
Chapter 6

Scalar Conservation Laws

6.1 Crossing Characteristics

In this section we consider the non-linear first order differential equation

u̇(x, t) +∇f(u(x, t)) = u̇(x, t) + f ′(u(x, t)) · ∇u(x, t) = 0

with a smooth function f : R → R
n. Here u : Rn × R is the unknown function. We

impose the initial conditions u(x, t) = u0(x) with some given function u0 : R
n → R. For

any bounded open subset Ω ⊂ R
n for which the divergence theorem holds we conclude

d

dt

∫

Ω

u(x, t)dnx =

∫

Ω

u̇(x, t)dnx = −

∫

Ω

∇f(u(x, t))dnx = −

∫

∂Ω

f(u(x, t)) ·N(x)dσ(x).

This is the meaning to be a conservation law: the change of the integral over u(x, t) is
equal to the flux of f(u(x, t)) through the boundary ∂Ω.

This equation is a non-linear first order PDE, and we apply the method of char-
acteristic. With (p1, . . . , pn) = ∇u and pn+1 = u̇ and z = u the PDE takes the form
pn+1 + f ′(z) · (p1, . . . , pn) = 0. It depends linearly on p and we may neglect p:

x′(s) = f ′(u(x, t)), t′(s) = 1, z′(s) = f ′(u) · (p1, . . . , pn) + pn+1 = 0.

This implies s = t and u(x(t), t) = u0(x0) along the solutions. Consequently the
characteristic equation has for all x0 ∈ R

n the solution

x(t) = x0 + tf ′(u0(x0)) and u(x0 + tf ′(u0(x0)), t) = u0(x0).

The solutions for initial values x1, x2 ∈ R
n with u0(x1) 6= u0(x2) might intersect at t ∈

R
+. In this case the method of characteristic implies u0(x1) = u(x1 + tf ′(u0(x1)), t) =
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u(x2+tf ′(u0(x2)), t) = u0(x2), which is impossible. This intersection of solutions of the
characteristic equations is called crossing characteristics. For n = 1 there is a crossing
of characteristics for f ′(u0(x2)) < f ′(u0(x1)) with x2 > x1.

Theorem 6.1. For f ∈ C2(R,R) and u0 ∈ C1(R,R) with f ′′(u0(x))u
′
0(x) > −α for

all x ∈ R and some α ≥ 0 there is a unique C1-solution of the initial value problem

∂u(x, t)

∂t
+ f ′(u(x, t))

∂u(x, t)

∂x
= 0 with u(x, 0) = u0(x)

on (x, t) ∈ R× [0, α−1) for α > 0 and on (x, t) ∈ R× [0,∞) for α = 0.

Proof. By the method of characteristic the solution u(x, t) is on the lines x+ tf ′(u0(x))
equal to u0(x). For all t ≥ 0 with 1+ tα > 0 the derivative of x 7→ x+ tf ′(u0(x)) obeys

1 + tf ′′(u0(x))u
′
0(x) ≥ 1 + tα > 0.

This implies that this map is C1-diffeomorphism from R onto R. Therefore there exists
for all y ∈ R a unique x with x+ tf ′(u0(x)) = y. Then u(y, t) = u0(x) solves the inital
value problem. q.e.d.

Example 6.2. For n = 1 and f(u) = 1
2
u2 we obtain Burgers equation:

u̇(x, t) + u(x, t)
∂u(x, t)

∂x
= 0.

The solutions of the corresponding characteristic equations are x(t) = x0 + u0(x0)t.
Therefore the solutions of the corresponding initial value problem obey

u(x+ tu0(x), t) = u0(x).

If u0 is continuously differentialble and monotonic increasing, then for all t ∈ [0,∞)
the map x 7→ x+ tu0(x) is a C1-diffeomorphism from R onto R and there is a unique

C1-solution on R× [0,∞). More generally, if u′
0(x) > −α with α ≥ 0, then there is a

unique C1-solution on R× [0, α−1) for α > 0 and (x, t) ∈ R× [0,∞) for α = 0.

6.2 Admissible Solutions

In this section we look for more general notions of solutions which allows to extends
solutions across the crossing characteristics. For this purpose we use the preserved
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integrals. Since we restrict to the one-dimensional situation the natural domians are
intervalls Ω = [a, b] with a < b ∈ R. In this case the conservation law implies

d

dt

b
∫

a

u(x, t)dx = f(u(a, t))− f(u(b, t)).

