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1 Introduction

Definition 1.1. The elliptic sinh-Gordon equation is given by

∆u+ 2 sinh(2u) = 0,

where ∆ is the Laplacian of R2 with respect to the Euclidean metric and u : R2 → R is a twice
partially differentiable real function.

We investigate the finite-type class of solutions of this equation, which is parametrized in the
following way: for each non-negative integer g ∈ N0 - the so-called spectral genus - there exists
a family of solutions whose complexity increases with g. We investigate solutions of spectral genus
g = 2.

We first introduce the set of potentials which parametrize the solutions of the sinh-Gordon equation.
On this space we define vector fields which induce two commuting flows. The orbits of these flows
are called Polynomial Killing fields. The potential’s determinant is an integral of motion along the
trajectories of these flows and we study the structure of the so-called isospectral sets in dependence
on the position of determinant’s roots. Lastly, we investigate the dependence of the period lattice
on the isospectral sets.

This seminar report is based on the paper Solutions of the Sinh-Gordon Equation of Spectral Genus
Two and Constrained Willmore Tori I by M. Knopf, R. Peña Hoepner and M.U. Schmidt [2] and
uses numerous details from the Master’s Thesis by R. Peña Hoepner [1].
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2 Potentials and Polynomial Killing Fields
Definition 2.1. The set of potentials is the set of cubic polynomials with matrix-valued coefficients:

P2 :=
{
ζ =

(
αλ− αλ2 −γ−1 + βλ− γλ2

γλ− βλ2 + γ−1λ3 −αλ+ αλ2

) ∣∣∣∣ α, β ∈ C, γ ∈ R+
}
.

Every ζλ ∈ P2 satisfies the reality condition:

λ3ζ
t
1/λ = λ3

(
αλ−1 − αλ−2 γλ−1 − βλ−2 + γ−1λ−3

−γ−1 + βλ−1 − γλ−2 −αλ−1 + αλ−2

)
= −ζλ.

We define the polynomials a ∈ C4[λ] of fourth degree as

det ζ = (αλ− αλ2)(αλ2 − αλ) + (γλ− βλ2 + γ−1λ3)(γ−1 − βλ+ γλ2)
= λ(λ4 + (−α2 − βγ − βγ−1)λ3 + (2αα+ γ2 + ββ + γ−2)λ2 + (−α2 − βγ − βγ−1)λ+ 1)
=: λa(λ).

We can then write a(λ) = λ4 + a1λ
3 + a2λ

2 + a1λ+ 1 with

a1 = −α2 − βγ − βγ−1 ∈ C, a2 = 2αα+ γ2 + ββ + γ−2 ∈ R+.

Theorem 2.2. The following sets are the same:

M2 : =
{
a ∈ C4[λ] | λa(λ) = det(ζλ) for a ζλ ∈ P2

}
=
{
a ∈ C4 | a(0) = 1, λ4a(λ−1) = a(λ), λ−2a(λ) ≥ 0 for λ ∈ S1

}
.

For detailed proof, see [1]

Theorem 2.3. Let ζλ ∈ P2 and det ζλ = λa(λ) with a(λ) ∈ M2. If λ̃ ∈ C is a root of ζλ, then λ̃
is a double root of a(λ). Conversely, if λ̃ ∈ S1 is a root of a(λ), then λ̃ is a root of ζλ.

For proof, see [1].

Definition 2.4. Polynomial Killing fields are maps ζλ : R2 → P2, (x, y) 7→ ζλ(x, y), which
solve the Lax equations

∂ζλ
∂x

= [ζλ, U(ζλ)], ∂ζλ
∂y

= [ζλ, V (ζλ)]

with ζλ(0) = ζ0
λ ∈ P2 and

U(ζλ) =
(

α−α
2 −γ−1λ−1 − γ

γ + γ−1λ α−α
2

)
,

V (ζλ) = i

(
α+α

2 −γ−1λ−1 + γ

γ − γ−1λ −α+α
2

)
.
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A polynomial Killing field induces a triple of complex functions

