
Chapter 2

First order PDE’s

2.1 Homogenous Transport Equation

One of the simplest partial differential equations is the transport equation:

u̇+ b · ∇u = 0.

Here b ∈ R
n is a vector and u : Rn × R → R is the unknown function. The product

b · ∇u denotes the scalar product of the vector b with the vector of the first partial
derivatives of u with respect to x:

b · ∇u(x, t) = b1
∂u(x, t)

∂x1

+ . . .+ bn
∂u(x, t)

∂xn

.

Let us first assume that u(x, t) is a differentiable solution of the transport equation.
For all fixed (x, t) ∈ R

n × R the function

z(s) = u(x+ s · b, t + s)

is a differentiable function on s ∈ R, whose first derivative vanishes:

ż(s) = b∇u(x+ s · b, t + s) + u̇(x+ s · b, t + s) = 0.

Therefore u is constant along all parallel stright lines in direction of (b, 1). Furthermore,
u is completely determined by the values on all these parallel straigth lines.

Initial Value Problem 2.1. We are looking for a solution u : R
n × R → R of

the transport equation with given b, which at t = 0 is equal to some given function

g : Rn → R.
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20 CHAPTER 2. FIRST ORDER PDE’S

All parallel stright lines in direction of (b, 1) intersect Rn × {0} exactely once:

(x+ sb, t+ s) ∈ R
n × {0} ⇐⇒ s = −t

Hence the soluton has to be equal to u(x, t) = g(x− tb). If g is differentialble on R
n,

then this function indeed solves the transport equation. In this case the initial value
problem has a unique solution.

Otherwise, if g is not differentialble on R
n, then the initial value problem does

not have a solution. Furthermore, as we have seen above, whenever the initial value
problem has a solution, then the function u(x, t) = g(x − bt) is the solution. It can
be shown that this is also true for weak solutions. For example if the function g

corresponds to a distribution Fg ∈ D′(Rn), then
∫

R

∫

Rn

g(x− tb)φ(x, t) dn x dt =

∫

Rn

∫

R

g(x− tb)φ(x, t)dµ(t) dn x =

=

∫

Rn

∫

R

g(y)φ(y + bt) dt dn y = Fg

(
∫

R

T−tbφ(·, t) dt

)

.

Since C∞
0 (Rn × R) → C∞

0 (Rn) with φ 7→
∫

R
T−tbφ(·, t) dt is continuous and linear, the

function g(x − bt) corresponds to a distribution on R
n × R. Let us now consider a

distribution F ∈ D′(Rn×R) which solves the transport equation (∂t + b∇)F = 0. The
following distribution solves the equation ∂tF̃ = 0:

F̃ ∈ D′(Rn × R) with F̃ (φ) = F (φ̃) and φ̃(y, t) = φ(y + bt, t) for all (y, t) ∈ R
n × R.

The following exercise shows that there exists a unique distribution G ∈ D′(Rn) with

F̃ (φ) = G

(
∫

R

φ(·, t) dt

)

and F (φ) = G

(
∫

R

T−tbφ(·, t) dt

)

.

Exercise 2.2. 1. Show that the following formula defines a linear continuous map

I : C∞(Rn × R) → C∞
0 (Rn) with I(φ)(x) =

∫

R

φ(x, t) dt.

2. Let F̃ ∈ D′(Rn × R) solve the equation ∂tF̃ = 0. Show that there exists a

distribution G ∈ D′(Rn), such that F̃ (φ) = G(I(φ)).

3. Show that for any mollifier (λǫ)ǫ>0 on R and any φ ∈ C∞
0 (Rn) the functions

φ× λǫ : R
n × R → R with (x, t) 7→ φ(x)λǫ(t)

belong to C∞
0 (Rn×R) and that F̃ (φ×λǫ) does not depend on ǫ > 0. Furthermore,

the map φ 7→ F̃ (φ × λǫ) defines the distribution G ∈ D′(Rn) above. We may

interpret the distribution G ∈ D′(Rn) as the inital value G(φ) = limǫ↓0 F̃ (φ×λǫ),
which uniquely determines F̃ and F .
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2.2 Inhomogenous Transport Equation

Now we consider the corresponding inhomogenous trasport equation:

u̇+ b · ∇u = f.

