Martin Schmidt Sheet 2 20.2.2020

Ross Ogilvie

- **4. Derivative of the Inverse.** Let a < b and $A : (a, b) \to \mathcal{L}(\mathbb{R}^n)$ be a differentiable map from the real interval (a, b) to the space of continuous linear maps $\mathbb{R}^n \to \mathbb{R}^n$.
 - (a) Define what it means for this map to be differentiable. (1 Point)
 - (b) For every $t \in (a, b)$, suppose that $A(t) \in \mathcal{L}(\mathbb{R}^n)$ is invertible. Show then that the map

$$A^{-1}:(a,b)\to\mathcal{L}(\mathbb{R}^n),\ t\mapsto (A(t))^{-1}$$

has the derivative given by

$$\frac{\mathrm{d}}{\mathrm{d}t}A^{-1}(t) = -A^{-1}(t) \cdot \frac{\mathrm{d}}{\mathrm{d}t}A(t) \cdot A^{-1}(t).$$

In particular, A^{-1} is differentiable.

(5 Points)

5. On Distributions.

(a) Show that

$$F: C_0^{\infty}(\mathbb{R}) \to \mathbb{R}, \ \phi \mapsto \int_{\mathbb{R}} x^3 \cdot \phi''(x) dx$$

is a distribution on \mathbb{R} , and define a function $f: \mathbb{R} \to \mathbb{R}$ with

$$F(\phi) = \int_{\mathbb{R}} f(x) \cdot \phi(x) dx \text{ for all } \phi \in C_0^{\infty}(\mathbb{R}).$$
 (4 Points)

(b) Show that the Dirac-Distribution

$$\delta: C_0^{\infty}(\mathbb{R}) \to \mathbb{R}, \ \phi \mapsto \phi(0)$$

is indeed a distribution on \mathbb{R} and prove that there does not exist a function $g: \mathbb{R} \to \mathbb{R}$ with

$$\delta(\phi) = \int_{\mathbb{R}} g(x) \cdot \phi(x) dx \text{ for all } \phi \in C_0^{\infty}(\mathbb{R}).$$

(2+4 *Points*)

(c) Calculate the derivatives F' and δ' of the distributions in parts (a) und (b) respectively.

(2+2 Points)

6. On Convolutions.

- (a) Let f(x) = 1 for $-1 \le x \le 1$ and 0 otherwise. Compute f * f. (2 Points)
- (b) Show that the convolution of C_0^{∞} -functions on \mathbb{R}^n is a bilinear, commutative, and associative operation. (2+3+4 Points)
- (c) Denote a constant function on \mathbb{R} by 1, the derivative of the Dirac distribution by δ' (see 5(c)), and the Heaviside function $H: \mathbb{R} \to \mathbb{R}$. This is defined as H(x) := 1 for $x \geq 0$ and H(x) := 0 for x < 0. Show that $1 * (\delta' * H) \neq (1 * \delta') * H$. This shows that the convolution of distributions with non-compact support (on \mathbb{R}) is not necessarily associative, even when it is well-defined.

(7 Points)