Now we look for functions u with discontinuities along the graph {(x, t) | x = y(t)} of
a C1–function y. In case y(t) belongs to [a, b] we split the integral over [a, b] into the
integrals over [a, b] = [a, y(t)]∪ [y(t), b]. Let us now calculate in this case the derivative
of the integral over [a, b]:

d

dt

b
∫

a

(u(x, t)dx =
d

dt

y(t)
∫

a

u(x, t)dt+
d

dt

b
∫

y(t)

u(x, t)dx =

= ẏ(t) lim
x↑y(t)

u(x, t) +

y(t)
∫

a

u̇(x, t)dx− ẏ(t) lim
x↓y(t)

u(x, t) +

b
∫

y(t)

u̇(x, t)dx.

We abbreviate limx↑y(t) u(x, t) as ul(y(t), t) and limx↓y(t) u(x, t) as ur(y(t), t) and as-
sume that on both sides of the graph of y the function u is a classical solution of the
conservation law:

d

dt

b
∫

a

(u(x, t)dx = ẏ(t)(ul(y(t), t)−ur(y(t), t))−

y(t)
∫

a

d

dx
f(u(x, t))dx−

b
∫

y(t)

d

dx
f(u(x, t))dx

= ẏ(t)(ul(y(t), t)− ur(y(t), t)) + f(u(a, t))− f(u(b, t)) + f(ur(y(t), t)− f(ul(y(t), t).

Hence the integrated version of the conservation law still holds, if the following Rankine-
Hugonoit condition is fullfilled:

ẏ(t) =
f(ur(y, t))− f(ul(y, t)

ur(y, t)− ul(y, t)
.

Example 6.3. We consider Burgers equation u̇(x, t) + u(x, t)∂u
∂x
(x, t) = 0 for (x, t) ∈

R× R
+ with the following continuous initial values u(x, 0) = u0(x) and

u0(x) =











1 for x ≤ 0,

1− x for 0 ≤ x < 1

0 for 1 ≤ x.
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The first crossing of characterstics happens for t = 1:

x+ tu0(x) =











x+ t for x ≤ 0,

x+ t(1 − x) for 0 < x < 1,

x for 1 ≤ x.

For t < 1 the evaluation at t is a homoemorphism from R onto itself with inverse

x 7→











x− t for x ≤ t,
x−t
1−t

for t < x < 1,

x for 1 ≤ x.

Therefor the solution is for 1 < t equal to

u(x, t) =











1 for x ≤ t,
x−1
t−1

for t ≤ x < 1,

0 for 1 ≤ x.

At t = 1 the solutions of the characteristic equations starting at x ∈ [0, 1] all meet

at x = 1. For t > 1 there exists a unique discontinuous solution satisfying the

Rankine-Hugonoit condition. For small x this solution is 1 and for large x it is 0.
The corresponding regions has to be separated by a path with velocity −1

2
which starts

at (x, t) = (1, 1. For t ≥ 1 this discontinuous solution is equal to

u(x, t) +

{

1 for x ≤ 1 + t
2
,

0 for 1 + t
2
< x.

The second initial value problem is not continous but monotonic increasing. For
continous monotonic increasing functions u0 the evaluation at t of the solutions of the
characteristic equation would be a homoemorphism for all t > 0. Therefore in such
cases there exists a unique continuous solution for all t > 0. But for non-continuous
initial values this is not the case.

Example 6.4. We again consider Burgers equation u̇(x, t) + u(x, t)∂u
∂x
(x, t) = 0 for

(x, t) ∈ R× R
+ with the following non-continuous initial values u(x, 0) = u0(x) and

u0(x) =

{

0 for x < 0,

1 for 0 < x.
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Again there is a unique discontinuous solution which is for small x equal to 0 and for

large x equal to 1. By the Rankine-Hugonoit condition both regions are separated by a

path with velocity 1
2
. This soluiton is equal to

u(x, t) =

{

0 for x < t
2
,

1 for 1
2
≤ x.

But there exists another continuous solution, which clearly also satisfies the Rankine-

Hugonoit condition:

u(x, t) =











0 for x ≤ 0,
x
t

for 0 ≤ x ≤ t,

1 for 1 < x.

Besides these two extreme cases there exists infinitley many other solutions with several

regions of discontinuity, which all satisfy the Rankine-Hugonoit condition.

These examples show that such weak solutions exists for all t ≥ 0 but are not
unique. Therefore we want to restrict the space of weak solutions such that they have
a unique soltions for all t ≥ 0. Since we want to maximise the regularity we only accept
discontinuouties, if there are no continuous solutions. In the last example we prefer the
continuous solution. So for Burgers equation this means we only accept discontinuous
solutions, which take larger values for smaller x and smaller values for larger x.