Again b ∈ R
n is a given vector, f : Rn×R → R is a given function and u : Rn×R → R

is the unknown function.

Initial Value Problem 2.3. We are looking for a given vector b ∈ R, a given function

f : Rn × R → R and a given initial value g : Rn → R for a solution u : Rn × R → R

of the inhomogenous transport equation which is at t = 0 equal to g.

We define for each (x, t) ∈ R
n ×R the function z(s) = u(x+ sb, t+ s) which solves

ż(s) = b · ∇u(x+ sb, t+ s) + u̇(x+ sb, t + s) = f(x+ sb, t+ s).

This function obeys

z(0)− z(−t) = u(x, t)− g(x− bt) =

0
∫

−t

ż(s)ds

=

0
∫

−t

f(x+ sb, t+ s)ds =

t
∫

0

f(x+ (s− t)b, s)ds.

Hence the solution u is equal to u(x, t) = g(x− bt) +

t
∫

0

f(x+ (s− t)b, s)ds.

We observe that this formula is analogous to the formula for solutions of inhomogenous
initial value problems of linear ODE’s. The unique solution is the sum of the unique
solution of the corresponding homogenous initial value problem and the integral over
solution of the homogenous equation with the inhomogenity as initial values.

Again one can show that the initial value problem has a unique solution in the
sense of distributions. More precisely, for any function g which defines a distribution
Fg ∈ D′(Rn) and any function f which defines a distribution Ff ∈ D′(Rn × R) there
exists a unique distribution F , which solves the corresponding initial value problem
of the inhomogenous transport equation. We obtained these solution of the first or-
der homogenous and inhomogenous transport equation by solving an ODE. We now
want to generalise this method and solve more general first order PDE’s by solving an
appropriate chosen system of first order ODE’s.
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2.3 Method of Characteristics

In this section we shall solve the following first order PDE:

F (∇u(x), u(x), x) = 0.

Here u is a real unknown function on an open domain Ω ⊂ R
n and F is a real function

on an open subset of W ⊂ R
n × R× R

n. We try to obtain the solution by solving an
appropriate system of first order ODE’s for the values of the function u along some
integral curves along some vector fields. So let x(s) be such such an integral curve and
p(s) = ∇u(x(s)) the gradient of the unknown function along this curve. We want to
determine the curve s 7→ x(s) in such a way, that the tripple s 7→ (x(s), p(s), z(s)) with
z(s) = u(x(s)) solves an ODE. For this purpose we differentiate

dpi(s)

ds
=

d

ds

∂u(x(s))

∂xi

=

n
∑

j=1

∂2u(x(s))

∂xj∂xi

dxj(s)

ds
.

The total derivative of F (∇u(x), u(x), x) = 0 with respect to xi gives

0 =
dF (∇u(x), u(x), x)

dxi

=

=

n
∑

j=1

∂F (∇u(x), u(x), x)

∂pj

∂2u(x)

∂xi∂xj

+
∂F (∇u(x), u(x), x)

∂z

∂u(x)

∂xi

+
∂F (∇u(x), u(x), x)

∂xi

.

Due to the commutativity ∂i∂ju = ∂j∂iu of the second partial derivatives we obtain

n
∑

j=1

∂F (p(s), z(s), x(s))

∂pj

∂2u(x(s))

∂xj∂xi

+
∂F (p(s), z(s), x(s))

∂z
pi(s)+

∂F (p(s), z(s), x(s))

∂xi

= 0.

Now we choose the vector field for the integral curves s 7→ x(s) as

dxj

ds
=

∂F (p(s), z(s), x(s))

∂pj
.

This choice allows us to rewrite the differential equation

dpi(s)

ds
=

n
∑

j=1

∂2u(x(s))

∂xj∂xi

dxj

ds
(s)
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as

dpi(s)

ds
=

n
∑

j=1

∂2u(x(s))

∂xj∂xi

∂F (p(s), z(s), x(s))

∂pj
=

= −
∂F (p(s), z(s), x(s))

∂xi

−
∂F (p(s), z(s), x(s))

∂z
pi(s).

Finally we differentiate

dz(s)

ds
=

du(x(s))

ds
=

n
∑

j=1

∂u

∂xj

(x(s))
dxj(s)

ds
=

h
∑

j=1

pj(s)
∂F (p(s), z(s), x(s))

∂pj
.

