
Chapter 1

Introduction

A partial differential equation is an equation on the partial derivatives of a function
depending on at least two variabels.

Definition 1.1. A possibly vector valued equation of the following form

F
(

Dku(x), Dk−1u(x), . . . , Du(x), u(x), x
)

= 0

is called partial differential equation of order k. Here F is a given function and u an
unknown function. The expressions Dku denotes the vector of all partial derivatives
of the function u of order k. The function u is called a solution of the differential
equation, if u is k times differentiable and obeys the partial differential equation.

On subsets of Rn we denote the partial derivatives of higher order by ∂γ =
∏

i ∂
γi
i =

∏

i(
∂
∂xi

)γi with multiindices γ ∈ N
n
0 of length |γ| =

∑

i γi. The multiindices are ordered
by δ ≤ γ ⇐⇒ δi ≤ γi for i = 1, . . . , n. The partial derivatives only act on the direct
subsequent functions. They only act on a product of functions if the product is included
in brakets.

Exercise 1.2. Show for all γ ∈ Nn
0 the generalised Leibniz rule

∂γ(uv) =
∑

0≤δ≤γ

(

γ

δ

)

∂δu∂γ−δv :=

γ1
∑

δ1=0

(

γ1
δ1

)

. . .

γn
∑

δn=0

(

γn
δn

)

∂δu∂γ−δv.

1.1 Examples

A. Linear differential equations

1. Laplace equation. △u :=
∂2u

∂x2
1

+ . . .+
∂2u

∂x2
n

= 0.

5
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The solutions are called harmonic functions. The Laplace eqaation is a homogenous
linear partial differential equation of second order.
The corresponding inhomogenous differential equation is called Poisson equation.

−△u = f.
Here f is a given function and u an unknown function.

2. Helmholtz equation. −△u− λu = 0.

Here λ ∈ R is a real parameter and u the unknown function. This is a simple example
of the Poisson equation.

3. Linear transport equation. u̇+ b · ∇u = 0.

Here b is a vector field on Ω ⊆ R× Rn and u the unknown function.

4. Liouville equation. u̇+∇(b · u) = 0.

Here b is a given Rn-valued vector field on an open domain Ω ⊆ R × Rn and u the
unknown function on the same domain Ω. This linear differential equation of first order
is similar to the transport equation.

5. Heat equation. u̇−△u = 0.

6. Schrödinger equation. ıu̇+△u = 0.

Here u is an unknown complex valued function. The Schröding equation differs from
the heat equation by a factor ı, which results in very different behaviors of the corre-
sponding solutions.

7. Kolmogorov equation. u̇−

n
∑

i,j=1

aij
∂2u

∂xi∂xj

+

n
∑

i=1

bi
∂u

∂xi

= 0.

This is a generalised version of the heat equation.

8. Fokker-Planck equation. u̇−
n
∑

i,j=1

∂2aij(t, x)u

∂xi∂xj

+
n
∑

i=1

∂bi(t, x)u

∂xi

= 0.

9. Wave equation.
∂2u

∂t2
−△u = 0.

10. General wave equation.
∂2u

∂t2
−

n
∑

i,j=1

aij(t, x)
∂2u

∂xi∂xj

+

n
∑

i=1

bi(t, x)
∂u

∂xi

= 0.
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This equation generalises the ordinary wave equation in the same way as the Kol-
mogorov equation generalises the heat equation.

11. Airy differential equation. u̇+
∂3u

∂x3
= 0.

Here u is an unknown function on a domain Ω ⊆ R× R.

12. Beam equation.
∂2u

∂t2
−

∂4u

∂x4
= 0.

B. Nonlinear differential equations

1. Eikonal equation. |∇u| = 1.

2. nonlinear Poisson equation. −△u = f(u).

Here f : R → R is a given function and u the unknown function on Ω ⊆ Rn.

3. Minimal surface equation. ∇ ·
∇u

√

1 + |∇u|2
= 0.

