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31. Another approach to Sobolev inequalities.

Sobolev inequalities compare the “size” of ∇u with that of u. Therefore we want to express u

in terms of its gradient.

(a) Let Ω be bounded and u ∈ C∞
0 (Ω) ⊂ C∞

0 (Rn) and take polar coordinates (r, v) ∈ R+×Sn−1

on Rn. Show:

u(x) = − 1

nωn

∫
Sn−1

∫ ∞

0
∂r(u(x+ rv)) dr dσ(v).

[Hint. First compute −
∫∞
0 ∂r(u(x+ rv)) dr.]

(b) Prove further that

u(x) =
1

nωn

∫
Rn

⟨x− y,∇u(y)⟩
|y − x|n

dy and |u(x)| ≤ 1

nωn

∫
Rn

|∇u(y)|
|y − x|n−1

dy.

(c) Find a bound on u in terms of ∥∇u∥p for p > n.

Solution.

(a) The inner integral we can integrate exactly

−
∫ ∞

0
∂r(u(x+ rv)) dr = −

[
u(x+ rv)

]∞
0

= 0 + u(x).

This is then constant with respect to v and so we can bring it outside the outer integral.

(b) For y = x+ rv we have

∂r(u(x+ rv)) = ∇u · ∂r(x+ rv) = ∇u · v = ∇u · y − x

r
.

So

u(x) = − 1

nωn

∫
Sn−1

∫ ∞

0
∂r(u(x+ rv)) dr dσ(v)

= − 1

nωn

∫
Sn−1

∫ ∞

0
∇u(y) · y − x

rn
rn−1 dr dσ(v)

=
1

nωn

∫
Rn

∇u(y) · x− y

|x− y|n
dy

|u(x)| ≤ 1

nωn

∫
Rn

|∇u(y)|
|x− y|n−1

dy

(c) Since the function has compact support, the support lies in some large ball B(0, R). We

apply Hölder’s inequality to the right hand side.∫
B(0,R)

|∇u(y)|
|x− y|n−1

dy ≤ ∥∇u∥p∥|x− y|1−n∥q.

We see

∥|x− y|1−n∥qq = (nωn)
q

∫ R

0
|x− y|p(1−n) dy < ∞

for q < n/(n− 1) ⇔ p > n. So we get |u(x)| < C∥∇u∥p.
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32. The Sobolev conjugate.

Suppose that for compactly supported smooth functions we have an inequality

∥u∥q ≤ C∥∇u∥p.

By considering the rescaled functions uλ(x) := u(λx) show that this inequality is only possible

for q−1 = p−1 − n−1.

Solution. We have ∥uλ∥q = λ−n/q∥u∥q and ∥∇uλ∥p = λ1−n/p∥∇u∥p. If the inequality also holds

for uλ then

∥u∥q ≤ Cλ1−n/q+n/q∥∇u∥p.

Considering the limits λ → 0 and λ → ∞, this can only hold if the exponent is zero: 1−n/q+n/q.

33. The Sobolev embedding theorem.

Show that W 1,1((0, 1)) ↪→ C([0, 1]) is a continuous embedding.

[Hint. One needs to show that ∥u∥∞ ≤ ∥u∥1 + ∥u1∥1 holds. Therefore define, for (u, u1) ∈
W 1,1((0, 1)), the function U :=

∫ x
x0

u1(t) dt and prove: U ∈ W 1,1((0, 1)) ∩ C([0, 1]) and U −
u ≡ const. It then follows that |u| obtains a minimum x0 ∈ [0, 1]. Finally, one can show

|u(x)− u(x0)| ≤ ∥u1∥1 and estimate ∥u∥∞ with the triangle inequality.]

Solution. We follow the hint. U is continuous because

|U(x)− U(y)| ≤
∫ y

x
|u1| → 0,

and clearly W 1,1 with U ′ = u1. Hence (U − u)′ = u1 − u1 = 0 and it follows that U − u is a

constant. Already we see that u is continuous. Let x0 be the minimum of |u|, so

∥u∥1 =
∫ 1

0
|u| ≥

∫ 1

0
|u(x0)| = |u(x0)|.

We have

|u(x)− u(x0)| = |U(x)− U(x0)| ≤ ∥u1∥1.

On the other hand

|u(x)− u(x0)| ≥ |u(x)| − |u(x0)|.

Finally

∥u∥∞ ≤ |u(x0)|+ sup |u(x)− u(x0)| ≤ ∥u∥1 + ∥u1∥1.

This shows that the embedding is continuous.
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34. The Garding inequality.

The Garding inequality, Equation (4.5) in the script, is needed to apply the Lax-Milgram

theorem. Here we prove a special case. Let Ω ⊂ Rn be an open and bounded domain and

L : C2
0 (Ω) → C0(Ω) the elliptic operator

(Lu)(x) = −div(A(x)∇u(x)) + c(x)u(x)

given in divergence form. Let K > 0 and c(x) ≥ K ∀x ∈ Ω. Show that L obeys the inequality

⟨Lu, u⟩L2(Ω) ≥ C · ∥u∥2W 1,2(Ω) (for a constant C > 0).

Solution.

⟨Lu, u⟩L2(Ω) =

∫
Ω
Luu =

∫
Ω
−div(A∇u)u+ cu2 =

∫
Ω
−div(uA∇u) + (A∇u) · ∇u+ cu2

=

∫
Ω
(A∇u) · ∇u+ cu2.

Now we use the fact that L is elliptic, so v ·Av = vTAv ≥ Λ−1∥v∥2. We continue

⟨Lu, u⟩L2(Ω) ≥
∫
Ω
Λ−1|∇u|2 +Ku2 = Λ−1∥∇u∥22 +K∥u∥22.

Finally, Cauchy-Schwarz inequality gives
∑

1 |vi| ≤
√
n
(∑

|vi|2
)0.5

⟨Lu, u⟩L2(Ω) ≥ min{Λ−1,K}
(
∥∇u∥22 + ∥u∥22

)
≥ min{Λ−1,K}n−1

(
∥u∥2 +

∑
∥∂iu∥2

)2

= min{Λ−1,K}n−1∥u∥2W 1,2 .
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