Definition 6.5 (Lax Entropy condition). A discontinuity of a weak solution along a

C1–path t 7→ y(t) satisfies the Lax entropy condition, if along the path the following

inequality is fullfilled:

f ′(ul(y, t), t) > ẏ(t) > f ′(ur(y, t)).

A weak solutions with discontinuities along C1–paths is called an admissible solution,

if along the path both the Rankine–Hugonoit condition and the Lax Entropy condition

is satisfied.

For continuous u0 there is a crossing of characteristics if f ′(u0(x1)) > f ′(u0(x2)) for
x1 < x2. So this condition ensures that discontinuities can only show up if we cannot
avoid a crossing of characteristics.

Theorem 6.6. Let f ∈ C1(R,R) be convex and u and v two admissible solutions of

u̇(x, t) + f ′(u(x, t))
∂u

∂x
(x, t) = 0.

in L1(R). Then t 7→ ‖u(·, t)− v(,̇t)‖L1R) is monotonically decreasing.
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Proof. We divide R into maximal intervalls I = [a(t), b(t)] with the property that either
u(x, t) > v(x, t) or v(x, t) > u(x, t) for all x ∈ (a(t), b(t)). This means that either
x 7→ u(x, t)− v(x, t) vanishes at the boundary, or is discontinuous and changes sign at
the boundary. We claim that the boundaries a(t) and b(t) of these maximal intervalls
are differentiable. We prove this only for a(t). For b(t) the proof is analogous. If either
u(·, t) or v(·, t) is discontinuous at a(t), then by definition of an admissible solution the
locus of the discontinuity a(t) is differentiable with respect to t. If u(·, t) and v(·, t) are
both continuously differentiable at a(t) with u(a, t) = v(a, t), then by the method of
characteristic for sufficiently small ǫ > 0 all x ∈ (a(t)− ǫ, a(t)+ ǫ) with u(x, t) = v(x, t)
preserve this property along the solutions of ẋ(t) = f ′(u(x(t), t) = f ′(v((x(t), t). This
implies that a(t) is differentiable with ȧ(t) = f(u(a, t)) = f(v(a, t)). Let us only
consider intervalls on whose interior u(·, t)− v(·, t) is positive. For the other intervalls
we apply the same arguments with interchanged u and v. Now we calculate

d

dt

b(t)
∫

a(t)

(u(x, t)− v(x, t))dx =

b(t)
∫

a(t)

(u̇(x, t)− v̇(x, t))dx+

+ ḃ(t)(u(b(t), t)− v(b(t), t))− ȧ(t)(u((a, t)− v(a, t))

=

b(t)
∫

a(t)

d

dx
(f(v(x, t)− f(u(x, t))dx

+ ḃ(t)(u(b(t), t)− v(b(t), t))− ȧ(t)(u((a, t)− v(a, t))

= f(v(b(t), t)− f(u(b(t), t) + ḃ(t)(u(b(t), t)− v(b(t), t))

+ f(u(a, t)− f(v(a, t) + ȧ(t)(v(a, t)− u(a, t)).

If u(·, t) and v(·, t) are both differentiable at a(t), then they take the same values at a(t)
and the last line vanishes. Analogously, if u(·, t) and v(·, t) are both differentiable at
b(t), then the second last line vanishes. For convex f the derivative f ′ is monotonically
increasing and the Lax-Entropy condition implies

ul(y, t) > ur(y, t), vl(y, t) > vr(y, t)

at all discontinuities y of u(·, t) and v(·, t), respectively. If one of the two solutions
u and v is at the boundary of I continuous and the other is non-continuous, then by
definition of the intervall I the value of the continuous solution has to lie in bewteen
the the limits of the non-continuous solution. Therefore either u(·, t) is continuous and
diffierentiabel at a(t) and v(·, t) is discontinuous at a(t) or u is discontinuous at b(t)
and v is continuous and differentiable at b(t). In the first case we use the Rankine
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Hugonoit condition to determine ȧ(t) and ḃ(t). The corresponding contribution to the
derivative of ‖u(·, t)− v(·, t)‖1 is

f(u(a, t))− f(vr(a, t)) + ȧ(t) (vr(a, t)− u(a, t)) =

= f(u(a, t))− f(vr(a, t)) +
f(vr(a, t))− f(vl(a, t))

vr(a, t)− vl(a, t)
(vr(a, t)− u(a, t))

= f(u(a, t))−

(

f(vr(a, t))
vl(a, t)− u(a, t)

vl(a, t)− vr(a, t)
+ f(vl(a, t))

u(a, t)− vr(a, t)

vl(a, t)− vr(a, t)

)

.