The graphs of solutions of the minimal surface equations are minimal surfaces. The area
of such hypersurfaces in Rn+1 do not change in first order with respect to infinitesimal
deformations. Soap bubbles are examples.

4. Monge-Ampere equation. det
(

∇∇tu
)

= f.

Here f is a given function on a domain Ω ⊆ R
n and u is the unknown function. The

leftt hand side is the determinant of the Hessian of u.

5. Hamilton-Jacobi equation. u̇+H(∇u, x) = 0.

Here H is a given Hamilton function on a subset of Rn × Rn and u is the unknown
functions on the corresponding domain in R

n.

6. Scalar conservation law. u̇+∇ · F (u) = 0.

Here F is a given Rn-valued functon and u is the unknown function on a domain
Ω ⊆ R×Rn. This differential equation implies that the time derivative of the integral
of u over a given domain in Rn is equal to the integral of F (u) over the boundary of
the domain. Therefore F (u) descibes the flux density of the conserved quantity.
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7. Burgers equation. u̇+ u
∂u

∂x
= 0.

Here u is the unknown function on a domain Ω ⊆ R × R. This is an example of an
conservation law with flux density F (u) = u2/2.

8. Reaction-diffusion equation. u̇−△u = f(u).

Here f : R → R is a given function and u is the unknown function.

9. Porous medium equation. u̇−△ (uγ) = 0.

Here γ ≥ 1 is a given exponent. This equation describes the propagation of an ideal
gas in a porous medium.

10. Nonlinear wave equation.
∂2u

∂t2
−△u = f(u).

Here f : R → R is a given and u is the unknown function.

11. Korteweg-de-Vries equation. 4u̇− 6u
∂u

∂x
−

∂3u

∂x3
= 0.

There exists a Lax representation for this equation:

L̇ = [A,L] mit L :=
∂2

∂x2
+ u A :=

∂3

∂x3
+

3u

2

∂

∂x
+

3

4

∂u

∂x
.

This representation was the starting point of a new approach to integrable systems.

C. Linear systems of differential equations.

1. Linear elasticity. µ△u+ (λ+ µ)∇(∇ · u) = 0.

Here λ > 0 and µ > 0 are constants and u the unknown function.

2. Elastic wave equation.
∂2u

∂t2
− µ△u− (λ+ µ)∇(∇ · u) = 0.

3. Maxwell equation.
Ė −∇×B = −4πj Ḃ +∇× E = 0

∇ ·E = 4πρ ∇ · B = 0.

Here the real valued charge density ρ and the R3-valued current density j are given
functions on space time R × R3 and the electric field E and the magnetic field B are
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R3-valued unknown functions. The electric and current densities obey the conservation
law

ρ̇+∇ · j = 0.

4. Cauchy-Riemann equation.
∂u

∂x
=

∂v

∂y

∂u

∂y
= −

∂v

∂x

Here (u, v) : R2 → R
2, (x, y) 7→ (u, v) are real and imaginary parts of a holomorphic

functions on a domain in the complex plane x+ ıy = z ∈ C.

D. Nonlinear systems of differential equations.

1. Euler equation. u̇+ u · ∇u+∇p = 0 ∇ · u = 0.

Here u : R3 → R3 is the velocity field of an incompressible fluid without viscosity with
pressure p.

2. Navier-Stokes equation. u̇+ u · ∇u−△u+∇p = 0 ∇ · u = 0.

Here u : R3 → R3 is the velocity field of an incompressible viscous fluid with pressure
p.

3. Einstein field equations. Rij −
1

2
gijR = κTij .

Here Tij is stress energy tensor of a given distribution of mass on the space time and
gij is the unknown metric on space time with signature (1, 3). Rij is the corresponding
Ricci tensor and R scalar curvature.

Γk
ij :=

1

2

3
∑

l=0

gkl
(

∂gjl
∂xi

+
∂gil
∂xj

−
∂gij
∂xl

)

(

gij
)

:= (gij)
−1 inverse Metrik

Rij :=
3
∑

k=0

gkl

(

∂Γk
ij

∂xk
−

∂Γk
ik

∂xj
+

3
∑

l=0

(

Γk
lkΓ

l
ij − Γk

ljΓ
l
ik

)

)

R :=
3
∑

i,j=0

gijRij .

