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Preparatory Exercises

27. Approximation by truncated Sobolev functions.

(a) Let Ω ⊂ Rn be open and u, v ∈ W 1,p(Ω). Show for w(x) := min{u(x), v(x)} that w also

lies in W 1,p(Ω). Determine the weak derivatives of w.

[Hint. Use the identities min{a, b} = min{a − b, 0} + b and min{a, 0} = 0.5(a − |a|), and
apply Propositions 3.29 (Chain Rule) and 3.30.]

(b) Show using (a) that max{u(x), v(x)} ∈W 1,p(Ω) too.

(c) Prove that when u ∈ W 1,p(Ω) then w := min{u, 1} ∈ W 1,p(Ω). Calculate the first deriva-

tives of w.

(d) Show L∞(Ω) ∩W 1,p(Ω) is dense in W 1,p(Ω).

[Hint. For u ∈W 1,p(Ω) consider the sequence of truncations un := max{−n,min{u, n}}.]

28. More Sobolev functions.

Let p−1 + q−1 = 1, n > q and Ω = B(0, 1) ⊂ Rn. Choose u ∈ C1(Ω\{0}) such that∫
Ω\{0}

|u(x)|p dµ <∞ and

∫
Ω\{0}

|∇u(x)|p dµ <∞.

(a) Choose any ψ ∈ C∞(R) with ψ(r) = 1 for r ≥ 1, ψ(r) = 0 for r ≤ 1
2 , and 0 ≤ ψ(r) ≤ 1.

Let ψk(x) = ψ(k|x|). Show that ψk → 1 in W 1,q(Ω).

(b) Define uk := uψk. Show that ∥∂iu− ∂iuk∥1 → 0 as k → ∞.

(c) Complete the proof that u ∈W 1,p(Ω) and ∂ju is its weak derivative.

(d) Let u : Ω \ {0} → R be defined by u(x) := ∥x∥γ . Show ∂αu(x) = Pα(x)∥x∥γ−2|α|, where Pα

is a homogeneous degree |α| polynomial. The exact form of Pα is unimportant.

(e) Using u from the previous part show that u belongs to W k,p(Ω) for γ > k − n
p .

In Class Exercises

29. An inequality for functions in W 2,2
0 (Ω).

Let Ω ⋐ Rn be open and bounded, and u ∈W 2,2
0 (Ω). Prove the following inequality:

∥∇u∥L2(Ω) ≤ ∥u∥1/2
L2(Ω)

· ∥△u∥1/2
L2(Ω)

.

[Hint. Consider u ∈ C∞
0 (Ω) and integrate

∫
Ω |∇u|2 dµ by parts.]
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30. The Divergence theorem for Lipschitz continuous vector fields.

Let Ω ⋐ Rn be an open and bounded subset with boundary ∂Ω ∈ C0,1. We will show that the

divergence theorem also holds for f = (f1, . . . , fn) ∈ (C0,1(Ω))n:∫
Ω
∇ · f dµ =

∫
∂Ω
f ·N dσ. (∗)

Firstly we must modify Definition 1.7 appropriately. Concretely: We choose a finite open cover-

ing of coordinate charts {Vl}Nl=1 and appropriate diffeomorphisms Φl : Ul → Vl, for open subsets

Ul ⊂ Rn−1. Next take a partition of unity (hl)
N
l=1 and define

∫
∂Ω
f ·Ndσ =

N∑
l=1

∫
Ul

hl(f ·N) ◦ Φl

√
det(Φ′

l)
tΦ′

ldµ. (∗∗)

(a) Show : ∂Ω is continuously differentiable when, after a permutation of coordinates, Φl has

the form Φl(y) = (y, φl(y)), with φl ∈ C1(Ul,R).

(b) Show : When ∂Ω is continuously differentiable and Φl has the form as in (a), then (∗∗)
becomes ∫

∂Ω
f ·N dσ =

N∑
l=1

∫
Ul

hlf(y, φl(y)) · (∇yφl(y),−1) dn−1y. (∗ ∗ ∗)

(c) Let A ∈ O(n,R) be an orthogonal matrix and f a smooth function.

Show : For fA = A · f ◦ A−1 the normal vector NA of the transformed domain ΩA = A[Ω]

satisfies the equation NA(x) = A · N(A−1x) and the divergence theorem (∗) holds for

(fA,ΩA), if and only if it folds for (f,Ω).

(d) Let φ ∈ C0,1(Bn−1(0, ρ)) with ∥φ∥∞ < M and f ∈
(
W 1,∞

0 (Bn−1(0, ρ)× (−M,M))
)n

.

Then the following holds∫
Bn−1(0,ρ)

∫ M

φ(y)
∇ · f(y, t) dn−1y dt =

∫
Bn−1(0,ρ)

f(y, φ(y)) · (∇yφ,−1) dn−1y.

[Hint: Approximationssatz 3.33]

(e) Show that for f = (f1, . . . , fn) ∈ (C0,1(Ω))n the divergence theorem (∗) hold.
[Hint: Show first that the expression in (c) holds also for f ∈ (C0,1(Ω))n and ∂Ω ∈ C0,1.

Then use (d).]

2


