Funktionentheorie II – Exercise Set 11

S. Klein and R. Ogilvie

Question 11.1. Let X = B(0, R) for $0 < R \le \infty$ and $g \in \mathscr{E}(X)$. Show using Dolbeault's Lemma that there exists $f \in \mathscr{E}(X)$ that solves Laplace's equation $\Delta f = g$.

Question 11.2. Prove for any compact Riemann surface X that $H^1(X, \mathbb{C})$ is finite dimensional. Generalise this result.

Question 11.3. Recall the symbols for the following sheaves on a Riemann surface X: $\mathscr{E}^{(1,0)}$ and $\mathscr{E}^{(0,1)}$ are sheaves of smooth differential 1-forms of type (1,0) and (0,1) respectively; $\Omega^1 \subset \mathscr{E}^{(1,0)}$ is the sheaf of holomorphic differential 1-forms of type (1,0); Ω^2 is the sheaf of holomorphic 2-forms. Prove the following two sequences are exact (cf Beispiel 3.16)

$$\begin{split} 0 &\to \mathscr{O} \to \mathscr{E} \xrightarrow{d''} \mathscr{E}^{(0,1)} \to 0, \\ 0 &\to \mathbb{C} \to \mathscr{O} \xrightarrow{d} \Omega^1 \xrightarrow{d} \Omega^2 \to 0. \end{split}$$

Question 11.4. Let $\phi : \mathscr{F} \to \mathscr{G}$ be a surjective morphism of sheaves. In this question we will define a map δ^* from $H^0(X, \mathscr{G})$ to $H^1(X, \ker \phi)$ called the connecting homomorphism.

- a. Argue why for every point $p \in X$ there exists an open neighbourhood U_p and a section $f_p \in \mathscr{F}(U_p)$ such that $\phi(f_p) = g|_{U_p}$.
- b. The sections (f_p) define a 0-cochain f with respect to the cover $\{U_p\}$. Define $h = \delta^0(f)$. Show that $\phi(h) = 0$.

(Note that any morphism of sheaves gives a map of cochains by acting on each element of the cochain.)

- c. Explain why h is a cocycle of the sheaf ker ϕ but is not necessarily a coboundary of it.
- d. (*) We say that $\delta^*(g)$ is the class in $H^1(X, \ker \phi)$ given by h. Show that this does not depend on the choice of neighbourhoods U_p or sections f_p .
- e. Show that δ^* is a homomorphism.