In this way we indeed obtain the following system of first order ODE’s:

ẋi(s) =
∂F (p(s), z(s), x(s))

∂pi

ṗi(s) = −
∂F (p(s), z(s), x(s))

∂xi

−
∂F (p(s), z(s), x(s))

∂z
pi(s)

ż(s) =
n
∑

j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s).

This is a system of first order ODE’s with 2n + 1 unknown real functions. Let us
summarize these calculations in the following theorem:

Theorem 2.4. Let F be a real differentiable function on an open subset W ⊂ R
n ×

R×R
n and u : Ω → R a twice differentiable solution on an open subset Ω ⊂ R

n of the

first order PDE F (∇u(x), u(x), x) = 0. For every solution s 7→ x(s) of the ODE

ẋi(s) =
∂F

∂pi
(∇u(x(s)), u(x(s)), x(s))

the functions p(s) = ∇u(x(s)) and z(s) = u(x(s)) solve the ODE’s

ṗi(s) = −
∂F (p(s), z(s), x(s))

∂xi

−
∂F (p(s), z(s), x(s))

∂z
pi(s) and

ż(s) =

n
∑

j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s). q.e.d.

Now we want to introduce a boundary value problem of the following form:

u(y) = g(y) for all y ∈ Ω ∩H with H = {y ∈ R
n | y · en = x0 · en}.
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Here en = (0, . . . , 0, 1) denotes the n–th element of the canocialcl basis and H the
unique hyperplane through x0 ∈ Ω ortogonal to en. By the implizit function theorem
general continuously differentialble hypersurfaces may be brought into this form by
a continuously differentiabel coordinate transformation with contiinuously differentia-
bel inverse: Let Φ : Ω → Ω′ ba a continuously differentiable homoemorphism with
continuously differetiable inverse Φ−1. Then the composition u = v ◦ Φ of a function
v : Ω′ → R solves the PDE

F (∇u(x), u(x), x) = 0

if and only if v solves the PDE

F
(

(

Φ′
(

Φ−1(y)
))t

· ∇v(y), v(y),Φ−1(y)
)

= 0.

Therefore the PDE for the function v is the zero set of the function

G(∇v(y), v(y), y) = F
(

(

Φ′
(

Φ−1(y)
))t

· ∇v(y), v(y),Φ−1(y)
)

In the sequel we assume that the hyperplane H has the following form:

H = {y ∈ R
n | y · en = x0 · en}.

If the hypersurface H ′ ⊂ Ω′ is the zero set of a continuously differentiable function
Λ : Ω′ → R whose gradient ∇Λ does not vanish on H ′, then the implicit function
theorem shows that in a neighbourhood of y0 ∈ H ′ there exists such a Φ. Furthermore,
Φ is as often differentiable as Λ. In the foregoing theorem the functions u and v

has to be twice differentiable. We assume that Φ and Φ−1 are twice differentiable.
Consequently Λ should be twice differentiable. On Ω ∩H there must hold

F (∇u(y), u(y), y) = 0.

On order to define initial conditions at y ∈ Ω ∩H

z(0) = g(y), p(0) = q(y) and x(0) = y

we have to find a solution q : Ω ∩H → R
n, y 7→ q(y) of the following equation:

F (q(y), g(y), y) = 0 and
∂g(y)

∂yi
= qi(y) for i = 1, . . . , n− 1.

The second equations uniquely determine q1(y), . . . , qn−1(y) in terms of

∂g(y)

∂y1
, . . . ,

∂g(y)

∂yn−1
.
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It remains to determine the component qn(y) in such a way, that

F (q(y), g(y), y) = 0

holds for all y ∈ Ω∩H . Now the implicit function theorem implies the following lemma:

Lemma 2.5. Let F : W → R and g : H → R be continuously differentiable, x0 ∈ Ω∩H,

z0 = g(x0) and p0,1 =
∂g(x0)

y1
, . . . , p0,n−1 =

∂g(x0)
yn

. If there exist p0,n with (p0, z0, x0) ∈ W ,

F (p0, z0, x0) = 0 and
∂F (p0, z0, x0)

∂pn
6= 0,

then on an open neighbourhood of x0 ∈ Ω ∩H there exists a unique solution q of

F (q(y), g(y), y) = 0, qi(y) =
∂g(y)

∂yi
for i = 1, . . . , n− 1 and q(y0) = p0. q.e.d.