α : R2 → C, (x, y) 7→ (ζλ(x, y))α
β : R2 → C, (x, y) 7→ (ζλ(x, y))β
γ : R2 → R+, (x, y) 7→ (ζλ(x, y))γ ,

which satisfy the following ODE systems

∂α

∂x
= γ2 + βγ − βγ−1 − γ−2,

∂α

∂y
= i(γ−2 + βγ − βγ−1 − γ2)

∂β

∂x
= −αβ + αβ − 2αγ + 2αγ−1,

∂β

∂y
= i(−αβ − αβ + 2αγ + 2αγ−1)

∂γ

∂x
= −αγ − αγ, ∂γ

∂y
= i(αγ − αγ),

which we callmodified Lax equations. They are justified by directly computing the commutators
in the Lax equations and comparing their entries with those from ζλ. See [1] for more details.

Now we have to answer the question whether such a Polynomial Killing field exists.

Lemma 2.5. The local flows φE(x, ζλ) and φF (y, ζλ), induced by the vector fields E(ζλ) := [ζλ, U(ζλ]
and F (ζλ) := [ζλ, V (ζλ)] respectively, commute.

Proof. We show that [E,F ] = 0 holds. This can be expressed as

[E,F ](ζλ) =
[
ζλ, [V (ζλ, U(ζλ)] + ∂U(ζλ)

∂y
− ∂V (ζλ)

∂x

]
.

Consequently, the idea is to show that [V (ζλ, U(ζλ)] + ∂U(ζλ)
∂y − ∂V (ζλ)

∂x = 0 holds. For more details,
see [1].

As a result we have shown the following:

[U(ζλ), V (ζλ)] + ∂V (ζλ)
∂x

− ∂U(ζλ)
dy

= 0, ∂2ζλ
∂x∂y

= ∂2ζλ
∂y∂x

.

The first equation is called Maurer-Cartan equation and helps understand the link of potentials
and polynomial Killing fields to the sinh-Gordon equation:

Theorem 2.6. The function u := ln γ solves the sinh-Gordon equation.

Proof. We introduce a new coordinate z := x+ iy and express x, y in terms of z:

x = 1
2(z + z), y = − i2(z − z).

We can then write the complex derivatives with respect to z, z as follows:

∂

∂z
= 1

2

(
∂

∂x
− i ∂

∂y

)
,
∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
.
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We now define u := ln γ, which is equivalent to γ = eu. We can now calculate the derivatives with
respect to x, y and obtain the derivatives with respect to z, z:

∂u

∂x
= 1
γ

∂γ

∂x
= −(α+ α), ∂u

∂y
= 1
γ

∂γ

∂y
= i(α− α)

⇒ ∂u

∂z
= −α, ∂u

∂z
= −α.

Our goal is to express the Maurer-Cartan equation in terms of u and derivatives of u with respect
to z, z, which we denote uz, uz:

U(ζλ) =
(

α−α
2 −γ−1λ−1 − γ

γ + γ−1λ α−α
2

)
=
(

1
2(uz − uz) −e−uλ−1 − eu
eu + e−uλ 1

2(uz − uz)

)

V (ζλ) = i

(
α+α

2 −γ−1λ−1 + γ

γ − γ−1λ −α+α
2

)
= i

(
−1

2(uz + uz) −euλ−1 + eu

eu − e−uλ 1
2(uz + uz)

)
∂U

∂y
(ζλ) = −i

(
1
2(uzz − 2uzz + uzz) e−u(uz − uz)λ−1 − eu(uz − uz)

eu(uz − uz)− e−u(uz − uz)λ 1
2(−uzz + 2uzz − uzz)

)
∂V

∂x
(ζλ) = i

(
−1

2(uzz + 2uzz + uzz) e−u(uz + uz)λ−1 + eu(uz + uz)
eu(uz + uz)− e−u(uz + uz)λ 1

2(uzz + 2uzz + uzz)