4. Ricci flow. ġij = −2Rij .

This differential equation descibes a diffusion flow on the metric of a Riemannian
manifold. It equalizes inhomogenities and anisotropies of the metric and converges in
the long time limit to a metric with large isometry groups. In the 1970ties Richard
Hamilton set up a strategy to prove the geometrization conjecture of Thurston with the
Ricci flow. This conjecture claims that every compact 3-manifold may be decomposed
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in pieces with transitive isometry groups. Hamilton tried to control the long time
behaviour of the Ricci flow on compact 3-manifolds. The russian mathematician Grisha
Perelman published in 2003 3 preprimts in the net, which overcame the last impasses
of this program. This was a great success of geometric analysis.

1.2 Divergence Theorem

Definition 1.3. (partition uf unity) For a given family (Uα)α∈A of open subsets of
Rn with union

⋃

α∈A Uα = Ω ⊂ Rn a smooth partition of unity is a countable family
(hl)l∈N of smooth functions hl : Ω → [0, 1] with the following properties:

(i) Each x ∈ Ω has a neighbourhood where all but finitely hl vanish identically.

(ii) For all x ∈ Ω we have
∑∞

l=1 hl(x) = 1.

(iii) Each hl vanishes outside a compact subset of Uα for some α ∈ A.

For every family of open subsets of Rn there exists a smooth partititon of unity.

Definition 1.4. For each n×(n−1)-matrix A there exists a unique row vector A# ∈ Rn,
such that det(A, x) = xt · A# holds for all x ∈ R

n. This vector is orthogonal to the
image of A. The length of this vector is the aerea of the image of [0, 1]n−1 in Rn with
respect to A. For a n× n-matrix A we have (A|Rn−1)# = det(A)(A−1)ten.

Definition 1.5. The boundary of an open susbet Ω ⊆ Rn is called continuously differ-
entiable, if the closure Ω̄ is covered by open subsets O ⊆ R

n with continuously differ-
entiabel maps Φ : U → O with continuously differentialble inverse maps Φ−1 : O → U ,
which map O ∩ Ω into the upper half plane {x ∈ Rn | xn > 0} and O ∩ ∂Ω into
Rn−1 = {x ∈ Rn | xn = 0}. For det Φ′ ≷ 0 the integral of a function f on ∂Ω is defined
in terms of a partition of unity (hl)l∈N as

∫

∂Ω

f dσ =
∑

l∈N

∫

U∩Rn−1

(hlf) ◦ Φ
∣

∣

∣
(Φ′|Rn−1)

#
∣

∣

∣
dµRn−1 with hl|Rn\O = 0.

For a Rn-valued function f and the outer normal N of ∂Ω we define

∫

∂Ω

f ·N dσ := ∓
∑

l∈N

∫

U∩Rn−1

((hlf) ◦ Φ) · (Φ
′|Rn−1)# dµRn−1 with hl|Rn\O = 0.

The sign on the right hand side is − for det Φ′ > 0 and + for det Φ′ < 0.
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For the calculation of these integrals it suffices to know the maps Φ on U ∩ Rn−1.
Continuouslt differentiable embeddings Ψ : U ∩ Rn−1 → O ∩ ∂Ω, whose derivatives Ψ′

have rank n− 1 have continuosly differentiable extensions to small neighbourhoods of
U ∩ Rn−1 with continuously differentiable inverse mappings. Therefore it suffices to
assume the existence of such mappings Ψ = Φ|U∩Rn−1 .

Lemma 1.6. On the d×d-matrices the det defines a differentiable map with derivative

d

dt
det(A+ tB)

∣

∣

∣

∣

t=0

= trace(det(A)A−1B).

