Martin Schmidt Nicolas A. Hasse

Preparatory Exercises

27. Approximation by truncated Sobolev functions.

- (a) Let Ω ⊂ ℝⁿ be open and u, v ∈ W^{1,p}(Ω). Show for w(x) := min{u(x), v(x)} that w also lies in W^{1,p}(Ω). Determine the weak derivatives of w.
 [Hint. Use the identities min{a, b} = min{a b, 0} + b and min{a, 0} = 0.5(a |a|), and apply Propositions 3.29 (Chain Rule) and 3.30.]
- (b) Show using (a) that $\max\{u(x), v(x)\} \in W^{1,p}(\Omega)$ too.
- (c) Prove that when $u \in W^{1,p}(\Omega)$ then $w := \min\{u, 1\} \in W^{1,p}(\Omega)$. Calculate the first derivatives of w.
- (d) Show $L^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ is dense in $W^{1,p}(\Omega)$. [Hint. For $u \in W^{1,p}(\Omega)$ consider the sequence of truncations $u_n := \max\{-n, \min\{u, n\}\}$.]

28. More Sobolev functions.

Let $p^{-1} + q^{-1} = 1$, n > q and $\Omega = B(0, 1) \subset \mathbb{R}^n$. Choose $u \in C^1(\Omega \setminus \{0\})$ such that

$$\int_{\Omega \setminus \{0\}} |u(x)|^p \, \mathrm{d}\mu < \infty \quad \text{and} \quad \int_{\Omega \setminus \{0\}} |\nabla u(x)|^p \, \mathrm{d}\mu < \infty$$

- (a) Choose any $\psi \in C^{\infty}(\mathbb{R})$ with $\psi(r) = 1$ for $r \ge 1$, $\psi(r) = 0$ for $r \le \frac{1}{2}$, and $0 \le \psi(r) \le 1$. Let $\psi_k(x) = \psi(k|x|)$. Show that $\psi_k \to 1$ in $W^{1,q}(\Omega)$.
- (b) Define $u_k := u\psi_k$. Show that $\|\partial_i u \partial_i u_k\|_1 \to 0$ as $k \to \infty$.
- (c) Complete the proof that $u \in W^{1,p}(\Omega)$ and $\partial_i u$ is its weak derivative.
- (d) Let $u: \Omega \setminus \{0\} \to \mathbb{R}$ be defined by $u(x) := ||x||^{\gamma}$. Show $\partial^{\alpha} u(x) = P_{\alpha}(x) ||x||^{\gamma-2|\alpha|}$, where P_{α} is a homogeneous degree $|\alpha|$ polynomial. The exact form of P_{α} is unimportant.
- (e) Using u from the previous part show that u belongs to $W^{k,p}(\Omega)$ for $\gamma > k \frac{n}{p}$.

In Class Exercises

29. An inequality for functions in $W_0^{2,2}(\Omega)$.

Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded, and $u \in W_0^{2,2}(\Omega)$. Prove the following inequality:

$$\|\nabla u\|_{L^{2}(\Omega)} \leq \|u\|_{L^{2}(\Omega)}^{1/2} \cdot \|\Delta u\|_{L^{2}(\Omega)}^{1/2}.$$

[Hint. Consider $u \in C_0^{\infty}(\Omega)$ and integrate $\int_{\Omega} |\nabla u|^2 d\mu$ by parts.]

30. The Divergence theorem for Lipschitz continuous vector fields.

Let $\Omega \in \mathbb{R}^n$ be an open and bounded subset with boundary $\partial \Omega \in C^{0,1}$. We will show that the divergence theorem also holds for $f = (f_1, \ldots, f_n) \in (C^{0,1}(\Omega))^n$:

$$\int_{\Omega} \nabla \cdot f \, \mathrm{d}\mu = \int_{\partial \Omega} f \cdot N \, \mathrm{d}\sigma. \tag{*}$$

Firstly we must modify Definition 1.7 appropriately. Concretely: We choose a finite open covering of coordinate charts $\{V_l\}_{l=1}^N$ and appropriate diffeomorphisms $\Phi_l : U_l \to V_l$, for open subsets $U_l \subset \mathbb{R}^{n-1}$. Next take a partition of unity $(h_l)_{l=1}^N$ and define

$$\int_{\partial\Omega} f \cdot N \mathrm{d}\sigma = \sum_{l=1}^{N} \int_{U_l} h_l (f \cdot N) \circ \Phi_l \sqrt{\mathrm{det}(\Phi_l')^t \Phi_l'} \mathrm{d}\mu. \tag{**}$$

- (a) Show: $\partial \Omega$ is continuously differentiable when, after a permutation of coordinates, Φ_l has the form $\Phi_l(y) = (y, \varphi_l(y))$, with $\varphi_l \in C^1(U_l, \mathbb{R})$.
- (b) Show: When $\partial \Omega$ is continuously differentiable and Φ_l has the form as in (a), then (**) becomes

$$\int_{\partial\Omega} f \cdot N \,\mathrm{d}\sigma = \sum_{l=1}^{N} \int_{U_l} h_l f(y, \varphi_l(y)) \cdot (\nabla_y \varphi_l(y), -1) \,\mathrm{d}^{n-1} y. \tag{***}$$

- (c) Let $A \in O(n, \mathbb{R})$ be an orthogonal matrix and f a smooth function. Show: For $f_A = A \cdot f \circ A^{-1}$ the normal vector N_A of the transformed domain $\Omega_A = A[\Omega]$ satisfies the equation $N_A(x) = A \cdot N(A^{-1}x)$ and the divergence theorem (*) holds for
- (f_A, Ω_A) , if and only if it folds for (f, Ω) . (d) Let $\varphi \in C^{0,1}(B^{n-1}(0, \rho))$ with $\|\varphi\|_{\infty} < M$ and $f \in \left(W_0^{1,\infty}(B^{n-1}(0, \rho) \times (-M, M))\right)^n$. Then the following holds

$$\int_{B^{n-1}(0,\rho)} \int_{\varphi(y)}^M \nabla \cdot f(y,t) \,\mathrm{d}^{n-1}y \,\mathrm{d}t = \int_{B^{n-1}(0,\rho)} f(y,\varphi(y)) \cdot (\nabla_y \varphi, -1) \,\mathrm{d}^{n-1}y.$$

[Hint: Approximationssatz 3.33]

(e) Show that for $f = (f_1, \ldots, f_n) \in (C^{0,1}(\Omega))^n$ the divergence theorem (*) hold. [Hint: Show first that the expression in (c) holds also for $f \in (C^{0,1}(\Omega))^n$ and $\partial \Omega \in C^{0,1}$. Then use (d).]