)
∂V (ζλ)
∂x

− ∂U(ζλ)
∂y

= i

(
−2uzz 2λ−1e−uuz + 2euuz

2euuz + 2λe−uuz 2uzz

)

[V (ζλ), U(ζλ)] = i

(
2(e2u − e−2u) 2e−uuzλ−1 + 2euuz

2euuz + 2e−uuzλ 2(e−2u − e2u)

)

We see directly that the Maurer-Cartan equation is satisfied if and only if uzz = e−2u − e2u holds.
Now we want to see that we can rewrite this equation as the sinh-Gordon equation, so we compute
the Laplacian with respect to z, z:

∆u = ∂2u

∂x2 + ∂2u

∂y2 = uzz + 2uzz + uzz − uzz + 2uzz − uzz = 4uzz.

If we choose z′ = 1
2z and conduct the same computations, the Maurer-Cartan equation turns into

the sinh-Gordon equation:

∆u+ sinh(2u) = 0.

Define f : P2 →M2, ζλ 7→ a, where det ζλ = λa(λ). We can rewrite this function equivalently as
f : C× C× R+ → C× R+, (α, β, γ) 7→ (a1, a2).

Definition 2.7. The isospectral sets are level sets of the function f and can be written in the
following way:

I(a) = {ζ ∈ P2 | det ζ = λa(λ)} .

Theorem 2.8. For a fixed a ∈M2 the set I(a) is compact.
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Proof. We use Heine-Borel and show closedness and compactness. We define f1 and f2 using the
projection maps:

π1 : C× R+ → C, (a1, a2) 7→ a1,

π1 : C× R+ → R+, (a1, a2) 7→ a2,

f1 := π1 ◦ f, (α, β, γ) 7→ a1 = −α2 − βγ−1 − βγ,
f2 := π2 ◦ f, (α, β, γ) 7→ a2 = 2αα+ ββ + γ2 + γ−2.

These functions are continuous, so the pre-images f−1
1 [{a1}] and f−1

2 [{a2}] are closed, hence the
set I(a) written as

I(a) = f−1
1 [{a1}] ∩ f−1

2 [{a2}]

is closed. For boundedness, we show that f−1
2 [{a2}] is bounded. We see directly that

f−1
2 [{a2}] ⊂ B (0,√a2)×B (0,√a2)× (0,√a2)

holds true. This proves the claim.

Theorem 2.9. The determinant polynomial a(λ) is an integral of motion with respect to the
Lax equation, meaning it is a constant quantity along the trajectories of the Lax equations.

Proof. This claim is easily proved by computing the derivatives of a1, a2 with respect to x, y, which
turn out to be zero. For detailed computations, see [1].

Theorem 2.10. Given any initial value (α0, β0, γ0) ∈ C × C × R+ the solutions of the modified
Lax equations are global, i.e. well-defined for all (x, y) ∈ R2, and bounded. Therefore, given any
ζλ ∈ P2 we obtain a continuous, commutative group action

φ : R2 3 (x, y) 7→ φ(x, y), φ(x, y) : P2 → P2, ζλ 7→ φF (y, φE(x, ζλ)),

where φE(x, ζλ) and φF (y, ζλ) are local flows induced by the vector fields E(ζλ) := [ζλ, U(ζλ] and
F (ζλ) := [ζλ, V (ζλ)] respectively.

Proof. For every initial value (α0, β0, γ0) ∈ C × C × R+ we can solve the modified Lax equations
using classic ODE theory. Using Theorems 2.8 and 2.9 we see that any solution’s orbit is contained
in a compact set I(a0), where a0(λ) is the polynomial corresponding to the initial value. So the
solutions are defined globally and are bounded.
The following calculations show that the map φ defines a group action:

φ(0, 0)(ζλ) = φF (0, φE(0, ζλ)) = φF (0, ζλ) = ζλ.

