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Question 6.1. We have seen previously that the real part of a holomor-
phic function is harmonic. In this question we revisit the proof of Theorem
2.1. Let X be a Riemann surface and u : X → R a twice continuously
differentiable function.

a. Show that there can be at most one holomorphic function whose real
part is u.

b. Choose a point z0 ∈ X and an open and simply connected neighborhood
Ω of z0. Look through the proof of Theorem 2.1. Write a simple formula
for the holomorphic function f on Ω such that Re f = u, in terms of
the function g defined therein.

d. Why is the assumption that Ω is simply connected necessary? Give
a criterion for the existence of the holomorphic function f to be well-
defined on all of X.

e. What is the connection to Question 5.4 and the Hodge star operator?

Question 6.2. In this question we classify (well-behaved) maps between
annuli. An annulus is a set {z ∈ C|R0 < |z − a| < R1} for positive real
numbers R0 < R1 and center a ∈ C.

a. Show every annulus is biholomorphic to an annulus with R0 = 1 cen-
tered on the origin.

Hence we define AR := {z ∈ C|1 < |z| < R}, with R > 1. Suppose that
f : AR → AS is a surjective holomorphic function.

b. Give a biholomorphic map from AR to itself that exchanges the two
boundary circles.

c. Prove that if a sequence of points zk ∈ AR tends to a point in the
boundary of AR then the limit points of f(zk) lie in the boundary of
AS.
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The next step we would like to take would be to extend f to a continuous
function between the closed annuli. Unfortunately there are very badly be-
haved holomorphic functions on annuli, as we will be able to demonstrate
after we finish proving the uniformization theorem, and I couldn’t see an
easy way to prove this extension. So we will make the extra assumption that
f has a continuous extension.

d. By considering Re ln f , show that there must exist u : AR → (0, S)
that satisfies the Dirichlet problem

∆u = 0 on AR, u = 0 on |z| = 1, u = lnS on |z| = R.

e. Why can there be at most one solution to this equation?

f. Find a radial solution so this equation, that is, a function that only
depends on |z|.

g. Using Question 6.1 b, compute f . What conditions on R and S are
required for this to be a well-defined function.
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