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31. Another approach to Sobolev inequalities.

Sobolev inequalities compare the “size” of Vu with that of u. Therefore we want to express u

in terms of its gradient.

(a) Let Q be bounded and u € C§°(2) C C§°(R") and take polar coordinates (r,v) € Rt xS"~!

on R™. Show: .

(@) = — n/Sn_l/OooaT(u(x—i—rv))drda(v).

nw
[Hint. First compute — [, 0 (u(x + rv)) dr.]
(b) Prove further that

nen - re ly — 2|t

ly — x| nwy,
(c) Find a bound on w in terms of |Vul|, for p > n.

Solution.

(a) The inner integral we can integrate exactly

- /OOO Op(u(x + rv))dr = — {u(m + rv)}zo =0+ u(x).

This is then constant with respect to v and so we can bring it outside the outer integral.

(b) For y = z + rv we have

GT(u(:L‘—i—rv)):Vu-ar(a:—km;):VU.U:VU.y;x_

So

w(w) = —— /Sn_l /Ooo&(u(x—i-rv))drda(v)

nwr,
/ / Vu(y) - Y= Tpn-1qy do(v)
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(c) Since the function has compact support, the support lies in some large ball B(0, R). We
apply Holder’s inequality to the right hand side.

[Vu(y)| ~
/B(O,R) ]m — y’n—l H HP‘H ’ Hq

We see R
Hx—mlﬂg:0mw{/\x—mM1mdy<m
0

for g <n/(n—1) & p>n. So we get |u(z)| < C||Vulp.
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32.

33.

The Sobolev conjugate.

Suppose that for compactly supported smooth functions we have an inequality
[ullg < ClIVullp.

By considering the rescaled functions uy(x) := u(Az) show that this inequality is only possible

1_ -1 1
=D

—-n .
Solution. We have [Juy ||, = A™9||ull, and | Vuyll, = A1 =P Vul|,. If the inequality also holds
for uy then

for ¢~

lully < OX' =Y T

Considering the limits A — 0 and A — oo, this can only hold if the exponent is zero: 1—n/q+n/q.

The Sobolev embedding theorem.
Show that W11((0,1)) < C([0,1]) is a continuous embedding.

[Hint. One needs to show that ||u|l« < |lul1 + ||u1]|1 holds. Therefore define, for (u,u;) €

WL1((0,1)), the function U := [” wuy(t)dt and prove: U € WH((0,1)) n C([0,1]) and U —

zo
u = const. It then follows that |u| obtains a minimum zp € [0,1]. Finally, one can show

|u(z) — u(xg)| < ||u1]|1 and estimate ||u|lo with the triangle inequality.]

Solution. We follow the hint. U is continuous because
Y
U(2) - Uy)] < / fus| — 0,
X

and clearly WH! with U’ = uy. Hence (U — u) = u; — u; = 0 and it follows that U — u is a

constant. Already we see that u is continuous. Let g be the minimum of |u|, so

1 1
lully = /O ju] > /0 u(o)] = u(zo)].

u() — u(zo)| = |U(x) = U(zo)| < [luall1-

We have

On the other hand
[u(z) —u(xo)| > |u(x)| — |u(wo)l-

Finally
[ulloo < fu(zo)| + sup [u(z) — w(zo)| < [lully + [lualls-

This shows that the embedding is continuous.



34. The Garding inequality.
The Garding inequality, Equation (4.5) in the script, is needed to apply the Lax-Milgram

theorem. Here we prove a special case. Let 2 C R™ be an open and bounded domain and
L : C3(Q) — Cy(Q) the elliptic operator

(Lu)(z) = —=div(A(z)Vu(x)) + c(x)u(z)
given in divergence form. Let K > 0 and ¢(z) > K Vx € Q. Show that L obeys the inequality

(Lu,u)2(q) > C - HuH%Vl,Q(Q) (for a constant C' > 0).

Solution.

(Lu,u)r2(0) = /

Luu = / —div(AVu) u + cu® = / —div(uAVu) + (AVu) - Vu + cu?
Q Q Q

= /Q(AVU) -V + cu?.
Now we use the fact that L is elliptic, so v - Av = vT Av > A7!||v||2. We continue
(L) = [ A7VAP + Kl = A7Vl + Kl
)0.5

Finally, Cauchy-Schwarz inequality gives > 1|v;| < v/n (3 |vi|?
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