Dynamische Systeme

9. Übung

26. Linear unabhängige Lösungen linearer Systeme

Die Matrix $A \in \mathbb{R}^{n \times n}$ habe n linear unabhängige Eigenvektoren v_1, \ldots, v_n mit zugehörigen Eigenwerten $\lambda_1, \ldots, \lambda_n$. Zeigen Sie: Die Funktionen y_1, \ldots, y_n mit $y_k(t) := e^{\lambda_k t} v_k$, $k = 1, \ldots, n$ sind linear unabhängige Lösungen der Differentialgleichung $y' = A \cdot y$. (4 Punkte)

27. Floquettheorie

Wir betrachten in dieser Aufgabe die Differentialgleichung

$$\dot{u}(t) = A(t)u(t), \qquad A(t) = \begin{pmatrix} \cos(t) & 1\\ 0 & \cos(t) \end{pmatrix}.$$

Die Matrix A(t) ist periodisch mit Periode 2π . Das Ziel dieser Aufgabe ist es, eine invertierbare Transformation $G: \mathbb{R} \to \mathbb{C}^{2\times 2}$ der Differentialgleichung zu bestimmen, so dass die resultierende Differentialgleichung $\dot{u}(t) = \tilde{A}u(t)$ autonom ist.

(a) Zeigen Sie, dass die Matrix

$$F(t) = \begin{pmatrix} \exp(\sin(t)) & t \exp(\sin(t)) \\ 0 & \exp(\sin(t)) \end{pmatrix}$$

die Fundamentallösung von $\dot{F}(t) = A(t)F(t)$ mit $F(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ist. (3 Punkte)

(b) Bestimmen Sie die Monodromie M von F(t) und ein $B \in \mathbb{C}^{2\times 2}$ mit $\exp(B) = M$.

(2 Punkte)

- (c) Die Matrix \tilde{A} wird definiert durch $B/2\pi$. Bestimmen Sie die zu \tilde{A} gehörige Fundamentallösung $\tilde{F}(t)$ und die Monodromie \tilde{M} .
- (d) Berechnen Sie nun die Transformation $G: \mathbb{R} \to \mathbb{C}^{2\times 2}$, $t \mapsto G(t)$, die das gegebene nichtautonome System $\dot{u}(t) = A(t)u(t)$ gemäß Satz 1.63 in das autonome System $\dot{u}(t) = \tilde{A}u(t)$ transformiert. Geben Sie eine Formel an, mit der sich \tilde{A} mit Hilfe von A(t) und G(t) berechnen lässt. (4 Punkte)

28. Stabilität inhomogener linearer Systeme

In Analogie zu Definition 2.1 definieren wir die Stabilität von Lösungen autonomer Systeme (dies ist gewissermaßen eine Verallgemeinerung von Definition 2.1 auf Nicht-Ruhelagen): Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ lokal Lipschitz-stetig und betrachte das autonome System

$$y' = f(y). (1)$$

Eine auf $[0, \infty)$ definierte Lösung y von (1) heißt **stabil**, wenn es zu jedem $\epsilon > 0$ ein $\delta > 0$ gibt, so dass alle Lösungen z von (1) mit $z(0) \in B(y(0), \delta)$ für alle $t \geq 0$ existieren und $z(t) \in B(y(t), \epsilon)$ für alle $t \geq 0$ gilt.

Eine Lösung y von (1) heißt **attraktiv**, wenn es ein $\delta > 0$ gibt, so dass alle Lösungen z von (1) mit $z(0) \in B(y(0), \delta)$ für alle $t \geq 0$ existieren und es für alle $\epsilon > 0$ ein $t_0 > 0$ gibt, so dass $z(t) \in B(y(t), \epsilon)$ für alle $t > t_0$ gilt. Die Begriffe **instabil** und **asymptotisch stabil** sind wie in Def. 2.1 definiert.

Seien $A \in \mathbb{R}^{n \times n}$ und $b \in \mathbb{R}^n$. Zeigen Sie:

- (a) Ist $\tilde{y} \equiv 0$ asymptotisch stabile Lösung des homogenen Systems $y'(t) = A \cdot y(t)$, so strebt jede Lösung des homogenen Systems (unabhängig von der Größe des Anfangswerts) gegen Null für $t \to \infty$.
- (b) Eine beliebige Lösung des inhomogenen Systems $y'(t) = A \cdot y(t) + b$ ist (asymptotisch) stabil genau dann, wenn $\tilde{y} \equiv 0$ (asymptotisch) stabile Lösung für das homogene System $y'(t) = A \cdot y(t)$ ist. (6 Punkte)

Abgabe bis spätestens Freitag, den 28. April 2023, 10:00h, in den beschrifteten Briefkästen