Proof. For two d× d-matrices A and B, whose firts is invertible we have

det(A+ tB) = det(A) det(1l + tA−1B) = td det(A) det(t−11l + A−1B) f”ur t 6= 0.

At t = 0 the derivative with respect to t is equal to det(A) times the second highest coef-
ficient of the characteristic polynomial of−A−1B which is equal to det(A) trace(A−1B).
q.e.d.

Theorem 1.7. (Divergence Theorem) Let Ω ⊆ Rn be an open bounded subset with
two times differentiable boundary. Let f : Ω̄ → Rn continuous and differentiable on Ω
such that all first partial derivatives have continuous extensions to Ω̄. Then we have

∫

Ω

∇ · f dµ =

∫

∂Ω

f ·N dσ

Here N is the outer normal and N dσ the correspinding measure on the boundary ∂Ω.

Proof. By using a smooth partititon of unity it suffices to prove the stetament for a
function f which vanishes outside a closed subset of one of the open subsets O in
Definition 1.5. We apply Lemma 1.6 and calculate for f̃ := det(Φ′)(Φ′)−1(f ◦ Φ)

∇ · f̃ = det(Φ′)
∑

ijkl

(Φ′)−1
ij

∂2Φj

∂xk∂xi

(Φ)−1
kl fl ◦ Φ− det(Φ′)

∑

ijkl

(Φ′)−1
ij

∂2Φj

∂xi∂xk

(Φ′)−1
kl fl ◦ Φ

+ det(Φ′) trace((Φ′)−1(f ′ ◦ Φ)Φ′) = det(Φ′) trace(f ′ ◦ Φ) = det(Φ′)(∇ · f) ◦ Φ.

With Jacobi’s transformation formula we obtain
∫

O
∇f dµ =

∫

U
∇f̃ dµ. Hence it suf-

fices to show
∫

U

∇f̃ dµ = −

∫

U∩Rn−1

(f ◦ Φ) · (Φ′|Rn−1)# dµRn−1

= −

∫

U∩Rn−1

det(Φ′)−1(Φ′f̃) · det(Φ′)((Φ′)−1)ten dµRn−1 = −

∫

U∩Rn−1

f̃n dµRn−1.
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We extend the function f̃ continuously differentiable to a quader with one face inside
of the the hyperplane Rn−1 ⊆ Rn. Since f̃ vanishes on all faces of this quader with the
exception of the unique face inside Rn−1 we calculate the integral on the left hand side
and obtain the integral on the right hand side. q.e.d.

1.3 Existence of solutions

In order to demonstrate the difference between ordinary and partial differential equa-
tions we shall present an example of a partial differential equation with smooth coeffi-
cients without solutions. This example is a simplification by Nirenbereg of an example
of H. Levy.

For a given complex-valued function f on a domain (x, y) ∈ R2 we look for a
complex valued solution u on the same domain of the following differential equations:

∂u

∂x
+ ıx

∂u

∂y
= f(x, y).

We impose the following two conditions on the smooth function f :

(i) f(−x, y) = f(x, y)

(ii) there exists a sequence of positive numbers ̺n ↓ 0 converging to zero, such that f
vanishes on a nieghbourhood of the circles ∂B(0, ̺n) in contrast to non-vanishing
integrals

∫

B(0,̺n)
f(x, y) dx dy 6= 0.

If h : R → [0,∞) is a smooth periodic function vanishing on an intervall but not on R,
then f(x) := exp(−1/|x|)h(1/|x|) has these two properties.

Now we shall prove by contradiction that there exists no continuously differentiable
solution u in a neighbourhood of (0, 0) ∈ R

2.
step 1: If the function u(x, y) is a solution, then due to (i) −u(−x, y) is also a solution.
Hence we may replace u(x, y) by 1

2
(u(x, y)−u(−x, y)) and assume u(−x, y) = −u(x, y).

step 2: We claim that every solution u vanishes on the circles ∂B(0, ̺n). In fact, we
transform small annuli A onto domains Ã in R2:

A → Ã, (x, y) 7→

{

(x2/2, y) for x ≥ 0

(−x2/2, y) for x < 0.

