Dynamische Systeme

5. Übung

12. Ein Anfangswertproblem ohne eindeutige Lösung.

Aus Beispiel 1.15(i) ist bereits bekannt, dass die Lösung eines Anfangswertproblems nicht in allen Fällen eindeutig bestimmt ist. Wir betrachten

$$\dot{u} = 2\sqrt{|u|} \quad \text{mit} \quad u(0) = 0. \tag{*}$$

- (a) An welchen Stellen erfüllt die Differentialgleichung (★) nicht die Voraussetzungen des Existenz- und Eindeutigkeitssatzes?

 (2 Punkte)
- (b) Zeigen Sie, dass $u: I \to \mathbb{R}$ genau dann eine maximale Lösung (im Sinne der Sätze 1.24 bzw. 1.28) des Anfangswertproblems (*) ist, wenn $I = \mathbb{R}$ und es a, b mit $-\infty \le a \le 0 \le b \le +\infty$ gibt, so dass

$$u(t) = \begin{cases} -(t-a)^2 & \text{für } t < a \\ 0 & \text{für } a \le t \le b \\ (t-b)^2 & \text{für } t > b \end{cases}$$

gilt. Es genügt, den Fall $t \ge 0$ zu betrachten, da der Fall t < 0 analog funktioniert.

(9 Punkte)

[Tipp: Ist $u: I \to \mathbb{R}$ eine maximale Lösung von (\star) , so setze man $b:=\sup\{t\in I\cap\mathbb{R}_{\geq 0}\,|\,u|_{[0,t]}=0\}$. Im Falle $b<\infty$ fixiere man $t_0>b$ und vergleiche u mit der maximalen Lösung des Anfangswertproblems $\dot{v}=2\sqrt{|v|}$ mit $v(t_0)=u(t_0)$, das man für $(t,v)\in O=\mathbb{R}\times\mathbb{R}_+$ betrachtet, wobei auf dem Gebiet O die Voraussetzungen des Existenz- und Eindeutigkeitssatzes erfüllt werden.]

13. Globale Flüsse.

(a) Zeigen Sie, dass durch die folgenden Vorschriften (globale) Flüsse $\Phi : \mathbb{R} \times M \to M$ auf dem Raum M definiert werden und skizzieren Sie die zugehörigen sog. Phasenportraits, indem Sie einige ausgewählte Trajektorien skizzieren (Bemerkung: Als Phasenportrait bezeichnet man die Menge aller Trajektorien eines dynamischen Systems).

(i)
$$M := \mathbb{R}^2$$
, $\Phi : (t, (x, y)) \mapsto (e^t x, e^t y)$ (3 Punkte)

(ii)
$$M := \mathbb{C}, \quad \Phi : (t, z) \mapsto e^{it}z$$
 (3 Punkte)

(b) Es seien ϕ und ψ globale Flüsse auf den metrischen Räumen M und N. Zeigen Sie: Die Abbildung

$$\phi \times \psi : \mathbb{R} \times M \times N \to M \times N, \qquad (t, x, y) \mapsto (\phi(t, x), \psi(t, y))$$

definiert einen (globalen) Fluss (einen sog. Produktfluss) auf $M \times N$. (3 Punkte) Bitte wenden.

(c) Skizzieren Sie die Orbits des Produktflusses $\phi \times \psi$ aus Teil (b) auf dem Zylinder $\mathbb{R} \times S^1$, wobei die beiden Flüsse ϕ und ψ durch $\phi(t,x) := e^t x$ auf $M := \mathbb{R}$ und $\psi(t,x) := e^{it} z$ auf $N := S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$ gegeben seien. (1 Punkt)

14. Gradientenflüsse.

Sei $H: \mathbb{R}^n \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion, die nach unten beschränkt ist, d.h.

$$\exists C \in \mathbb{R} \ \forall x \in \mathbb{R}^n : \ H(x) \ge C$$

und für die gilt, dass Urbilder kompakter Mengen kompakt sind (d.h. $H^{-1}(M)$ ist kompakt für kompaktes $M \subset \mathbb{R}$). Der negative Gradient $-\nabla H$ ist ein Vektorfeld und definiert einen lokalen Fluss, einen sog. Gradientenfluss, definiert durch die Lösungen der Anfangswertprobleme

$$\dot{x}(t) = -\nabla H(x(t)), \quad x(0) = x_0$$

für gegebene $x_0 \in \mathbb{R}^n$. Zeigen Sie:

- (a) H ist auf jeder Integralkurve des Gradientenflusses monoton fallend, d.h. $t \mapsto H(x(t))$ ist monoton fallend für eine beliebige Integralkurve $t \mapsto x(t)$. Wenn der Gradient ∇H in $x_0 \in \mathbb{R}^n$ nicht verschwindet, ist H auf der Integralkurve durch x_0 sogar streng monoton fallend. (5 Punkte)
- (b) Für das Vektorfeld $-\nabla H$ sind die Integralkurven durch alle Punkte $x_0 \in \mathbb{R}^n$ für alle $t \in \mathbb{R}_0^+$ definiert. (4 Punkte)

Abgabe bis spätestens Freitag, den 17. März 2023, 10:00h, in den beschrifteten Briefkästen abgeben.