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Ross Ogilvie

Analysis III
4. Exercises

11. The tangent space.

Let X, Y be manifolds and f : X → Y . The vector space TpX is called the tangent space

of X at p and the map Tp(f) is called the tangent map. It is also called the push-forward

map or the differential.

(a) Let α, β : (−ε, ε) → X be two smooth paths, with p = α(0) = β(0). Let φ be a

chart that contains p. Show that these paths are tangential at p (Definition 1.32),

or equivalently give the same tangent vector at p (Definition 1.33), if and only if

(φ ◦ α)′(0) = (φ ◦ β)′(0) ∈ Rn. (2 Points)

(b) Consider the cylinder Z. Do the paths α(λ) = (0, cosλ, sinλ) and β(λ) = (λ2,
√

1− λ2, λ)

give the same tangent vector at p = (0, 1, 0)? (2 Points)

(c) Consider the map G from Exercise 8(b) and v the vector given by α from above.

What is T(0,1,0)(G)(v)?

Hint. Tp(G) is a map between tangent spaces, so your answer should be a tangent

vector of S2, ie a path in S2. (2 Points)

(d) Prove directly that the vector space structure on the tangent space does not depend

on the choice of chart (Theorem 1.36(i)). (Just to think about.)

(e) Let X be connected. Show that f is constant if and only if Tx(f) = 0 for all x ∈ X.

(4 Points)

(f) In the lectures we prove an equivalence between tangent vectors and derivations.

Consider the three coordinate functions Πk : Z → R defined by Πk(x1, x2, x3) :=

xk for k = 1, 2, 3. Again let v the vector given by α from above, and Dv the

corresponding derivation. How does Dv : C1(Z,R) → R act on the coordinate

functions? (1 Point)

Solution.

(a) In terms of Definition 1.32, we must compare α and β in the charts id on R and φ

on X. That is, we must compare the derivatives of φ◦α ◦ id−1 = φ◦α and φ◦β at 0

as linear maps R → Rn. Recall that the derivative of a function F = (F1, . . . , Fn) :

Rm → Rn as a linear map at a point a is an n×m matrix, also called the Jacobian:

JFa :=


∂F1

∂x1
(a) . . . ∂F1

∂xm
(a)

...
...

∂Fn

∂x1
(a) . . . ∂Fn

∂xm
(a)

 .

In our situation, this matrix is a single column given by d
dt

(φ ◦ α)
∣∣
t=0

= (φ ◦ α)′(0).

Because it is only a single column, we identify this matrix with a vector in Rn. The

two matrices are the same if and only if the two vectors are the same.
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(b) We need to choose a chart containing p. The chart φ−π(x1, x2, x3) = (x1, arcsinx3)

is suitable. Using the previous criterion,

d

dλ
(φ ◦ α)

∣∣∣∣
λ=0

=
d

dλ
(0, λ)

∣∣∣∣
λ=0

= (0, 1),

and

d

dλ
(φ ◦ β)

∣∣∣∣
λ=0

=
d

dλ
(λ2, arcsinλ)

∣∣∣∣
λ=0

=

(
2λ,

1√
1− λ2

) ∣∣∣
λ=0

= (0, 1).

So these curves are tangential at p.

(c) A vector on a manifold at a point is an equivalence class of paths. The map Tp(G)

maps the path α to the path G ◦ α. Hence we compute

G ◦ α(λ) = G((0, cosλ, sinλ)) = (tanh 0, cosλ sech 0, sinλ sech 0) = (0, cosλ, sinλ).

This is a path in S2 with G ◦ α(0) = (0, 1, 0) = G((0, 1, 0)). Its equivalent class

defines a tangent vector of S2 at (0, 1, 0).

Notice that the derivative of this path as a function in R3 is (G ◦ α)′(0) = (0, 0, 1)

which is tangent to the sphere in the usual sense of R3. Can you explain this?

(d) Let p be a point in X and φ a chart containing p. Without loss of generality, assume

that φ(p) = 0 (you can add a translation of Rn to achieve this). Then because φ

is a homeomorphism, the induced map Φ := Tp(φ) is a bijection from V := TpX

to Tφ(p)Rn = Rn. We give V the structure of a vector space which makes Φ an

isomorphism. The question is, does the vector space structure depend on the choice

of chart? If we add two vectors according to one chart, so we get the same answer

to when we add them according to another chart?