These transformations are homoemorphisms from A onto Ã. On the sub domains

Ã+ =
{

(s, y) ∈ Ã | s > 0
}

the function ũ(s, y) = u(x2/2, y) is holomorphic:

2∂̄ũ =
∂ũ(s, y)

∂s
+ ı

ũ(s, y)

∂y
=

dx

ds

∂u(x, y)

∂x
+ ı

∂u(x, y)

∂y
=

1

x

(

∂u(x, y)

∂x
+ ıx

∂u(x, y)

∂y

)

= 0.
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Due to step 1. the function ũ vanises on the line s = 0. This implies that ũ together
with the Taylor series vanishes identically on Ã+ and due to step 1 on Ã.
step 3: The divergence theorem yeilds a contradiction to the assumption (ii):

∫

B(0,̺n)

f dx dy =

∫

B(0,̺n)

(

∂u

∂x
+ ıx

∂u

∂y

)

dx dy =

∫

B(0,̺n)

∇ ·

(

u
ıxu

)

dx dy

=

∫

∂B(0,̺n)

(

u
ıxu

)

·N(x, y) dσ(x, y) = 0,

Therefore the given differential equation has no continuously differentiable solution.
This example also implies that the following partial differential equation with

smooth real coefficients has no four times differentiable solution:
(

∂

∂x
+ ıx

∂

∂y

)(

∂

∂x
− ıx

∂

∂y

)2(
∂

∂x
+ ıx

∂

∂y

)

u =

(

(

∂2

∂x2
+ x2 ∂2

∂y2

)2

+
∂2

∂y2

)

u = f.

1.4 Distributions

Our investigation of partial differential equations aims to find as many solutions as
possible and in addition conditions which uniquely determines the solutions. The
solutions and theire existence depend on the notion of a solution. Clearly all partial
derivatives of a solution which occure in the partial differential equation have to exist.
We might use several possible generalisations of derivatives in order to define such
solutions. In this section we introduce generalised functions which can be differentiated
infinitely many times. For this achievement we have to pay a price: these generalised
functions cannot be multiplied with each other. Linear partial differential equations
extend to well defined equations on such generaliseed functions. We call generalised
functions solving the linear partial differential equations weak solutions or solutions
in the sense of distributions. There exist other notions of weak solutions which also
apply to non-linear partial differential equations. An example of more general functions
with finitely many derivaitves are so called sobolev spaces. These sobolev spaces are
introduced in more advanced lectures on partial differential equations. The elements
of the sobolev spaces are distributions. So the distributions which we introduce now
are the most general functions with derivatives.

The support supp f of a function f is the closure of {x | f(x) 6= 0}. On an open
set Ω ⊆ Rn let C∞

0 (Ω) denote the algebra of smooth functions with compact support
in Ω, i.e. supp f ⋐ Ω. Each f ∈ L1(Ω) defines a linear map

F : C∞
0 (Ω) → R, φ 7→

∫

Ω

fφ dµ.
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Generalised funtions on Ω are such linear fomrs F on C∞
0 (Ω). We call the elements of

C∞
0 (Ω) in the domain of the linear form F test functions. By integration by parts we

obtain
∫

Ω

∂ifφ dnx = −

∫

Ω

f∂iφ dnx.

Therefore such generalised functions have infinitley many derivatives. For any linear
form F on C∞

0 (Ω) we define the partial derivatives as

∂iF : C∞
0 (Ω) → R, φ 7→ −F (∂iφ).

The vector space of test functions is infinite dimensional. In order to avoid abstract
non sense we should impose some continuity on the linear forms F . The derivative of
a continuous functional F is again continuous, if the derivatives are linear continuous
maps on the space C∞

0 (Ω). For f ∈ L1(Ω)) the corresponding linear functionals F are
continous with respect to the supremum norm on kompact subsets of Ω. We define for
any compact subset K ⊂ Ω and every multi index α the following semi norm:

‖ · ‖K,α : C∞
0 (Ω) → R, φ 7→ ‖φ‖K,α := sup

x∈K
|∂αφ(x)| .