Since f is convex the secant lies above the graph of f . Hence due to u(a, t) ∈
[vr(a, t), vl(a, t)] this expression is non-positive. In the second case the contribution
to the derivative of ‖u(·, t)− v(·, t)‖1 is

f(v(b, t))− f(ul(b, t)) + ḃ(t)
(

ul(b, t)− v(b, t)
)

=

= f(v(b, t))− f(ul(b, t)) +
f(ur(b, t))− f(ul(b, t))

ur(b, t)− ul(b, t)

(

ul(b, t)− v(b, t)
)

= f(v(b, t))−

(

f(ur(b, t))
ul(b, t)− v(b, t)

ul(b, t)− ur(b, t)
+ f(ul(b, t))

v(b, t)− ur(b, t)

ul(b, t)− ur(b, t)

)

.

Again due to v(b, t) ∈ [ur(b, t), ul(b, t)] this expression is non-positive.
If finally both solutions are discontinous at a(t) or b(t). Since u(·, t) − v(·, t)

is positive on I, the Lax Entropy condition implies ur(a, t) ∈ [vl(a, t), vr(a, t)] and
vl(b, t) ∈ [ul(b, t), ur(b, t)], respectively. The corresponding contributions to the deriva-
tive of ‖u(·, t)− v(·, t)‖1 are again non-positve:

f(ur(a, t))− f(vr(a, t)) + ȧ(t) (vr(a, t)− ur(a, t)) =

= f(ur(a, t))− f(vr(a, t)) +
f(vr(a, t))− f(vl(a, t))

vr(a, t)− vl(a, t)
(vr(a, t)− ur(a, t))

= f(ur(a, t))−

(

f(vr(a, t))
vl(a, t)− ur(a, t)

vl(a, t)− vr(a, t)
+ f(vl(a, t))

ur(a, t)− vr(a, t)

vl(a, t)− vr(a, t)

)

.

f(vl(b, t))− f(ul(b, t)) + ḃ(t)
(

ul(b, t)− vl(b, t)
)

=

= f(vl(b, t))− f(ul(b, t)) +
f(ur(b, t))− f(ul(b, t))

ur(b, t)− ul(b, t)

(

ul(b, t)− vl(b, t)
)

= f(vl(b, t))−

(

f(ur(b, t))
ul(b, t)− vl(b, t)

ul(b, t)− ur(b, t)
+ f(ul(b, t))

vl(b, t)− ur(b, t)

ul(b, t)− ur(b, t)

)

.

This shows that the contributions to the derivative ‖u(·, t) − v(·, t)‖1 of all intervalls
are non-positive. q.e.d.
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This implies that admissible solutions are unique, if they exist. Let us now turn
the question of theire existence. Let u(x, t) be a solution of the conservation law

u̇(x, t) +
∂

∂x
f(u(x, t)) = u̇(x, t) + f ′(u(x, t))

∂u(x, t)

∂x
= 0

such that u(·, t) belongs to L1(R) for all t ≥ 1. This differential equation invlolves only
the derivative of the function f . We asume f(0) = 0. Then the function

U(x, t) =

x
∫

−∞

u(y, t)dy.

solves the differential equation

U̇(x, t) + f(u(x, t))− lim
x→−∞

f(u(x, t) = U̇(x, t) + f

(

∂U(x, t)

∂x

)

= 0.

Now we assume that f ∈ C2(R,R) is strictly convex:

f(u) ≥ f(v) + f ′(v)(u− v) for all u, v ∈ R.

For u = u(x, t) and v ∈ R obtain

−U̇(x, t) = f(u(x, t)) ≥ f(v) + f ′(v)(u(x, t)− v).

We rewite this inequality as

U̇(x, t) + f ′(v)
∂U(x, t)

∂x
≤ g(v) with g(v) = f ′(v)v − f(v).

The left hand sinde is the derivative d
dt
U(x(t), t) along the curve with constant speed

f ′(v) through the point (x, t). this curve is given by x(t) = y + f ′(v)t, where y is the
postion of this curve at t = 0. So we may rewright the forgoing inequality as

d

dt
U(y + f ′(v)t, t) = U̇(y + f(v)t, t) + f ′(v)

∂U(y + f ′(v)t, t)

∂x
≤ g(v).

The integral from t = 0 to t gives

U(x, t) = U(y + f(v), t) ≤ U(y, 0) + tg(v).