φ(x2, y2)(φ(x1, y1)(ζλ)) = φF (y2, φE(x2, φ(x1, y1)(ζλ))
= φF (y2, φE(x2, φF (y1, φE(x1, ζλ)) = φF (y2, φF (y1, φE(x2, φE(x1, ζλ))
= φF (y2 + y1, φE(x2 + x1, ζλ)) = φ(x1 + x2, y1 + y2)(ζλ).

Commutativity of the group action φ follows directly from commutativity of the flows φE and φF .
We rewrite the map φ as combination of continuous maps, which finally shows continuity:

(x, y, ζλ) 7→ (y, x, ζλ) id×φE7−−−−→ (y, φE(x, ζλ)) φF7−−→ φF (y, φE(x, ζλ)) = φ(x, y)(ζλ).
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3 The Isospectral Sets

We extend our analysis of the isospectral sets with respect to structural features.
By the Fundamental Theorem of Algebra, a(λ) has four (possibly multiple) roots in C \ {0}.

Theorem 3.1. M2 is the disjoint union of the following sets:

M1
2 := {a ∈M2 | a has four pairwise distinct simple roots absent S1},

M2
2 := {a ∈M2 | a has one double roots on S1 and two simple roots absent S1},

M3
2 := {a ∈M2 | a has two distinct double roots on S1},

M4
2 := {a ∈M2 | a has a fourth-order root on S1},

M5
2 := {a ∈M2 | a has two distinct double roots absent S1}.

Proof. 1. We first consider the case that a(λ) has four pairwise distinct roots. If one of the roots
λ1 were on S1, then by Theorem 2.3 λ1 would be a double root of a(λ). Hence, all roots are
absent S1 and we are in the case ofM1

2.

2. If a(λ) has a double root λ1 absent S1, then by reality condition λ4a(λ−1) = a(λ), λ−1
1 6= λ1

is also a double root absent S1 and we are in the case ofM5
2.

3. Now we consider the case that a(λ) has a double root on S1. If one of the other roots λ1 is
absent S1, then again λ−1

1 is the remaining root absent S1, which is caseM2
2. If on the other

hand one of the other roots happens to be on S1, then it must be a double root. Depending
on whether these two double roots coincide, we are either in the caseM3

2 orM4
2.

Theorem 3.2. (i) For a(λ) ∈M1
2 the isospectral sets I(a) are two-dimensional compact submanifolds

of P2. The maps φ(x, y)(ζλ) for given ζλ ∈ I(a) define a transitive group action on the
isospectral sets, i.e.

I(a) = {φ(x, y)(ζλ) | (x, y) ∈ R2}.

(ii) For a(λ) ∈ M2
2 the isospectral sets I(a) are one-dimensional compact subsets of P2. The

maps φ(x, y)(ζλ) for given ζλ ∈ I(a) define a transitive group action on the isospectral sets.

(iii) For a(λ) ∈M3
2∪M4

2 the isospectral set I(a) contains a unique fixed point of the group action.
The maps φ(x, y)(ζλ) for given ζλ ∈ I(a) remain constant, i.e. they act transitively in a trivial
way.

(iv) For a(λ) ∈ M5
2 with double roots λ1, λ

−1
1 absent S1 the isospectral set I(a) decomposes into

two distinct subsets:

I(a) = {ζλ ∈ I(a) | ζλ1 6= 0} ∪ {ζλ ∈ I(a) | ζλ1 = ζ
λ

−1
1

= 0} =: Ka ∪ La.
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Here Ka is a two-dimensional non-compact submanifold of P2 with closure Ka = I(a) and La
contains a single point. On both parts the maps φ(x, y)(ζλ) act transitively for given ζλ ∈ I(a).

The proof can be found in [1] or [2].

Remark: In [2] the proof of Theorem 3.2 (ii) uses the claim that the following map transforms
potentials in P1 to potentials in P2:

ζλ = e3iφ
(

1 0
0 ieiφ

)
ζ̂λ̂

(
1 0
0 −ie−iφ

)
(λ− e2iφ), (3.1)

where

P1 :=
{
ζ̂λ̂ =

(
iα̂λ̂ −β̂−1 − β̂λ̂

β̂λ̂+ β̂−1λ̂2 −iα̂λ̂

) ∣∣∣∣∣ α̂ ∈ R, β̂ ∈ R+
}
, λ̂ = −e2iφλ.