Definition 1.8. On an open subset Ω ⊆ Rn the space of distributions D′(Ω) is defined
as the vector space space of all linear maps F : C∞

0 (Ω) → R which are continuous with
respect to the semi norms ‖·‖K,α; i.e. for each compact K ⊂ Ω there exist finitley many
multi indices α1, . . . , αM and constants C1 > 0, . . . , CM > 0 such that the following
inequality holds for all test functions φ ∈ C∞

0 (Ω) with compact support in K:

|F (φ)| ≤ C1‖φ‖K,α1
+ . . .+ CM‖φ‖K,αM

.

The support suppF of a distribution F ∈ D′(Ω) is defined as the complement of
the union of all open subsets O ⊂ Ω, such that F vanishes on all test funcitons φ
whose support is contained in O. We denote the euclidean length of x ∈ Rn by |x|.
The testfunction

φ(x) :=

{

exp
(

1
|x|2−1

)

for |x| < 1

0 for |x| ≥ 1

has support B(0, 1) and is non-negative. By rescaling of x and φ and by transla-
tions we obtain for each ball B(x0, ǫ) a unique non-negative test function φB(x0,ǫ) with

supp φB(x0,ǫ) = B(x0, ǫ) with
∫

φB(x0,ǫ) dµ = 1. In particular, there exists for every open
subset O ⊂ Ω a non-negative test function with support contained O. Every continu-
ous function f on Ω which does no vanish identically takes values in (−∞, ǫ) ∪ (ǫ,∞)
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for some ǫ > 0 on some properly chosen open ball. Therefore there exists φ ∈ C∞
0 (Ω)

with
∫

Ω
fφ dµ 6= 0. The following distribution does not correspond to a usual function:

δ : C∞
0 (Ω) → R φ 7→ φ(0).

A corresponding function would vanish on Rn \ {0} and would have a total integral
one. Since {0} has maesure zero such a function does not exist. This generalised
function is called Dirac’s δ-function. The familiy of distributions, which corresponds
to the functions φB(0,ǫ) converge in the limit ǫ ↓ 0 to this dirtribution. The support of
all derivatives of this distribution contains only the point 0 ∈ Ω.

The product of a distribution with a function g ∈ C∞(Ω) is defined as

gF : C∞
0 (Ω) → R, φ 7→ F (gφ).

This product makes the embedding C∞(Ω) →֒ D′(Ω) of the space of smooth functions
into the space a distributions to a homomorphism of modules over the algebra C∞(Ω).
However, even the product of a distribution with a continuous non-smooth functions
is not defined. The convolution defines another product on C∞

0 (Rn):

(g ∗ f)(x) :=

∫

Rn

g(x− y)f(y) dny =

∫

Rn

g(y)f(x− y) dny.

This product is commutative and associative (Exercise). In order to extend this product
to a product between a smooth functions and a distributions we calculate:

∫

Rn

φ(g ∗ f) dnx =

∫

Rn

∫

Rn

φ(x)g(x− y)f(y) dny dnx =

∫

Rn

φ(x)

∫

Rn

(TxPg)(y)f(y) d
ny dnx

=

∫

Rn

∫

Rn

φ(x)g(x− y)f(y) dnx dny =

∫

Rn

(φ ∗ Pg)f dny

with Tx : C∞
0 (Ω) → C∞

0 (x+ Ω), φ 7→ Txφ, and (Txφ)(y) = φ(y − x)

and P : C∞
0 (Ω) → C∞

0 (−Ω), φ 7→ Pφ, with (Pφ)(y) = φ(−y).

Therefore we define for g ∈ C∞
0 (Rn) and F ∈ D′(Rn)

g ∗ F : Rn → R, x 7→ F (TxPg) or equivalently g ∗ F : C∞
0 (Rn) → R, φ 7→ F (φ ∗ Pg).