Now we assume in addition that the strictly monotonic increasing function f ′ is a
bijective function form R to R. Let b denote the inverse function. For fixed (x, t) the
relation y + f ′(v)t = x results in the folowing bijective relation between v and y:

y = x− tf ′(v) ⇐⇒ f ′(v) =
x− y

t
⇐⇒ v = b

(

x− y

t

)

.
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Since b is the inverse function of f ′ theire derivatives obey f ′′(b(s))b′(s) = 1. Therefore
g′(v) = f ′′(v)v gives the following derivative of the function h(s) = g(b(s)):

h′(s) = g′(b(s))b′(s) = f ′′(b(s))b(s)b′(s) = b(s).

The condition f(0) = 0 implies that g(0) = 0 and the first inequality for u = 0
shows that this is the unique minimum of g. For c = f ′(0) we have b(c) = 0 and
h(c) = g(b(c)) = g(0) = 0 and this is the unique minimum of h. Since f ′ strictly
monotonic increasing the inverse function b is also strictly monotonic increasing. So
we may rewrite the forgoing inquality in terms of h as

U(x, t) ≤ U(y, 0) + th

(

x− y

t

)

.

In fact, since the forgoing inquality holds for all v ∈ R this inquality holds for all y ∈ R.
In the forgoing inequalities we have equality only for v = u(x, t). Therefore there exists
a unique y with equality in the last inquality two. This proves the following Theorem:

Theorem 6.7. Let f ∈ C2(R,R) be strictly convex, f(0) = 0 and f ′ : R → R bijective.

Then any C1-solution u(x, t) of the initial value problem

u̇(x, t) + f ′(u(x, t))
∂u(x, t)

∂x
= 0 with u(x, 0) = u0(x)

is given by

u(x, t) = b

(

x− y(x, t)

t

)

,

where y(x, t) minimizes for all (x, t) the function

y
∫

−∞

u0(z)dz + th

(

x− y

t

)

= U0(y) + th

(

x− y

t

)

= G(x, y, t).

Here b is the inverse function of f ′ and h is the anti–derivative of b with h(f ′(0)) = 0.

Let us now generalise this construction of a weak solution. We assume that f ∈
C2(R,R) is strictly convex, f(0) = 0 and f ′ : R → R is bijective. Again we obtain

f(u) ≥ f(v) + f ′(v)(u− v) for all u, v ∈ R

with equality only for v = u. this implies

g(v) = f ′(v)− f(v) ≥ f ′(v)u− f(u) for all u, v ∈ R



92 CHAPTER 6. SCALAR CONSERVATION LAWS

with equality only for v = u. For u = 0 we get g(v) ≥ 0 with equality only for v = 0. If
b is the inverse function of f ′, then the function h(s) = g(b(s)) is non-negative and has
only one zero at s = c = f ′(0) and is strictly convex with h′(s) = b(s). The function

U0(y) =

y
∫

−∞

u(x)dx with u0 ∈ L1(R)

is continuous and bounded. Therefore for fixed (x, t) ∈ R×R
+ the continuous function

G(x, y, t) = U0(y) + th

(

x− y

t

)

is bounded from below with the limits limy→±∞G(x, y, t) = ∞. We define

Vn(x, t) = ln





∞
∫

−∞

e−nG(x,y,t)dy



 .

The conditions on G imply that the integral converges and is always positive. By
definition of g(v) = f ′(v)v − f(v) and h(s) = g(b(s)) we have

h(s)− sb(s) = g(b(s))− sb(s) = f ′(b(s))b(s)− f(b(s))− sb(s) = −f(b(s)).

Hence the functions G and Vn have the derivatives

∂G(x, y, t)

∂x
= b

(

x− y

t

)

,

∂G(x, y, t)

∂t
= h

(

x− y

t

)

−
x− y

t
b

(

x− y

t

)

= −f

(

b

(

x− y

t

))

,

un(x, t) = −
1

n

∂Vn

∂x
=

∫∞

−∞
b
(

x−y

t

)

e−nG(x,y,t)dy
∫∞

−∞
e−nG(x,y,t)dy

,

fn(x, t) =
1

n

∂Vn

∂t
=

∫∞

−∞
f
(

b
(

x−y

t

))

e−nG(x,y,t)dy
∫∞

−∞
e−nG(x,y,t)dy

.

Therefore the seqeunce of functions un(x, t) und fn(x, t) solve the conservation law

u̇n(x, t) +
∂

∂x
fn(x, t) = 0.

Furthermore, under the conditions of the theorem the sequences un(x, t) and fn(x, t)
converge in the limit n → ∞ to the solution u(x, t) and to f(u(x, t)), respectively. It
can be shown, that un converges in L1(R) to the unique admissible solution.