Direct computation of the right-hand side of 3.1 yields

e3iφ
(

1 0
0 ieiφ

)
ζ̂λ̂

(
1 0
0 −ie−iφ

)
(λ− e2iφ)

= e3iφ(λ− e2iφ)
(

1 0
0 ieiφ

)(
iα̂λ̂ −β̂−1 − β̂λ̂

β̂λ̂+ β̂−1λ̂2 −iα̂λ̂

)(
1 0
0 −ie−iφ

)

= e3iφ(λ− e2iφ)
(

1 0
0 ieiφ

)(
iα̂λ̂ ie−iφ(β̂−1 + β̂λ̂)

β̂λ̂+ β̂−1λ̂2 −e−iφα̂λ̂

)

= (e3iφλ− e5iφ)
(

iα̂λ̂ ie−iφ(β̂−1 + β̂λ̂)
ieiφ(β̂λ̂+ β̂−1λ̂2) −iα̂λ̂

)

= (e3iφλ− e5iφ)
(

−ie2iφα̂λ ie−iφβ̂−1 − ieiφβ̂λ
−ie3iφβ̂λ+ ie5iφβ̂−1λ2 ie2iφα̂λ

)

=
(

−ie5iφα̂λ2 + ie7iφα̂λ ie2iφβ̂−1λ− ie4iφβ̂λ2 − ie4iφβ̂−1 + ie6iφβ̂λ

−ie6iφβ̂λ2 + ie8iφβ̂−1λ3 + ie8iφβ̂λ− ie10iφβ̂−1λ2 ie5iφα̂λ2 − ie7iφα̂λ

)

=
(

ie7iφα̂λ− ie5iφα̂λ2 −ie4iφβ̂−1 + (ie2iφβ̂−1 + ie6iφβ̂)λ− ie4iφβ̂λ2

ie8iφβ̂λ− (ie6iφβ̂ + ie10iφβ̂−1)λ2 + ie8iφβ̂−1λ3 −ie7iφα̂λ+ ie5iφα̂λ2

)
.

The resulting matrix-valued polynomial does not belong to P2: for example ie8iφβ̂ (corresponding
to γ of ζλ ∈ P2) does not belong to R+ in general.
One possible solution is

ζλ = −ie−3iφ
(

1 0
0 ie−iφ

)
ζ̂λ̂

(
1 0
0 −ieiφ

)
(λ− e2iφ). (3.2)
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Direct computation of the right-hand side of 3.2 yields

− ie−3iφ
(

1 0
0 ie−iφ

)
ζ̂λ̂

(
1 0
0 −ieiφ

)
(λ− e2iφ)

= −ie−3iφ(λ− e2iφ)
(

1 0
0 ie−iφ

)(
iα̂λ̂ −β̂−1 − β̂λ̂

β̂λ̂+ β̂−1λ̂2 −iα̂λ̂

)(
1 0
0 −ieiφ

)

= −ie−3iφ(λ− e2iφ)
(

1 0
0 ie−iφ

)(
iα̂λ̂ ieiφ(β̂−1 + β̂λ̂)

β̂λ̂+ β̂−1λ̂2 −eiφα̂λ̂

)

= (ie−iφ − ie−3iφλ)
(

iα̂λ̂ ieiφ(β̂−1 + β̂λ̂)
ie−iφ(β̂λ̂+ β̂−1λ̂2) −iα̂λ̂

)

= (ie−iφ − ie−3iφλ)
(

−ie2iφα̂λ ieiφβ̂−1 − ie3iφβ̂λ

−ieiφβ̂λ+ ie3iφβ̂−1λ2 ie2iφα̂λ

)

=
(

eiφα̂λ− e−iφα̂λ2 −β̂−1 + (e−2iφβ̂−1 + e2iφβ̂)λ− β̂λ2

β̂λ− (e−2iφβ̂ + e2iφβ̂−1)λ2 + β̂−1λ3 −eiφα̂λ+ e−iφα̂λ2

)
.