Lemma 1.9. The convolutions of a distributions with a test functions g ∈ C∞
0 (Ω) is a

distribution which corresponds to a smooth function. The support of this distribution
is cotained in the point-wise sum of the supports of the functions and the distribution.
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Proof. For each F ∈ D′(Ω) the linearity and continuity imply

g ∗ F (φ) = F (Pg ∗ φ) =

∫

Rn

F (TxPg)φ(x) d
nx.

Due to the continuity of F with respect to the semi norms ‖ · ‖K,0 the functions

x 7→ F (TxPg) is continuous. Furthermor, these functions are smooth since T(y+ǫh)−T(y)
ǫ

converges in the limit ǫ → 0 on the space C∞(Ω) with respect to the topology induced
by the semi norms ‖ · ‖K,α to the operator T(y) ∂

∂xi

.
If x 7→ F (TxPg) does not vanish on a neighbourhood of a point x, then g(x−y) 6= 0

for an element y ∈ suppF . Hence x = y + (x− y) is the sum of an element of suppF
with an element of supp g. q.e.d.

This Lemma implies that even the convolution of a distribution F ∈ D′(Rn) with
a distribution G ∈ D′(Rn) with compact support suppG is a well defined distribution:

F ∗G : C∞
0 (Ω) → R, φ 7→ F (φ ∗ PG) mit PG(φ) := G(Pφ).

In particular, the δ-distribution is the neutral element of the product defined by the
convolution, i.e. the convolution with the δ-distribution maps each distribution onto
itself. We introduced a familly of test functions (φB(0,ǫ))ǫ>0 which converge in the
limit ǫ ↓ 0 to the δ-distribution. For each distribution F ∈ D′(Ω) the family of smooth
functions fǫ := φB(0,ǫ)∗F converge in the limit ǫ ↓ 0 in a specific sense to the distribution
F . Such a family (λǫ)ǫ>0 in C0(R

n) with

λǫ ≥ 0 suppλǫ ⊂ B(0, ǫ)

∫

Rn

λǫ d
nx = 1,

which converges in the limit ǫ ↓ 0 to the δ-distribution, is called mollifier. Now we can
show that all distributions can be approximated by smooth functions.

Lemma 1.10. Let f ∈ C(Ω) and (λǫ)ǫ>0 be a mollifier. In the limit ǫ ↓ 0 the family of
smooth functions λǫ ∗ f converges uniformly on compact subets of Ω to f . For smooth
functions the same holds for all derivatives of f .

Proof. On compact subsets of Ω the continuous functions f are uniformly continuous.
Each element x of the open set Ω is contained in an open ball B(x, ǫ) ⊂ Ω. For
sufficiemtly small ǫ we have

|(λǫ ∗ f)(x)− f(x)| =

∣

∣

∣

∣

∫

B(x,ǫ)

λǫ(x− y)(f(y)− f(x)) dny

∣

∣

∣

∣

≤ sup
y∈B(x,ǫ)

|f(y)− f(x)|.
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This shows the uniform convergency limǫ↓0 λǫ ∗ f = f . By definition of the convolution
two smooth functions f and g obey

∂(f ∗ g)

∂xi

= f ∗
∂g

∂xi

=
∂f

∂xi

∗ g.

Hence for f ∈ C∞(Ω) these arguments carry over to all partial derivatives of f . q.e.d.

Each element f ∈ L1
loc(Ω) defines in a canonical way a distribution

Ff : C∞
0 (Ω) → R, φ 7→

∫

Ω

fφ dµ.

For φ ∈ C∞
0 (Ω) with support in a compact subset K ⊂ Ω and f ∈ L1(Ω) gwe have

|Ff(φ)| ≤ sup
x∈K

|φ(x)|‖f‖L1(Ω).

For f ∈ L1
loc(Ω) every compact subset K ⊂ Ω has a covering by open subsets O1, . . . , OL

of Ω such that f |Ol
∈ L1(Ol) for l = 1, . . . , L. This shows Ff ∈ D′(Ω):

|Ff(φ)| ≤ sup
x∈K

|φ(x)|

L
∑

l=1

‖f |Ol
‖L1(Ol) for supp φ ⊂ K.