We begin by describing the inverse Φ−1 : Rn → V more carefully. Given any vector

a ∈ Rn consider the path γ̃a(t) = at in Rn. Then γa = φ−1 ◦ γ̃a is a path in X with

γa(0) = p. Note that Φ(γa) is defined to be the path φ ◦ γa ◦ id−1 = γ̃a, which shows

Φ−1(a) = γa. So, part (a) shows us how to identify a tangent vector in X with a

vector in Rn and this construction shows us how to start with a vector in Rn and

build a path in X. The vector space structure is α+β = γΦ(α)+Φ(β) and Cα = γCΦ(α).

Let ψ be another such chart, and Ψ = Tψ(p)(ψ) and δa(t) = Ψ−1(at) be the construc-

tion in this chart. We need to show that γΦ(α)+Φ(β) and δΨ(α)+Ψ(β) are tangential at

p and that so too are γCΦ(α) and δCΨ(α). In the φ chart,

(φ ◦ γΦ(α)+Φ(β))
′(0) =

(
φ ◦ φ−1

(
[Φ(α) + Φ(β)]t

))′
(0) = Φ(α) + Φ(β)
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and (
φ ◦ δΨ(α)+Ψ(β)

)′
(0) =

(
φ ◦ ψ−1

(
[Ψ(α) + Ψ(β)]t

))′
(0)

= J(φ ◦ ψ−1)0 [Ψ(α) + Ψ(β)]

= J(φ ◦ ψ−1)0 [(ψ ◦ α)′(0) + (ψ ◦ β)′(0)]

= J(φ ◦ ψ−1)0(ψ ◦ α)′(0) + J(φ ◦ ψ−1)0(ψ ◦ β)′(0)

= J(φ ◦ ψ−1 ◦ ψ ◦ α)0 + J(φ ◦ ψ−1 ◦ ψ ◦ β)0

= J(φ ◦ α)0 + J(φψ ◦ β)0

= Φ(α) + Φ(β),

where we used the chain rule J(F ◦G) = JF · FG in the second line, and in reverse

in the 5th line. Because these vectors are equal, by part (a) we know that the paths

are tangential. The proof for vector scaling is similar. This shows that the vector

space structure does not depend on the choice of chart.

(e) Suppose that f is constant. Then f(x) = q for some q ∈ Y and all x ∈ X. Choose

any point x ∈ X and path α through x. Then the push-forward f ◦α is the constant

map t→ q. This is the zero element of the tangent space.

Conversely, suppose that Tx(f) = 0. Then its rank is everywhere 0. By Corollary

1.46, for every point y ∈ T [X] the preimage f−1[{y}] is a submanifold of dimension

dimX−0 = dimX. Submanifolds of the same dimension must be open, and because

it is the preimage of a point it is also closed. Because X is connected, the submanifold

must therefore be all of X. In other words, X = f−1[{y}], so f [X] = y, which shows

f is constant.

(f) Just before Theorem 1.40 in the script we have the definition of this correspondence

Dv(Πk) =
d

dt

∣∣∣∣
t=0

Πk(α(t)) =
d

dt

∣∣∣∣
t=0

Πk((0, cos t, sin t)) =


0 if k = 1,

0 if k = 2,

1 if k = 3.

12. Immersions.

(a) Investigate: at which points are the following maps immersive?

(i) f : R→ R3, t 7→ f(t) = (cos(2t), sin(2t), t). (1 Point)

(ii) g : R→ R2, t 7→ g(t) = (t2, t3). Is g injective? (2 Points)

(iii) h : (1,∞)→ R2, t 7→ h(t) =
(
t+1
2t

cos(2t), t+1
2t

sin(2t)
)
. (2 Points)
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(b) Let M be an n-dimensional compact manifold and f : M → Rn a smooth map.

Show that f cannot be an immersion. (3 Points)

Hint. Investigate the topological properties of f [M ].

Solution.

(a) A map is immersive at a point if the tangent map is injective. This is the case if it

is full-rank. The rank is the number of linearly independent columns. We have also

seen for subset of Rn that the tangent map is just the Jacobian.

(i)

Tt(f) = (−2 sin(2t), 2 cos(2t), 1).

The last column is never zero, so the rank is 1. Thus f is an immersion.

(ii)

Tt(g) = (2t, 3t2)

This has rank 1, except where both columns vanish simultaneously, namely

t = 0. This map is an injection however, since t3 = s3 ⇒ t = s.

(iii)

Tt(h) =

(
− 1

2t2
cos(2t)− 1 + t

t
sin(2t), − 1

2t2
sin(2t) +

1 + t

t
cos(2t)

)
.

