14. Sections of vector bundles.

Let (E, B, π) be a K-vector bundle, $f, f_1, f_2 : B \to E$ smooth sections of (E, B, π) , and $g : B \to \mathbb{K}$ a smooth function. Show:

- (a) The zero section $O: B \to E, b \mapsto 0_b$ is a smooth section. By 0_b we mean this: $F_b = \pi^{-1}[\{b\}]$ is a vector space, so it has a zero element $0_b \in F_b \subset E$. (2 Points)
- (b) $f_1 + f_2$ and $g \cdot f$ are smooth sections. (2 Points)
- (c) Interpret g as a global section of the trivial bundle $E = \mathbb{K} \times B$. (1 Point)
- (d) The image f[B] is a submanifold of E. (3 Points)

15. The tangent bundles of low dimensional spheres.

In this exercise we will examine the tangent bundle of the n-sphere

$$\mathbb{S}^{n} := \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | x_{1}^{2} + \dots + x_{n+1}^{2} = 1 \}$$

for $n \leq 3$.

(a) We know that \mathbb{S}^n is an *n* dimensional submanifold of \mathbb{R}^{n+1} and so the embedding map ι is an immersion. Let v be a tangent vector in $T_x \mathbb{S}^n$. Show that $w := T_x(\iota) v \in \mathbb{R}^{n+1}$ is perpendicular to x.

Conversely, choose any $w \in \mathbb{R}^{n+1}$ with $\langle w, x \rangle = 0$ and set $\alpha(t) = (\cos |w|t)x + (\sin |w|t)\hat{w}$. Show that $w = T_x(\iota)[\alpha]$. (2 Points)

Hence we make the identification

$$T_x \mathbb{S}^n = \{ w \in \mathbb{R}^{n+1} \mid \langle w, x \rangle = 0 \}$$

This means that we can describe a section of $T\mathbb{S}^n$ as a smooth function $s: \mathbb{S}^n \to \mathbb{R}^{n+1}$ such that $\langle s(x), x \rangle = 0$ for all $x \in \mathbb{S}^n$.

(b) Finde a non-vanishing section of the tangent bundle TS^1 (a section that never takes the value 0).

Hence $T\mathbb{S}^1$ is trivial.

(c) Show that the vector bundle TS^3 is trivial. (2 Points)

Hint. Use Lemma 1.58 and consider the following sections

$$f_1(x_1, x_2, x_3, x_4) := (-x_2, x_1, x_4, -x_3), \quad f_2(x_1, x_2, x_3, x_4) := (-x_3, -x_4, x_1, x_2)$$

and
$$f_3(x_1, x_2, x_3, x_4) := (-x_4, x_3, -x_2, x_1)$$

Remark. We can identify \mathbb{S}^3 with the unit sphere in the Quaternions \mathbb{H} . Then $f_1 = ix$, $f_2 = jx$ and $f_3 = kx$.

(3 Points)

(d) Let $x_N := (0, 0, 1) \in \mathbb{S}^2$ and $x_S := (0, 0, -1) \in \mathbb{S}^2$. With the aid of stereographic projection N and S, write down local trivialisations of $T\mathbb{S}^2$ over $U_N := \mathbb{S}^2 \setminus \{x_N\}$ and $U_S := \mathbb{S}^2 \setminus \{x_S\}$ (compare Example 1.56), and calculate the transition function $g_{U_N,U_S} : \mathbb{S}^2 \setminus \{N, S\} \to \operatorname{GL}(\mathbb{R}^2)$. (8 Points) Remark. $T\mathbb{S}^2$ is not trivial, but this require some more theory to prove. It is a consequence of the "hairy ball theorem": every section of $T\mathbb{S}^2$ has a zero.

16. Trivial and non-trivial bundles.

- (a) The tangent bundle of a vector space is trivial. Let V be a finite dimensional \mathbb{K} -vector space. Show that the tangent bundle TV is trivial. (2 Points)
- (b) Line bundles over ℝ are trivial. Prove that ever line bundle (a vector bundle whose fibre dimension is 1) over ℝ is trivial. (8 Points) Hint. Let (E, ℝ, π) be a line bundle. Choose a point x₀ and show that there is an interval (x₀ − ε, x₀ + ε) with a non-vanishing section s. Then consider

,

where the choice of $(x, x_0 + \epsilon)$ or $(x_0 - \epsilon, x)$ depends whether $x \le x_0$ or $x \ge x_0$ Show that J is non-empty, open. Argue further that $J = \mathbb{R}$.

(c) A non-trivial line bundle over \mathbb{S}^1 . On the circle $\mathbb{S}^1 \subset \mathbb{R}^2$ choose the poles $x_N = (0, 1)$ and $x_S = (0, -1)$. Then set

$$U_N := \mathbb{S}^2 \setminus \{x_N\}$$
 and $U_S := \mathbb{S}^2 \setminus \{x_S\}.$

The intersection $Q = U_N \cap U_S = \mathbb{S}^1 \setminus \{x_N, x_S\}$ consists of two connected components H_+ und H_- .

Work through the construction following Beispiel 1.51 of cocycles, that there is a line bundle determined by the cover $(U_N, U_S), F := \mathbb{R}$ and the function

$$g_{U_N,U_S}: U_N \cap U_S \to \operatorname{GL}(\mathbb{R}), \ x \mapsto \begin{cases} \operatorname{id}_{\mathbb{R}} & \text{for } x \in H_+ \\ -\operatorname{id}_{\mathbb{R}} & \text{for } x \in H_- \end{cases}$$

Prove that this bundle is non-trivial.

It is called the *Möbius band* or *Möbius bundle*. (8 Points)

Hint about the non-triviality: Suppose you had a non-vanishing section and examine it in the local trivialisations.

Terminology

Schnitt = section nullstellenfreien = non-vanishing Geradenbündel = line bundle American spelling is fiber, British spelling is fibre.