Theorem 2.6. Let F : X → R and g : Ω ∩H → R be three times differentiable func-

tions on open subsets. Furthermore, let (p0, z0, x0) ∈ W and g statisfy F (p0, z0, x0) = 0,

g(x0) = z0, p0,1 = ∂g(x0)
y1

, . . . , p0,n−1 = ∂g(x0)
yn

and ∂F
∂pn

(p0, z0, x0) 6= 0. Then there exists

on a neighbourhood Ω of x0 a solution of the boundary value problem

F (∇u(x), u(x), x) = 0 for x ∈ Ω and u(y) = g(y) for y ∈ Ω ∩H.

Proof. By the foregoing Lemma there exists a solution q on an open neighbourhood of
x0 in H of the following equations

F (q(y), g(y), y) = 0, qi(y) =
∂g(y)

∂yi
for i = 1, . . . , n− 1 and q(y0) = p0.

If F is twice and g are three times differentable then the implicit function theorem
yields a twice differentiable solution. The theorem of Picard Lidenlöff shows that the
following initial value problem has for all y in the intesection of an open neighbourhood
of x0 with H a unique solution:

ẋi(s) =
∂F

∂pi
(p(s), z(s), x(s)) with x(0) = y

ṗi(s) = −
∂F

∂xi

(p(s), z(s), x(s))−
∂F

∂z
(p(s), z(s), x(s))pi(s) with p(0) = q(y)

ż(s) =

n
∑

j=1

∂F

∂pj
(p(s), z(s), x(s))pj(s) with z(0) = g(y).
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We denote the family of solutions by (x(y, s), p(y, s), z(y, s)). For small Ω ∋ x0 there
exists an ǫ > 0 such that these solutions are uniquely defined on (y, s) ∈ (Ω ∩ H) ×
(−ǫ, ǫ). Since F and g are three times differentiable all cofficients and initial values
are twice differentiable. A theorem on the dependence of solutions of ODE’s on the
initial values yields that (y, s) 7→ (x(y, s), p(y, s), z(y, s)) is on (Ω ∩H)× (−ǫ, ǫ) twice
differentiable. Due to the choice of the initial values at s = 0, the function

(Ω ∩H)× (−ǫ, ǫ) → Ω, (y, s) 7→ x(y, s)

has at (y, s) = (x0, 0) the Jacobi matrix













1 0 . . . 0 ∂F (p0,z0,x0)
∂p1

...
...

0 0 . . . 1 ∂F (p0,z0,x0)
∂pn−1

0 0 . . . 0 ∂F (p0,z0,x0)
∂pn













.

Since ∂F (p0,z0,x0)
∂pn

6= 0 this matrix is invertible, and the inverse function theorem implies
that on an possibly diminished neighbourhood Ω of x0 and an appropriate chosen ǫ > 0
this map is a twice differentiable homoemorphims with twice differentiable inverse
mapping. Now we define the function u : Ω → R by

u(x(y, s)) = z(y, s) for all (y, s) ∈ (Ω ∩H)× (−ǫ, ǫ).

Our next task is to show that this function solves the PDE F (∇u(x), u(x), x) = 0.
In a first step we observe that the ODE implies

∂

∂s
F (p(y, s), z(y, s), x(y, s)) = 0.

Since F (q(y), g(y), y) vanishes for all y ∈ Ω ∩H we conclude

F (p(y, s), z(y, s), x(y, s)) = 0 for all (y, s) ∈ (Ω ∩H)× (−ǫ, ǫ).

Hence it suffices to show p(y, s) = ∇u(x(y, s)) for all (y, s) ∈ (Ω ∩H)× (−ǫ, ǫ).
In a second step we show

∂z(y, s)

∂s
=

n
∑

j=1

pj(y, s)
∂xj(y, s)

∂s
and

∂z(y, s)

∂yi
=

n
∑

j=1

pj(y, s)
∂xj(y, s)

∂yi

for all (y, s) ∈ (Ω ∩ H) × (−ǫ, ǫ) and all i = 1, . . . , n − 1. The first equation follows
form the ODE for x(y, s) and z(y, s). For s = 0 the second equation follows from the
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initial conditions for z(y, s), p(y, s) and x(y, s). The derivative of the first equation
with respect to yi yields

∂2z(y, s)

∂yi∂s
=

n
∑

j=1

(

∂pj(y, s)

∂yi

∂xj(y, s)

∂s
+ pj(y, s)

∂2xj(y, s)

∂yi∂s

)

.