This is rank 1, except if both columns vanish simultaneously. That occurs when

0 = (cos(2t) + 2t(1 + t) sin(2t))2 + (sin(2t)− 2t(1 + t) cos(2t))2

= 1 + 4t2(1 + t)2.

We see that in fact the two columns are never simultaneously zero, so h is an

immersion.

(b) Immediately we can say that N = f [M ] is a compact subset of Rn, therefore closed.

Suppose that f is an immersion. That means that T (f) is rank n at every point.

But then f is also a submersion. This make f a local diffeomorphism and so the

image N must also be open. But the only closed and open sets in Rn are the empty

set and Rn itself. N cannot be empty and Rn is not compact. Therefore we have a

contradiction: f cannot be an immersion.

Can you generalise this result to for f : M → Rm, or provide counter-examples?

13. Submanifolds
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(a) In previous examples in the lectures and exercises, we have defined manifold struc-

tures on Sn and Z by giving an atlas. Show that these spaces are submanifolds of

Rn. That is, show idRn+1 |Sn : Sn → Rn+1 and idR3 |Z : Z → R3 are embeddings.

(4 Points)

(b) Let’s generalise this. Consider Example 1.18(iv) from the lecture script. It says:

Let M = f−1[{0}] be the preimage of 0 of a smooth function f : Rn+1 → R whose

gradient ∇f has no common zeroes with f . Then M is a manifold.

Show that idRn+1|M : M → Rn+1 is an embedding. (3 Points)

(c) What is the connection between the previous exercise and the constant rank theorem

(Theorem 1.44/Corollary 1.46)? (2 Points)

Solution.

(a) To show a map is an embedding, you must show that it is an immersion and a

homeomorphism onto its image.

By a comment in the lecture script, an injective immersion of a compact manifold is

always an embedding. Clearly the identity function is injective. Since Sn is compact,

it remains to show that it is an immersion. We will use the coordinate projection

charts. Choose any point x ∈ Sn. Without loss of generality, assume that x ∈ H+
0 .

Let h(y) =
√

1− ‖y‖2. Then the tangent map in local coordinates is

J(id ◦ id ◦ π−1
0 ) =



∂h
∂y1

∂h
∂y2

. . . ∂h
∂yn

1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1


which is clearly rank n. Hence this is an immersion.

We can check that id is an immersion for Z in a similar way

J(id ◦ id ◦ φ−1
a ) =

(
∂t
∂t

∂ cos s
∂t

∂ sin s
∂t

∂t
∂s

∂ cos s
∂s

∂ sin s
∂s

)
=

(
1 0 0

0 − sin s cos s

)
This is rank 2 for all s, t, so id is an immersion. Again, of course id is injective, and so

a bijection onto the image. The final property to verify, is that id : (Z, τ)→ (Z, τ ′) is

a homeomorphism, where τ is the topology from the manifold structure (the topology

that makes the charts are homeomorphisms) and τ ′ is the topology as a subspace of

R3. In exercise 6(c)(i) we verifies that the charts were homeomorphisms with respect

to the subspace topology, so these two topologies are the same.

(b) This is really a generalisation of exercise 5(a), because the coordinate projection

charts are exactly the charts one gets by using the implicit function theorem to
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construct an atlas on a level set. We recall this result now. Take any point p ∈ M .

By the assumption that the gradient does not vanish, there is a coordinate xk such

that ∂kf(p) 6= 0. Without loss of generality, assume k = 0. The implicit function

theorem says that there is a smooth height function h such that h̃ : y 7→ (h(y), y)

is an inverse to φ := π0|M∩U for some neighbourhoods U of p ∈ M ⊂ Rn+1 and

π0[U ] of π0(p) ∈ Rn. π0 is a continuous function on Rn+1, so if M is given the

subspace topology, then the restriction of π0 to M is also continuous. The function

h̃ : π0[U ]→ Rn+1 has continuous components, and so is also continuous. Thus π0 is

a chart of M near p. We have previously shown that different coordinate projections

are compatible in the sense of charts. So this makes M a manifold.

Let ι = id|M : M → Rn+1 be the inclusion map, which is the identity map restricted

to M but considered as a map between two manifolds. Clearly it is a bijection

between M and ι[M ]. As we saw in the previous part, whether ι is a homeomorphism

is exactly the same question as to whether the charts are continuous in the subspace

topology.

Here is another way to see that ι−1 is continuous that shows an useful tactic. π0 is a

continuous function from Rn+1 to Rn. Then h̃ is a continuous from a subset of Rn to

a neighbourhood in M . The final piece is that ι−1|M∩U = h̃ ◦ π0|M∩U , which shows

ι−1 locally as the composition of two continuous functions.

