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Ross Ogilvie
Analysis III
4. Exercises

11. The tangent space.

Let X, Y be manifolds and f : X → Y . The vector space TpX is called the tangent space

of X at p and the map Tp(f) is called the tangent map. It is also called the push-forward

map or the differential.

(a) Let α, β : (−ε, ε) → X be two smooth paths, with p = α(0) = β(0). Let φ be a

chart that contains p. Show that these paths are tangential at p (Definition 1.32),

or equivalently give the same tangent vector at p (Definition 1.33), if and only if

(φ ◦ α)′(0) = (φ ◦ β)′(0) ∈ Rn. (2 Points)

(b) Consider the cylinder Z. Do the paths α(λ) = (0, cosλ, sinλ) and β(λ) = (λ2,
√

1− λ2, λ)

give the same tangent vector at p = (0, 1, 0)? (2 Points)

(c) Consider the map G from Exercise 8(b) and v the vector given by α from above.

What is T(0,1,0)(G)(v)?

Hint. Tp(G) is a map between tangent spaces, so your answer should be a tangent

vector of S2, ie a path in S2. (2 Points)

(d) Prove directly that the vector space structure on the tangent space does not depend

on the choice of chart (Theorem 1.36(i)). (Just to think about.)

(e) Let X be connected. Show that f is constant if and only if Tx(f) = 0 for all x ∈ X.

(4 Points)

(f) In the lectures we prove an equivalence between tangent vectors and derivations.

Consider the three coordinate functions Πk : Z → R defined by Πk(x1, x2, x3) :=

xk for k = 1, 2, 3. Again let v the vector given by α from above, and Dv the

corresponding derivation. How does Dv : C1(Z,R) → R act on the coordinate

functions? (1 Point)

12. Immersions.

(a) Investigate: at which points are the following maps immersive?

(i) f : R→ R3, t 7→ f(t) = (cos(2t), sin(2t), t). (1 Point)

(ii) g : R→ R2, t 7→ g(t) = (t2, t3). Is g injective? (2 Points)

(iii) h : (1,∞)→ R2, t 7→ h(t) =
(
t+1
2t

cos(2t), t+1
2t

sin(2t)
)
. (2 Points)

(b) Let M be an n-dimensional compact manifold and f : M → Rn a smooth map.

Show that f cannot be an immersion. (3 Points)

Hint. Investigate the topological properties of f [M ].
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13. Submanifolds

(a) In previous examples in the lectures and exercises, we have defined manifold struc-

tures on Sn and Z by giving an atlas. Show that these spaces are submanifolds of

Rn. That is, show idRn+1 |Sn : Sn → Rn+1 and idR3 |Z : Z → R3 are embeddings.

(4 Points)

(b) Let’s generalise this. Consider Example 1.18(iv) from the lecture script. It says:

Let M = f−1[{0}] be the preimage of 0 of a smooth function f : Rn+1 → R whose

gradient ∇f has no common zeroes with f . Then M is a manifold.

Show that idRn+1|M : M → Rn+1 is an embedding. (3 Points)

(c) What is the connection between the previous exercise and the constant rank theorem

(Theorem 1.44/Corollary 1.46)? (2 Points)

Terminology

f und g berühren = f and g are tangential.

Umkehrsatz = Inverse Function Theorem.

Rangsatz = Constant Rank Theorem.

Rang = rank (symbol is rk).
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Exercise for Easter break: Here is a challenging question for you to attempt over the Easter

break. Feel free to ask me questions about it, but we won’t discuss it in the tutorials.

Classification of 1-dimensional connected manfiolds.

In this exercise we will prove the following theorem: Every 1-dimensional connected manifold

M is diffeomorphic to R or S1.

There are two parts. In the first part we construct an special atlas. In the second part we use

this atlas to construct either a single chart for all of M , or show it must be a circle. Part (b)

is essentially constructing a metric on M , something that we will cover later in the course, so

feel free to assume (b) for now and attempt it later.

Let (M,A) be a 1-dimensional connected manifold. We will construct a compatible atlas Ã

with the following two properties:

Every chart ϕ̃ ∈ Ã maps to an open interval Jϕ̃ i.e. ϕ̃ : Uϕ̃ → Jϕ̃ and

For every two charts ϕ̃, ψ̃ with Uϕ̃ ∩ Uψ̃ 6= ∅ we have |(ψ̃ ◦ ϕ̃−1)|′ = 1. (∗)

(a) Show that for any chart ϕ and point p ∈ Uϕ there is a compatible chart containing p that

maps to an open interval Iϕ. Thus we can assume that all charts in A map to an open

interval.

(b) With the help of a partition of unity, show that for every chart φ there exists a smooth

function fϕ : Uϕ → R+, so that for every pair of overlapping charts ϕ, ψ with Uϕ∩Uψ 6= ∅,

fϕ(x)

fψ(x)
= |(ψ ◦ ϕ−1)|′(ϕ(x)) for all x ∈ Uϕ ∩ Uψ.

(c) Show that for every chart ϕ there is an interval Jϕ and a diffeomorphism Φϕ : Iϕ → Jϕ

such that

Φ′ϕ(ϕ(x)) = fϕ(x) for all x ∈ Uϕ.

Define ϕ̃ := Ψϕ ◦ ϕ : Uϕ → Jϕ. It follows that the atlas Ã containing the charts ϕ̃ also

fulfils the second property.

With this atlas we can now describe arc-length parameterisations (ALP): f : I →M is an ALP

when it is a homeomorphism and for any chart φ of M , we have |(φ ◦ f)|′(x) = 1 for all x for

which the composition is defined. This does not depend on the choice of chart, because of (b).

(d) Let f : I → M and g : J → M be two ALP. Show that f [I] ∩ g[J ] contains at most two

connected components.

Hint. Consider the graph {(s, t) ∈ I × J | f(s) = g(t)}.

3



(e) Suppose that f [I]∩ g[J ] contains two connected components. Show that M is diffeomor-

phic to S1.

(f) Suppose that f [I] ∩ g[J ] is connected. How can f be extended to an ALP of f [I] ∪ g[J ]?

(g) Complete the proof of the theorem.
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