) are non-vanishing local sections.

(c) Prove that there exists a function χ : UN ∩ US → R with

∀p ∈ U1 ∩ U2 : φS(χ(p), p) = fN(p).

Explain why it is non-vanishing, why its sign is constant on H+, and why its sign is

constant on H−.

(d) Suppose that χ has the same sign on H+ and H−. Show that the bundle π is trivial.

(e) Lastly we consider the case that χ has different signs on the two sets H±; assume

that χ|H+ > 0 und χ|H− < 0. Let (M, S1, πM) denote the Möbius bundle with

trivialisations φM,k : R × Uk → π−1M [Uk] compatible with the cocycle given in 16(c)

(to construct these was part of the exercise, check the solution for more details).

Show that the vector bundle homomorphism G : E →M given by

∀p ∈ UN : G(fN(p)) = φM,N(1, p) and ∀p ∈ US : G(fS(p)) =
1

|χ(p)|
· φM,S(1, p)
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is well defined, and that it is in fact a vector bundle isomorphism.

Solution.

(a) We know from Exercise 16(b) that every line bundle over R trivialises. It follows

that they also trivialise over every manifold diffeomorphic to R, which in this case

would be UN and US. Consider then EN = π−1[UN ] as a vector bundle with base

UN . It must be trivial, so there is a bundle isomorphism ϕN : R × UN → EN . But

this is exactly the same thing as a local trivialisation of π over UN . The same applies

to US.

(b) They are smooth local sections, since π ◦φk(p) = p. They are non-vanishing because

φk is bijective: φ−1k ◦ fk(p) = (1, p) 6= (0, p).

(c) As stated in the previous part, φS is bijective, so (χ(p), p) = φ−1S (fN(p)) = φ−1S (φN(1, p)).

We see that χ is actually the transition function gUN ,US
: UN ∩ US → GL(R) = R×,

which shows it is non-vanishing. Because H+ is connected and χ is continuous χ(H+)

is connected in R×, so it has a definite sign. The same applies to H−.

(d) Assume that the sign is positive. If not, work with −χ. Let ϕk be a partition of

unity subordinate to {UN , US}. That means they are non-negative functions such

that ϕN +ϕS = 1 and they have compact support within their domains. It is possible

to explicitly construct these functions if you like. Let f = ϕN · fN +ϕS · fS. We will

show that this is a non-vanishing section.

It is a well defined global section, because where fN is not defined we know that

ϕN is zero, ditto for fS. It is also non-zero: at N,S because f(N) = fN(N) and

f(S) = fS(S). At x ∈ UN ∩ US, in the trivialisation φS we calculate:

φ−1S ◦ f(x) = (χ(x) · ϕN(x) + ϕS(x), x).

The first component cannot be zero. Therefore f is non-vanishing. This shows that

E is trivial.

(e) The first step is to check that G is well-defined. Suppose that x ∈ UN ∩ US, so that

both formulae apply. Choose a point v ∈ π−1[{x}]. In the φN trivialisation we can

write this point as v = a · fN(x) for a ∈ R, because the fibre is one-dimensional and

fN(x) is never the zero vector. Likewise we can write v = b · fS(x) for b ∈ R. How

are a and b related? By the transition function!

v = a · fN(x) = a · φN(1, x) = a · φS ◦ φ−1S ◦ φN(1, x) = a · φS(gUN ,US
(x)1, x)

= a · φS(χ(x)1, x) = aχ(x) · fS(x) = b · fS(x).

Another way to talk about this calculation is that the coordinates of v with respect

to the φN trivialisation is (a, x). If you apply the transition function you get the
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coordinates with respect to φS, namely (b, x) = (gUN ,US
(x)a, x) = (χ(x)a, x). This

is just a difference in styles between talking about coordinates in R × Uk using

trivialisations φk and talking about sections fk(x) ∈ E.

Thus we can compare

G(a fN(p)) = a · φM,N(1, p)

G(bfS(p)) =
b

|χ(p)|
· φM,S(1, p)

= a signχ(p) · φM,S(1, p)

The transition function for M given in exercise 16(c) is 1· on H+ and −1· on H−. In

other words, it is signχ. Thus φM,N(1, p) = signχ(p) · φM,S(1, p), which shows that

the two formula agree.

By its definition G is linear on the fibres. Also πM(G(v)) = p = π(v). So it is a

bundle homomorphism. It’s also easy to define the inverse

∀p ∈ UN : H(φM,N(1, p)) = fN(p) and ∀p ∈ US : H(φM,S(1, p)) = |χ(p)| · fS(p).

This is well-defined for the same reasons G is and the other properties are similarly

proved.

Perhaps the isomorphism is even clearer if we define compatible trivialisations φ̃N(w, p) =

φN(w, p) and φ̃S(w, p) = |χ(p)|−1 ·φS(w, p) on E. The (only) cocycle g̃UN ,US
is exactly

the same as the cocycle of M .
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