It remains to show that ι is an immersion. This is clear from the form of the inverse

of φ = π0|M∩U given by the implicit function theorem:

J(id ◦ ι ◦ φ−1) = Jh̃ =



∂h
∂y1

∂h
∂y2

. . . ∂h
∂yn

1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1


(c) The result in Example 1.18(iv) is a special case of the constant rank theorem (or

Corollary 1.46): ∇f 6= 0 implies that the rank is always 1 so the preimage of a point

is a submanifold of Rn+1.

Terminology

f und g berühren = f and g are tangential.

Umkehrsatz = Inverse Function Theorem.

Rangsatz = Constant Rank Theorem.

Rang = rank (symbol is rk).

6



Exercise for Easter break: Here is a challenging question for you to attempt over the Easter

break. Feel free to ask me questions about it, but we won’t discuss it in the tutorials.

Classification of 1-dimensional connected manfiolds.

In this exercise we will prove the following theorem: Every 1-dimensional connected manifold

M is diffeomorphic to R or S1.

There are two parts. In the first part we construct an special atlas. In the second part we use

this atlas to construct either a single chart for all of M , or show it must be a circle. Part (b)

is essentially constructing a metric on M , something that we will cover later in the course, so

feel free to assume (b) for now and attempt it later.

Let (M,A) be a 1-dimensional connected manifold. We will construct a compatible atlas Ã

with the following two properties:

Every chart ϕ̃ ∈ Ã maps to an open interval Jϕ̃ i.e. ϕ̃ : Uϕ̃ → Jϕ̃ and

For every two charts ϕ̃, ψ̃ with Uϕ̃ ∩ Uψ̃ 6= ∅ we have |(ψ̃ ◦ ϕ̃−1)|′ = 1. (∗)

(a) Show that for any chart ϕ and point p ∈ Uϕ there is a compatible chart containing p that

maps to an open interval Iϕ. Thus we can assume that all charts in A map to an open

interval.

(b) With the help of a partition of unity, show that for every chart φ there exists a smooth

function fϕ : Uϕ → R+, so that for every pair of overlapping charts ϕ, ψ with Uϕ∩Uψ 6= ∅,

fϕ(x)

fψ(x)
= |(ψ ◦ ϕ−1)|′(ϕ(x)) for all x ∈ Uϕ ∩ Uψ.

(c) Show that for every chart ϕ there is an interval Jϕ and a diffeomorphism Φϕ : Iϕ → Jϕ

such that

Φ′ϕ(ϕ(x)) = fϕ(x) for all x ∈ Uϕ.

Define ϕ̃ := Ψϕ ◦ ϕ : Uϕ → Jϕ. It follows that the atlas Ã containing the charts ϕ̃ also

fulfils the second property.

With this atlas we can now describe arc-length parameterisations (ALP): f : I →M is an ALP

when it is a homeomorphism and for any chart φ of M , we have |(φ ◦ f)|′(x) = 1 for all x for

which the composition is defined. This does not depend on the choice of chart, because of (b).

(d) Let f : I → M and g : J → M be two ALP. Show that f [I] ∩ g[J ] contains at most two

connected components.

Hint. Consider the graph {(s, t) ∈ I × J | f(s) = g(t)}.
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(e) Suppose that f [I]∩ g[J ] contains two connected components. Show that M is diffeomor-

phic to S1.

(f) Suppose that f [I] ∩ g[J ] is connected. How can f be extended to an ALP of f [I] ∪ g[J ]?

(g) Complete the proof of the theorem.

Solution. Parts (d)-(g) are proved in the Appendix of Milnor’s Topology from a differen-

tiable viewpoint. It can be found online here https://math.uchicago.edu/~may/REU2017/

MilnorDiff.pdf. He uses arc-length parameterisations, which requires a metric on M . We

will cover metrics later in the course. All manifolds can be given a metric, and the proof

does not depend on the choice of metric, so there is no loss of generality. Indeed, it is of-

ten a good strategy to use additional structure. There are purely topological proofs, eg Gale

1987 https://www.jstor.org/stable/2322421. This uses the order relation in place of the

arc-length.

A completely different approach is given by the notion of covering spaces. There is a theorem

that every manifold is the image of the local diffeomorphism of a simply connected manifold.

One then proves that the only simply connected 1-dimensional manifold is R and the only local

diffeomorphisms map to R or S1 (up to diffeomorphism).
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