By the commutativity of the second partial derivatives we obtain

∂

∂s

(

∂z(y, s)

∂yi
−

n
∑

j=1

pj(y, s)
∂xj(y, s)

∂yi

)

=

=

n
∑

j=1

(

∂pj(y, s)

∂yi

∂xj(y, s)

∂s
−

∂pj(y, s)

∂s

∂xj(y, s)

∂yi

)

=

=
n
∑

j=1

∂pj(y, s)

∂yi

∂F (p(y, s), z(y, s), x(y, s))

∂pj
+

+

n
∑

j=1

(

∂F (p(y, s), z(y, s), x(y, s))

∂xj

+
∂F (p(y, s), z(y, s), x(y, s))pj(y, s)

∂z

)

∂xj(y, s)

∂yi

=
∂

∂yi
F (p(y, s), z(y, s), x(y, s))−

−
∂F (p(y, s), z(y, s), x(y, s))

∂z

(

∂z(y, s)

∂yi
−

n
∑

j=1

pj(y, s)
∂xj(y, s)

∂yi

)

.

We insert the result F (p(y, s), z(y, s), x(y, s)) = 0 of the first step and obtain

∂

∂s

(

∂z

∂yi
(y, s)−

n
∑

j=1

pj(y, s)
∂xj(y, s)

∂yi

)

=

= −
∂F (p(y, s), z(y, s), x(y, s))

∂z

(

∂z

∂yi
(y, s)−

n
∑

j=1

pj(y, s)
∂xj(y, s)

∂yi

)

.

This is a linear homogenous ODE with initial value 0 at s = 0. The unique solution
vanishes identically. This implies the second equation and finishes the second step:

∂z(y, s)

∂yi
=

n
∑

j=1

pj(y, s)
∂xj(y, s)

∂yi
.
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Finally in a third step we show p(y, s) = ∇u(x(y, s)) for all (y, s) ∈ (Ω ∩H)× (−ǫ, ǫ).
Locally the derivative of the map (y, s) 7→ x is invertible. Alltogether we obtain

∂u

∂xj

=
∂z

∂s

∂s

∂xj

+

n−1
∑

i=1

∂z

∂yi

∂yi

∂xj

=

(

n
∑

k=1

pk
∂xk

∂s

)

∂s

∂xj

+

n−1
∑

i=1

(

n
∑

k=1

pk
∂xk

∂yi

)

∂yi

∂xj

=

n
∑

k=1

pk

(

∂xk

∂s

∂s

∂xj

+

n−1
∑

i=1

∂xk

∂yi

∂yi

∂xj

)

=

n
∑

k=1

pk
∂xk

∂xj

= pj.

Due to the initial values z(y, 0) we have u(y) = g(y) for all y ∈ Ω∩H . Die uniqueness of
the solution follows from the Theorem 2.4 and the theorem of Picard-Lindelöf. q.e.d.

We solved the boundary value problem by solving a family of ODE’s. In the case
of the inhomogenous transport equation we combine the coordinates x and t to one
coordinate (x, t). Consequently we write

F (p, z, (x, t)) = F̃ (p, x, t) = b1p1 + . . .+ bnpn + pn+1 − f(x, t).

We use the equation F (p, z, (x, t) = 0 and rewrite the ODE for z. Then the ODE
bcomes independent of p and we can solve x(s), t(s) and z(s) separately:

ẋ = b ṫ = 1 ṗ = (∇f(x, t), ḟ(x, t)) ż = F̃ (p, x, t) + f(x, t) = f(x, t).

Whenever the function F depends linearly on p, then the functions

∂F (p(s), z(s), x(s))

∂pi
for i = 1, . . . , n and

F (p(s), z(s), x(s))−

n
∑

j=1

∂F (p(s), z(s), x(s))

∂pj
pj(s)

do not depend on p. Therefore the ODE system becomes independent of p(s), and the
components x(s) and z(s) can be solved independently of p(s). This situation describes
the transport equation with vector b depending on x and t. For the solution of this
equation we do not need to introduce the function p(s) = ∇u(x(s)).