If we define α = eiφα̂ ∈ C, β = e−2iφβ̂−1 +e2iφβ̂ ∈ C, γ = β̂ ∈ R+, then the resulting matrix-valued
polynomial belongs to P2.

Remark: In [2] the proof of theorem 3.2 (iv) transforms the following equations

|λ1 + λ−1
1 | = x2 + z, |λ1 + λ−1

1 |
2 = 4x2 + y2 + z2, (x, y, z) ∈ R3

into

x4 − (|λ1 + λ−1
1 | − 2)x2 + y2 = 0 ⇐⇒ y = ±x

√
|λ1 + λ−1

1 | − 2− x2.

The correct transformation is

|λ1 + λ−1
1 |

2 = 4x2 + y2 + z2

= 4x2 + y2 + (|λ1 + λ−1
1 | − x

2)2

= 4x2 + y2 + |λ1 + λ−1
1 |

2 + x4 − 2|λ1 + λ−1
1 | x

2

⇔ x4 − (2|λ1 + λ−1
1 | − 4)x2 + y2 = 0

⇔ y = ±x
√

2|λ1 + λ−1
1 | − 4− x2.
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4 Lattices of Periods

For a ∈M2 \M5
2 and initial value ζλ ∈ I(a) we define the set

Γζa := {(x, y) ∈ R2 | ∀ζλ ∈ I(a) : φ(x, y)(ζλ) = ζλ}.

Lemma 4.1. The set Γζa ⊂ R2 is an additive, abelian subgroup of R2. In particular, Γζa is a normal
subgroup and R2/Γζa is well-defined.

Proof. • Additivity: φ(x1+x2, y1+y2)(ζλ) = φ(x1, y1)(φ(x2, y2)(ζλ)) = ζλ for (x1, y1), (x2, y2) ∈
Γζa.

• Neutral element: φ(0, 0)(ζλ) = ζλ.

• Inverse element: φ(−x,−y)(ζλ) = φ(−x,−y)(φ(x, y)(ζλ)) = ζλ for (x, y) ∈ Γζa.

• Commutativity: inherited from R2.

Every subgroup of an abelian group is a normal subgroup, so the second statement follows.

Observe that the subgroup Γζa is independent of the choice of the initial value ζλ ∈ I(a), so we omit
the superscript ζ and write Γa.

Proof. Let ζ, ζ̃ ∈ I(a). We show Γζa ⊂ Γζ̃a. Consider (x, y) ∈ Γζa. By transitivity of the action φ
there exists (a, b) ∈ R2 such that φ(a, b)(ζ̃) = ζ.

ζ̃ =φ(−a,−b)(ζ) = φ(−a,−b)(φ(x, y)(ζ))
=φ(−a,−b)(φ(x, y)(φ(a, b)(ζ̃))) = φ(x, y)(ζ̃).

We now focus on Γa generated byM1
2.

Definition 4.2. A subgroup Γ ⊂ Rn is called discrete if there exists an open set U ⊂ Rn containing
zero such that

U ∩ Γ = {0}.

Lemma 4.3. Let a ∈ M1
2. The factor group R2/Γa is compact and the subgroup Γa ⊂ R2 is

discrete.

For proof, see [1].

Remark: Compactness of R2/Γa follows from compactness of I(a).
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Figure 4.1: Moduli space [3]

The only discrete subgroups of R2 are the following ones:

1. Γa = {0}. In this case R2/Γa ∼= R2, which contradicts the compactness condition.

2. Γa = ωZ. In this case R2/Γa ∼= R × S1, which again contradicts the compactness condition.
For example, consider the map

R× S1 → C/ωZ, (s, e2πit) 7→ (t+ is)ω.

