- **18.** Let (E, B, π) be a vector bundle.
 - (a) Cutting through a target. Let $b_0 \in B$ and $v \in \pi^{-1}[\{b_0\}]$. Show: There exists a global section $f: B \to E$ with $f(b_0) = v$.

Hint: start with a local trivialisation of π in a neighbourhood U of b_0 and see if you can construct a local section whose support is contained in U.

(b) Yet another differentiability test. Show for every manifold Z and any arbitrary map g : B → Z: if g ◦ π is smooth, so too is g. (Compare this to Exercise 15.)

19. Triviality of the homomorphism bundle.

Let (E, B, π) and (E', B, π') be two vector bundles over a base manifold B. Consider the homomorphism bundle (Hom $(E, E'), B, \pi''$).

- (a) What is the rank of Hom(E, E').
- (b) Show that when E and E' are trivial bundles, then so too is Hom(E, E').
- (c) Prove or disprove: Hom(E, E') is trivial, then the bundles E and E' must be trivial. Hint: Examine the Möbius bundle M from Exercise 16(c). Every homomorphism from \mathbb{R} to \mathbb{R} has the form $x \mapsto ax$, for some $a \in \mathbb{R}$. Why is the choice of a is independent from choice of trivialisation H_{\pm} .

20. The dual bundle of a vector bundle.

Let (E, B, π) be a vector bundle over a manifold B, with fibre $F = \mathbb{K}^n$. Further, let \mathcal{U} be an open cover of B so that π trivialise over every set $U \in \mathcal{U}$. Denote the cocycles of π with respect to this cover by $g_{U,V} : U \cap V \to \mathrm{GL}(\mathbb{K}^n)$.

Show that the dual bundle $(\tilde{E}, B, \tilde{\pi})$ to π is described over \mathcal{U} by the cocycle $(\tilde{g}_{U,V})_{U,V \in \mathcal{U}}$ mit

$$\tilde{g}_{U,V}: U \cap V \to \operatorname{GL}(\mathbb{K}^n), \ x \mapsto (g_{U,V}(x)^T)^{-1}.$$

21. Classification of line bundles over \mathbb{S}^1 .

In this exercise we want to show: every real line bundle over the circle \mathbb{S}^1 is either trivial or isomorphic to the Möbius bundle.

Let (E, \mathbb{S}^1, π) be a line bundle and recall the notation of Exercise 16(c), namely the cover $\{U_N, U_S\}$ of \mathbb{S}^1 with $U_N \cap U_S = H_- \sqcup H_+$.

- (a) With the help of 16(b), argue why we can assume that π trivialises over the cover $\{U_N, U_S\}$.
- (b) Let $\phi_k : \mathbb{R} \times U_k \to \pi^{-1}[U_k]$ be trivialisations of π . Show that $f_k : U_k \to E$, $p \mapsto \phi_k(1, p)$ are non-vanishing local sections.
- (c) Prove that there exists a function $\chi: U_N \cap U_S \to \mathbb{R}$ with

$$\forall p \in U_1 \cap U_2 : \phi_S(\chi(p), p) = f_N(p).$$

Explain why it is non-vanishing, why its sign is constant on H_+ , and why its sign is constant on H_- .

- (d) Suppose that χ has the same sign on H_+ and H_- . Show that the bundle π is trivial.
- (e) Lastly we consider the case that χ has different signs on the two sets H_{\pm} ; assume that $\chi|H_{+} > 0$ und $\chi|H_{-} < 0$. Let $(M, \mathbb{S}^{1}, \pi_{M})$ denote the Möbius bundle with trivialisations $\phi_{M,k} : \mathbb{R} \times U_{k} \to \pi_{M}^{-1}[U_{k}]$ compatible with the cocycle given in 16(c) (to construct these was part of the exercise, check the solution for more details). Show that the vector bundle homomorphism $G : E \to M$ given by

$$\forall p \in U_1 : G(f_1(p)) = \phi_{M,1}(1,p) \text{ and } \forall p \in U_2 : G(f_2(p)) = \frac{1}{|\chi(p)|} \cdot \phi_{M,2}(1,p)$$

is well defined, and that it is in fact a vector bundle isomorphism.