Lemma 1.11. (fundamental lemma of the calculus of variantions) If f ∈ L1
loc(Ω) obeys

Ff (φ) ≥ 0 for all non-negative test functions φ ∈ C∞
0 (Ω), then f is non-negative almost

everywhere. In particular the map L1
loc(Ω) → D′(Ω), f 7→ Ff is injective.

Proof. It suffices to prove the local statement for f ∈ L1(Ω). We extend f to Rn by
setting f on Rn \ Ω equal to zero. The extended function is also denoted by f and
belongs to f ∈ L1(Rn). For a mollifier (λǫ)ǫ>0 we have

‖λǫ ∗ f − f‖1 =

∫

Rn

∣

∣

∣

∣

∫

B(0,ǫ)

λǫ(y)f(x− y) dny − f(x)

∣

∣

∣

∣

dnx ≤

≤

∫

B(0,ǫ)

∫

Rn

λǫ(y)|f(x− y)− f(x)| dnx dny ≤ sup
y∈B(0,ǫ)

‖f(· − y)− f‖1.

If f is the chracteristic functions of a rectangle, then the supremum on the right hand
side converges to zero for ǫ ↓ 0. Due to the triangle inequality the same holds for step
fuctions, i.e. finite linear combinations of such functions. Since step functions are dense
in L1(Rn) for each f ∈ L1(Rn) this supremum becomes abitrary small for sufficiently
small ǫ. Hence the family of functions (λǫ∗f)ǫ>0 converges in L1(Rn) in the limit ǫ ↓ 0 to
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f . Hence there exists a sequence (ǫn)n∈N which converges to zero, with ‖fn+1− fn‖1 ≤
2−n for all n ∈ N and fn = λǫn ∗ f . This ensures that the series |f1|+

∑

n∈N |fn+1− fn|
converges in L1(Rn). Furthermore, due to Lebesgues bounded convergency the seqeunce
(fn)n∈N converges almost everywhere to f . The non-negativity of the mollifiers together
with the assumption on Ff implies (λǫ ∗ f)(x) = Ff(λǫ(x− ·) ≥ 0. This indeed shows
that f is almost everywhere non-negative.

In particular, if f belongs to the kernel of f 7→ Ff , then f is almost everywhere
non-negative and non-positive. So f vanishes almost everywhere. q.e.d.

A short and lucid introduction into the theory of distributions is contained in the
first chapter of the book of Lars H”ormander: “Linear Partial Differential Operators”.

1.5 Regularity of solutions

The regularity of a solution of a differential equation collects the local properties of the
corresponding functions. The most general functions we shall consider are distributions
with the lowest regularity. They contain the measurable functions with the next higher
regularity. The elements of Lp

loc describe smaller families of functions, whose regularity
increase with p ∈ [1,∞]. The next smaller class are sobolev functions whose k-th order
partial derivatives belong to Lp

loc. The regularity further increases for the functions
in Ck. Finally we end with the smooth functions and the analytic functions with the
highest regularity.

1.6 Boundary value problems

Our investigations of solutions of partiel differential equations aims for a complete
characterisations of all solutions. In general partial differetial equaitons have an infinite
dimensional space of solutions. A solution of an ordinary differential equations of m-th
order is in many cases uniquely determined by fixing the values of the firstm derivatives
at some initial value of the parameter. For partial differential equations we want to
find some similar characterisation. The soltions are functions on higher dimensional
domains Ω ⊂ Rn. A natural generalisation of this conditions is the specification of
the values of the solution and some of its derivatives on the boundary of the domain.
The search for solutions which obey this futher specification are called boundary value
problems. So one important aim in the investigation of partial differetial equations is
to find boudary value problems, which have unique soltions. Furthermore, if we can
also determine all possible boundary values, then the space of solutions is completely
parameterised.