3. Γa = ω1Z + ω2Z, where ω1, ω2 are linearly independent vectors in R2. In this case R2/Γa ∼=
S1 × S1, which is a compact torus. For example, consider the map

S1 × S1 → C/Γa, (e2πit, e2πis) 7→ tω1 + sω2.

Hence, Γa is a lattice generated by ω1, ω2 ∈ C. The choice of these generators is not unique.

Definition 4.4. We call two lattices isomorphic if they originate from one another through a
rotation-dilation.

Theorem 4.5. Each lattice Γ is isomorphic to Γτ := Z + Zτ with a unique τ in

M1 :=
{
τ ∈ C | =(τ) > 0, |<(τ)| ≤ 1

2 , |τ | ≥ 1
}
/ ∼,

where the equivalence relation identifies τ ∈ ∂M1 with −τ . The set M1 is called the moduli
space.

Proof can be found in [3].
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As a result, we can identify each a ∈ M1
2 with an element from M1, i.e. the following map is

well-defined:

g :M1
2 →M1, a 7→ τa.

We want to prove that g has a unique surjective continuous extension toM2
2 ∪M3

2.

The rest of this section is a brief description of the strategy behind the proof of the foregoing
statement. For more details, see [2].

For a ∈M1
2 we introduce the monodromy Mω for ω ∈ Γa.

Definition 4.6. Let ζλ : R2 → P2 be a Polynomial Killing field with initial potential ζ0 ∈ P2. The
fundamental solution F of the following system of ODEs is called frame:

∂F

∂x
= FU(ζλ), ∂F

∂y
= FV (ζλ), F (0, 0) = 1.

The monodromy Mω is defined as the value of F at ω:

F (ω) = Mω, ω ∈ Γa.

Lemma 4.7. The monodromiesMω and the initial value of a Polynomial Killing Field ζ0
λ = ζλ(0, 0)

commute pairwise.

For proof, see [1].

Lemma 4.8. The monodromies satisfy det(Mω) = 1.

For proof, see [1].

We look for eigenvalues ν,−ν of ζλ (recall the fact that tr(ζλ) = 0). We can put ν in concrete
terms:

0 = det(ζλ − ν1) = ν2 + λa(λ).

The smooth Riemann surface

Σ∗ = {(λ, ν) ∈ C∗ × C | ν2 + λa(λ) = 0}

parametrizes the one-dimensional eigenspaces of ζ0.

Consequence: Mω maps the eigenspaces of ζ0
λ into themselves, soMω acts on the one-dimensional

eigenspaces of ζ0
λ as the multiplication with a function µω : Σ∗ → C \ {0}. The reality condition

λ
4
a(λ−1) = a(λ) induces the second of the following involutions:

σ : (λ, ν) 7→ (λ,−ν), ρ : (λ, ν) 7→ (λ−1
,−λ−3

ν).

These involutions act on µω as

σ∗µω = µ−1
ω , ρ∗µω = µ−1

ω . (4.1)
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We can define

d lnµω = bω(λ)
2ν d lnλ, bω ∈ C3[λ].

Due to Theorem 3.2, the groups Γa are no lattices for a ∈M2
2∪M3

2∪M4
2∪M5

2. For a ∈M2
2∪M3

2
we impose in addition to condition 4.1

µω = fω(λ) + gω(λ)ν with holomorphic fω, gω : C \ {0} → C. (4.2)

This allows us to prove the following result:

Theorem 4.9. For a ∈ M1
2 ∪ M2

2 ∪ M3
2 the values bω(0) build a lattice Γ̃a in C: they define

d lnµω of a function µω on Σ∗ which obeys 4.1 and 4.2. The map g :M1
2 ∪M2

2 ∪M3
2 →M1 to the

corresponding isomorphism class is continuous. For all compact subsets K ⊂M1 each a ∈M4
2∪M5

2
has a neighborhood O inM2 such that g−1[K] ∩O = ∅.

Remark: The last statement ensures that the map g extends to a continuous map from M2 to
M1 ∪ {∞}, such that g takes the value ∞ onM4

2 ∪M5
2.
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